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Almost orthogonal frames have been introduced and studied. It has been proved that a bounded
almost orthogonal frame satisfies Feichtinger conjecture. Also, we prove that a bounded almost
orthogonal frame contains a Riesz basis.

1. Introduction

Frames were formally introduced in 1952 by Duffin and Schaeffer [1]. In 1985, frames were
resurfaced in the book by Young [2]. The theory of frames began to be more widely studied
only after the landmark paper of Daubechies et al. [3] in 1986. For an introduction to frames,
one may refer to [4–6].

Feichtinger in his work on time frequency analysis noted that all Gabor frames (which
he was using for his work) had the property that they could be divided into a finite number of
subsets which were Riesz basis sequences. This observation led to the following conjecture,
called the Feichtinger conjecture “Every bounded frame can be written as a finite union of
Riesz basic sequences.”

Feichtinger conjecture is connected to the famous Kadison-Singer conjecture. It was
shown in [7] that Kadison-Singer conjecture implies Feichtinger conjecture. For literature
related to Feichtinger conjecture, one may refer to [7, 8].

In the present paper, we introduce and study almost orthogonal frames in Hilbert
spaces and prove that a bounded almost orthogonal frame satisfies Feichtinger conjecture.
Also, we prove that a bounded almost orthogonal frame contains a Riesz basis.



2 International Journal of Mathematics and Mathematical Sciences

2. Preliminaries

Throughout the paper, H will denote an infinite-dimensional Hilbert space, {nk} an infinite-
increasing sequence inN, [xn] the closed linear span of {xn}, and for any setD, |D|will denote
cardinality of D.

Definition 2.1. A sequence {xn} in a Hilbert space H is said to be a frame for H if there exist
constants A and B with 0 < A ≤ B < ∞ such that

A‖x‖2 ≤
∑

n

|〈x, xn〉|2 ≤ B‖x‖2, x ∈ H. (2.1)

The positive constantsA and B, respectively, are called lower and upper frame bounds
for the frame {xn}. The inequality (2.1) is called the frame inequality for the frame {xn}.

A frame {xn} in H is called tight if it is possible to choose A,B satisfying inequality
(2.1) with A = B as frame bounds and is called normalized tight if A = B = 1. A frame {xn}
in H is called exact if removal of any xn renders the collection {xn} no longer a frame for H.
A sequence {xn} ∈ H is called a Bessel sequence if it satisfies upper frame inequality in (2.1).

Definition 2.2. A sequence {xn} in H is called a Riesz basic sequence if there exist positive
constants A and B such that for all finite sequence of scalars {αk}, we have

A
∑

k

|αk|2 ≤
∥∥∥∥∥
∑

k

αkxk

∥∥∥∥∥

2

≤ B
∑

k

|αk|2. (2.2)

In case, the Riesz basic sequence {xn} is complete inH, it is called a Riesz basis forH.

Definition 2.3. A sequence {yn} in a Hilbert spaceH is said to be a block sequencewith respect
to a given sequence {xn} in H, if it is of the form

yn =
∑

i∈Dn

αixi /= 0, n ∈ N, (2.3)

where Dn’s are finite subsets of N with Dn ∩ Dm = ∅, n/=m,
⋃

n∈N
Dn = N and αi’s are any

scalars.

It has been observed in [9] that a block sequence with respect to a frame in a Hilbert
space may not be a frame forH. Also, a block sequence with respect to a sequence inH which
is not even a frame for H may be a frame for H.

3. Main Results

We begin with a sufficient condition for a bounded frame to satisfy the Feichtinger conjecture.

Theorem 3.1. Let {xn} be a bounded frame forH. If there exists a sequence of finite subsets {Dn}n∈N

of N withDi ∩Dj = ∅, for all i /= j,
⋃∞

i=1 Di = N and supn{|Dn|} < ∞ such thatH =
⊕

n∈N
Vn, where

Vn = [xn]i∈Dn
, then {xn} can be decomposed into a finite union of a Riesz basic sequences.
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Proof. Suppose the problem has an affirmative answer. Let {Dn}n∈N
be sequence of finite

subsets of N with Dn ∩ Dn = ∅, n/=m and
⋃

n∈N
Dn = N such that H =

⊕
n∈N

Vn, where
Vn = [xi]i∈Dn

and {xn} is a bounded frame forH. Let {Gn} be a sequence of sets given by

Gn = {xi}i∈Dn
, ∀n ∈ N. (3.1)

Now, for each j ∈ N, choose a sequence {yj

i }i∈N
such that

y
j

i =

{
j th element of Gi, if Gi contains jth element,
∅, otherwise.

(3.2)

Then, for each j ∈ N, {yj

i }i∈N
is a sequence of orthogonal vectors which are norm bounded.

So, {yj

i }i∈N
is a Riesz basic sequence forH, for each j ∈ N. Also, note that

{xn} =
⋃

j

{
y
j

i

}
. (3.3)

Since Dn’s are finite, j varies on a finite set. Hence {xn} is decomposed into finite number of
Riesz basic sequences.

We will now introduce a concept which is more general than orthogonal frame and call
it almost orthogonal frame. We give the following definition of almost orthogonal frame.

Definition 3.2. A frame {xn} in a Hilbert spaceH is called an almost orthogonal frame of order
K (K ∈ N) ifK is the smallest natural number for which there exists a permutation {σn} of N

such that

〈xσn , xσm〉 = 0, ∀σn, σm such that |σn − σm| ≥ K. (3.4)

Note 1. We use 〈xn〉 instead of 〈xσn〉 for convenience.

Example 3.3. (I) An orthogonal basis is an almost orthogonal frame of order 1.
(II) {e1, e1, e2, e2, . . . , en, en, . . .} is an almost orthogonal frame of order 2.
(III) {e1, e2/

√
2, e2/

√
2, e3/

√
3, e3/

√
3, e3/

√
3, . . .} is not an almost orthogonal frame of

any order.
(IV) {e1, e1 + e2, e2 + e3, e3, e3, e3 + e4, . . .} is an almost orthogonal frame of order 3.
(V) {e1, e2 + e1/4, e3 + e1/8, . . .} is not an almost orthogonal frame of any order.
(VI) {ei + (1/i)ei+1}∞i=1 is an almost orthogonal frame of order 2.
(VII) {e1, (1/2)e2, (1 − (1/22))1/2e2, (1/3)e3, (1 − (1/32))1/2e3, . . .} = {(1/n)en} ∪ {(1 −

(1/22))1/2en} is a tight frame with A = B = 1, which is almost orthogonal of order 2 and is
not bounded below.

Observations

(I) A bounded frame may or may not be an almost orthogonal frame. (See Example I
and Example V.)
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(II) An almost orthogonal frame of some finite (/= 1) order may or may not be a Riesz
basis. (See Example II and Example V.)

(III) A Riesz basis may or may not be an almost orthogonal frame. (See Example I and
Example V.)

Theorem 3.4. A bounded almost orthogonal frame satisfies Feichtinger conjecture.

Proof. Let {xn} be a bounded almost orthogonal frame of order K. Define a sequence {Gn} of
subspaces as follows:

G1 = [x1, x2, . . . , xK],

G2 = [xK+1, . . . , x2K],

...

Gn =
[
x(n−1)K+1, x(n−1)K+2, . . . , xnK

]
, n ∈ N.

(3.5)

Now, since {xn} is an almost orthogonal frame of degree K. This gives

〈xn, xm〉 = 0 ∀n,m ∈ N such that |n −m| ≥ K. (3.6)

Let x ∈ Gn and y ∈ Gn+2, for any n ∈ N. Then

x =
nK∑

(n−1)K+1

αixi, y =
(n+2)K∑

(n+1)K+1

βjxj . (3.7)

Therefore, we have

〈
x, y

〉
=

〈
nK∑

(n−1)K+1

αixi,
(n+2)K∑

(n+1)K+1

βjxj

〉
=

nK∑

(n−1)K+1

αi

〈
xi,

(n+2)K∑

(n+1)K+1

βjxj

〉

=
nK∑

(n−1)K+1

αi

⎛

⎝
(n+2)K∑

(n+1)K+1

βj
〈
xi, xj

〉
⎞

⎠ = 0.

⇒ Gn ∩Gn+2 = φ, ∀n ∈ N,

⇒ span {Gn,Gn+2} = Gn ⊕Gn+2 ∀n,

⇒ span{G1, G3, G5, . . .} = G1 ⊕G3 ⊕G5 ⊕ · · · =
⊕

n∈N

G2n−1 = H1.

(3.8)

Also, we have

span{G2, G4, G6, . . .} =
⊕

n∈N

G2n = H2. (3.9)
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So, by Theorem 3.1

{x1, x2, . . . , xK, x2K+1, x2K+2, . . . , x3K, . . .} (3.10)

can be written as finite union of Riesz basic sequences.
Similarly, using Theorem 3.1,

{xK+1, xK+2, . . . , x2K, x3K+1, . . . , x4K, . . .} (3.11)

can be written as finite union of Riesz basic sequences.
Hence, {xn} can be written as finite union of Riesz basic sequences.

Remark 3.5. Almost orthogonal frames produce fusion frames (nonorthogonal) and fusion
frame systems. Indeed, let {xn} be an almost orthogonal frame of order K. Proceeding as in
Theorem 3.4, we get a sequence of subspaces {Gn} satisfying

span{G1, G3, G5, . . .} = G1 ⊕G3 ⊕G5 ⊕ · · · = H1,

span{G2, G4, G6, . . .} = G2 ⊕G4 ⊕G6 ⊕ · · · = H2.
(3.12)

Now, define a sequence of projections {vi} (vi : H → Gi). Then, we can easily verify
that {v2i−1, G2i−1}i∈N

is a fusion frame for H1 and {v2i, G2i}i∈N
is a fusion frame for H2. So,

{vi, Gi}i∈N
is a fusion frame forH.

Finally, we prove that for any bounded almost orthogonal frame, there exists a block
sequence with respect to the almost orthogonal frame such that the block sequence is a Riesz
basis. More precisely, we have the following.

Theorem 3.6. A bounded almost orthogonal frame contains a Riesz basis.

Proof. Let {xn} be an almost orthogonal frame of order K. Consider {x1, x2, . . . , xK, xK+1, . . . ,
x2K, x2K+1, . . .}. Then, following the steps in Theorem 3.4, we get a sequence of subspaces
{Gn} which are finite dimensional. So, we can extract a Riesz basis for Gn out of
{x(n−1)K+1, x(n−1)K+2, . . . , xnK} and let it be {xn

i }. Then
⋃

n∈N
{x2n−1

i } is a Riesz basis for H1 and⋃
n∈N

{x2n
i } is a Riesz basis forH2, whereH1 andH2 are as in Theorem 3.4.Write Fn = Gn∩Gn+1

for all n ∈ N, then, for each n ∈ N, Fn is a finite-dimensional subspace of Gn. Let {xn′
i }

be an extracted Riesz basis for Fn which is extracted from {x(n−1)K+1, x(n−1)K+2, . . . , xnK} or
{xnK+1, . . . , x(n+1)K}. Then,

⋃
n{xn

i } ∼ ⋃
n{xn′

i } is the desired Riesz basis for H.
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