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The present paper is concerned with the rational approximation of functions holomorphic on
a domain G ⊂ C, having generalized types of rates of growth. Moreover, we obtain the
characterization of the rate of decay of product of the best approximation errors for functions f
having fast and slow rates of growth of the maximum modulus.

1. Introduction

Let K be a compact subset of the extended complex plane C and let En be the error in the
best uniform approximation of a function f (holomorphic on K) on K in the class Rn of all
rational functions of order n:

En = En

(
f,K

)
= inf

r∈Rn

∥∥f − r
∥∥
K (1.1)

for each nonnegative integer n, where ‖ · ‖K is the supremum norm on K.
In view of Walsh’s inequality [1], if f is holomorphic on C \M, whereM is a compact

set in C and M ∩K = φ, then

lim sup
n→∞

E1/n
n ≤ 1

d
, (1.2)
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where d = exp(1/C(K,M)) and C(K,M) is the capacity of the condenser (K,M), (see [2–4],
for the definition and properties of the capacity).

The theory of Hankel operators permits one [5–7] to estimate the order of decrease of
the product E1E2 · · ·En:

lim sup
n→∞

(E1E2 · · ·En)1/n
2 ≤ 1

d
. (1.3)

The last relation implies Walsh’s inequality (1.2) and the following upper estimate for
lim infn→∞E

1/n
n :

lim inf
n→∞

E1/n
n ≤ 1

d2
. (1.4)

The present paper is concerned to results that make the inequalities (1.2), (1.3) and
(1.4)more precise for analytic functions having generalized types of the rate of growth of the
maximum modulus in the domain of analyticity of f .

The generalized order ρ(α, β, f) of the rate of growth of entire functions f was
introduced by Šeremeta [8], who obtained a characterization of ρ(α, β, f) in terms of the
coefficients of the power series of f . In [8], the relationship between the generalized order
of entire functions f and the degree of polynomial approximation of f was studied. The
coefficient characterization of a generalized order of the rate of growth of functions analytic
in a disk has been discussed in several papers [9–12]. The degree of rational approximation
of entire functions of a finite generalized order is investigated in [6].

Now let us consider the Dirichlet problem in the domain C \ (K ∪M) with boundary
function equal to 1 on ∂M and to 0 on ∂K. Here, K and M be disjoint compact sets with
connected complements in the extended complex plane C such that their boundaries consist
of finitely many closed analytic Jordan curves. Since the domain C \ (K ∪M) is regular with
respect to the Dirichlet problem, this problem is solvable. Let w(z) be the solution which is
extended by continuity to C : w(z) = 1 for z ∈ M and w(z) = 0 for z ∈ K. For 0 < ε < 1, let
γ(ε) = {z : w(z) = ε}.

Let α and β be continuous positive functions on [a,∞) satisfying the following
properties:

(i) limx→∞α(x) = +∞, and limx→∞β(x) = +∞;

(ii) limx→∞(β(x + o(x))/β(x)) = 1;

(iii) α−1(log(1/�β(x)))/α−1(log(1/�
′β(x))) = o(x) as x → 0 for all �

′ > � > 0.

Let f be holomorphic on G = C \ M. We define the generalized order ρ(α, β, f) and
generalized type T(α, β, f) of f in the domain G by the formulae:

(a) ρ(α, β, f) = lim supε→ 1(α(log ‖f‖γ(ε) )/β(log(1/(1 − ε)))),

(b) T(α, β, f) = lim supε→ 1(α(‖f‖γ(ε) )/[(1/(1 − ε))]ρ(α,β,f)),

where ‖f‖γ(ε) = maxz∈γ(ε)|f(z)|.
It is easy to see that for the functions α(x) = logpx, p ≥ 2, and β(x) = x properties

(i)–(iii) will hold. The following theorem gives the characterization of the rate of decay of
product E0E1 · · ·En for functions f having fast rates of growth of the maximum modulus. So
to avoid some trivial cases, we will assume that limε→ 1‖f‖γ(ε) = ∞.
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Theorem 1.1. Suppose that f is holomorphic on G, α and β satisfy conditions (i)–(iii), and f has
generalized order ρ(α, β, f) > 0 and generalized type T(α, β, f) in the domain G. Then,

lim sup
n→∞

expα(n)
[
β
(
log+

((
(E0E1 · · ·En)1/n(n+1) d

)))]ρ ≤ T
(
α, β, f

)
, (1.5)

where log+x = max(0, logx) for x ≥ 0.

Proof. Let us assume that T(α, β, f) < ∞. Fix arbitrary numbers T ′′ > T ′ > T(α, β, f). For
n = 1, 2, . . ., we set

δn = min
(
1
4
, β−1
[
T ′′ exp(−α(n))]1/ρ

)
. (1.6)

We have δn → 0 as n → ∞. Using (1.5) for all sufficiently large values of n, n ≥ n1,
we set

log
∥∥f
∥∥
γ2,n

≤ α−1
{
log
(
T ′[β(δn)

]−ρ)}

= α−1
{

ρ log

(
1

(
T

′1/ρβ(δn)
)

)}

.

(1.7)

From (1.6), we have

n = α−1
{
log
(
T ′′[β(δn)

]−ρ)}
. (1.8)

In (1.7), γ2,n defined as subsets of the extended complex plane C:

γk,n = {z : w(z) = εk,n},
Dn = {z : w(z) > ε0,n},

(1.9)

where ε0,n = k/2n, ε1,n = k/n, ε2,n = 1 − δn, k = 0, 1, 2, and n = 1, 2, . . .. It is given [13] that
γ0,n, γ1,n, and γ2,n, n = 1, 2, . . ., consist of finitely many closed analytic curves whose lengths
are bounded from above by a positive quantity not depending on n. It is assumed that γ0,n
and γ2,n are positively oriented with respect to Dn and {z : w(z) > ε2,n}, respectively.

In view of (1.8) for n ≥ max(n0, n1), we may use the inequality 3.1 of [13] in the form:

(E0E1 · · ·En)1/n(n+1)d ≤
(
Cnm(n + 1)!n8n

)1/n(n+1)

× exp

⎛

⎜
⎝

α−1
(
ρ log

(
1/T

′1/ρβ(δn)
))

α−1(ρ log
(
1/T ′′1/ρβ(δn)

)) +
δn

C(K,M)

⎞

⎟
⎠.

(1.10)
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Now, using property (iii), we get

log+
(
(E0E1 · · ·En)1/n(n+1)d

)
≤ δn

C(K,M)
+ o(δn). (1.11)

It gives

lim sup
n→∞

expα(n)
[
β
(
log+(E0E1 · · ·En)1/n(n+1)d

)]ρ ≤ T ′′. (1.12)

On letting T ′′ → T(α, β, f), the proof is complete.

In the consequence of Theorem 1.1, we have the following.

Corollary 1.2. With the assumption of Theorem 1.1, the following inequalities are valid:

lim sup
n→∞

exp(α(n))
[
β
(
log+E1/n

n d
)]ρ ≤ T

(
α, β, f

)
, (1.13)

lim sup
n→∞

exp(α(n))
[
β
(
log+E1/n

n d2
)]ρ ≤ T

(
α, β, f

)
. (1.14)

Proof. Using the fact En ≤ En−1 ≤ · · · ≤ E0, we obtain (1.13) immediately from (1.5). To prove
(1.14), let us suppose that

lim inf
n→∞

expα(n)
[
β
(
log+

(
E1/n
n d2

))]ρ
> T ′ > T

(
α, β, f

)
. (1.15)

Then, for sufficiently large values of n, we get

β
[
log+

(
E1/n
n d2

)]
>

[
T ′

expα(n)

]1/ρ
(1.16)

or

log+End
2n ≥ nβ−1

[
T ′

exp(α(n))

]1/ρ
. (1.17)

Since the functions α and β are increasing, (1.17) gives

log+
(
(E0E1 · · ·En)1/n(n+1) d

)
≥

(∑n
k=0 kβ

−1
{[

T ′/ expα(n)
]1/ρ + c

})

n(n + 1)

≥ β−1
{[

T ′

expα(n)

]1/ρ
+

c

n(n + 1)

}

,

(1.18)
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where c is a constant. Using (ii), we get

[
β
(
log+(E0E1 · · ·En)1/n(n+1)d

)]ρ ≥
[

T ′

expα(n)

]
(1.19)

or

lim inf
n→∞

expα(n)
[
β
(
log+(E0E1 · · ·En)1/n(n+1)

)]ρ
≥ T ′ > T

(
α, β, f

)
(1.20)

which contradicts (1.5). Thus, (1.14) is valid.

2. Rational Approximation of Analytic Functions
Having Slow Rates of Growth

For a function f analytic in a domain G, the type of f in G can be defined by (b) for α(x) =
logx and β(x) = x:

T = lim sup
ε→ 1

log
∥∥f
∥∥
γ(ε)

(1/1 − ε)ρ
. (2.1)

For α(x) = logx and β(x) = x, the property (iii) fails to hold. However, we have the
following:

α−1(c log
(
1/β(x)

))

α−1((c + 1) log
(
1/β(x)

)) = x, (2.2)

and we may repeat the arguments involving (1.10), we get

(E0E1 · · ·En)1/n(n+1)d ≤
(
cn(n + 1)!n8n

)1/n(n+1)

× exp

⎛

⎜
⎝

α−1
(
log
[
1/T

′1/ρβ(δn)
]ρ)

α−1(log
[
1/T ′′1/ρβ(δn)

]ρ) +
δn

C(K,M)

⎞

⎟
⎠.

(2.3)

Taking T ′′ = T ′ + 1, and x = T ′′1/ρδn in (2.2), for sufficiently large values of n we have

n
((

T ′ + 1
)1/ρlog+(E0E1 · · ·En)1/n(n+1)d

)
ρ ≤ T ′ (2.4)

or

lim sup
n→∞

n
[
log+(E0E1 · · ·En)1/n(n+1)d

]ρ ≤ T

T + 1
. (2.5)

We summarize the above facts in the following.
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Theorem 2.1. Let f have an order ρ > 0 and generalized type T in the domain G. Then,

lim sup
n→∞

n
[
log+(E0E1 · · ·En)1/n(n+1)d

]ρ
≤ T

T + 1
. (2.6)

By the inequality En ≤ En−1 ≤ · · · ≤ E0, one gets the following.

Corollary 2.2. With the assumption of Theorem 2.1

lim sup
n→∞

n
[
log+

(
E1/n
n d

)]ρ ≤ T

T + 1
. (2.7)

Theorem 2.1 also gives us the following corollary.

Corollary 2.3. With the assumption of Theorem 2.1,

lim inf
n→∞

n
[
log+

(
E1/n
n d2

)]ρ ≤ T

T + 1
. (2.8)

Proof. Let

lim inf
n→∞

n
[
log+

(
E1/n
n d2

)]ρ
> T1 >

T

T + 1
. (2.9)

Then, from the relation

lim
n→∞

∑n
k=0 k

1−1/T1

n2−1/T1 =
1

2 − 1/T1
, (2.10)

we obtain

lim inf
n→∞

n
[
log+

(
(E1E2 · · ·En)1/n(n+1)d

)]ρ ≥ T1 >
T

T + 1
, (2.11)

which contradicts the inequality (2.6).

Now, we define α-type of f to classify functions having slow rates of growth.
A continuous positive function h on [a,+∞) belongs to the class Λ, if this function

satisfies the following.
h is strictly increasing on [a,+∞),

lim
x→∞

h(x) = +∞, (2.12)

lim
x→+∞

h(cx)
h(x)

= 1, (2.13)

for any c > 0.
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Let α ∈ Λ. We define α-order and α-type of f in G by the formulae:

ρ
(
α, f
)
= lim sup

ε→ 1

α
(
log
∥∥f
∥∥
γ(ε)

)

α
(
log(1/(1 − ε))

) , (2.14)

T
(
α, f
)
= lim sup

ε→ 1

α
(
log
∥∥f
∥∥
γ(ε)

)

[α(1/(1 − ε))]ρ
. (2.15)

The following results are concerned with the degree of rational approximation
of functions having α-type T(α, f). The functions α(x) = logpx, p ≥ 1, and α(x) =

exp(logx)δ, 0 < δ < 1, satisfy the condition αεΛ. For α(x) = logx, the parameter T(α, f)
is called the logarithmic type of f in G [14].

Theorem 2.4. Let f , analytic in G, be of α-order ρ(α, f) ≥ 1, and α-type T(α, f), α ∈ Λ. Then,

lim sup
n→∞

α
[(

(E0E1 · · ·En)1/n(n+1)dn
)]

[α(n)]ρ(α,f)
≤ T
(
α, f
)
. (2.16)

Proof. The inequality (2.16) holds for T(α, f) = ∞ obviously. Now, let T(α, f) < ∞ and
‖f‖γ(ε) → ∞ as ε → 1. Fix T ′ > T(α, f). Then, for ε sufficiently close to 1, from (2.15),
we have

∥∥f
∥∥
γ(ε) ≤ α−1

[
T ′
[
α

(
1
1
− ε

)]ρ]
, ρ

(
α, f
) ≡ ρ. (2.17)

Define δn = min(1/4, 1/n), n = 1, 2, . . .. Using [13, Equation (3.1)] with (2.17), for all
sufficiently large values of n, n ≥ n0, we have

E0E1 · · ·End
n(n+1) ≤ (n + 1)!cnn8n exp(n + 1)

(
log
(
α−1(T ′[α(n)]ρ

))
+

1
C(K,M)

)
. (2.18)

Since α is strictly increasing, for n ≥ n0, we get

(E0E1 · · ·En)1/n+1dn ≤ c1α
−1[T ′[α(n)]ρ

]
. (2.19)

In view of (2.13), (2.19) gives

lim sup
n→∞

α
[
(E0E1 · · ·En)1/n+1dn

]

[α(n)]ρ
≤ T ′. (2.20)

In order to complete the proof, it remains to let T ′ tend to T(α, f).

Now, we have the following corollaries.
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Corollary 2.5. With assumption of Theorem 2.4,

lim sup
n→∞

α(End
n)

[α(n)]ρ(α,f)
≤ T
(
α, f
)
. (2.21)

The proof is immediate in view of En ≤ En−1 ≤ · · ·E0.
For c > 0, let

F
[
x, c, ρ

]
= log

(
α−1(c[α(x)]ρ

))
. (2.22)

Corollary 2.6. Let a function f , analytic in G, be of α-order ρ(α, f) ≥ 1, and α-type T(α, f) where
α ∈ Λ is continuously differentiable on [a,+∞) and for all 1 < c < ∞ the function x(F(x, c, ρ))′ =
O(1) as x → ∞ or is increasing and

lim
x→∞

x
(
F
(
x, c, ρ

))′

F
(
x, c, ρ

) = 0. (2.23)

Then,

lim inf
n→∞

α
(
End

2n)

[α(n)]ρ(α,f)
≤ T
(
α, f
)
. (2.24)

Proof. We may assume that T(α, f) < ∞. Let

lim inf
n→∞

α
(
End

2n)

[α(n)]ρ
> T ′ > T

(
α, f
)
. (2.25)

For sufficiently large values of n,

α
(
(E0E1 · · ·En)1/n+1dn

)

[α(n)]ρ
≥ α
(
exp
[
(1/(n + 1))

(∑n
k=1 F

[
k, T ′, ρ

]
+ c
)])

[α(n)]ρ
. (2.26)

Since F[x, T ′, ρ] is increasing, we get

n−1∑

k=1

F
[
k, T ′, ρ

] ≤
∫n

1
F
[
x, T ′, ρ

]
dx ≤

n∑

k=2

F
[
k, T ′, ρ

]
,

∫n

1
F
[
x, T ′, ρ

]
dx = nF

[
n, T ′, ρ

] − F
[
1, T ′, ρ

] −
∫n

1
x
(
F
[
x, T ′, ρ

])′
dx.

(2.27)

We see that

1
nF
[
n, T ′, ρ

]
∫n

1
x
(
F
[
x, T ′, ρ

])′
dx −→ 0 as n −→ ∞. (2.28)
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Thus,

(1/(n + 1))
∑n

k=1 F
[
k, T ′, ρ

]

F
[
n, T ′, ρ

] −→ 1 as n −→ ∞. (2.29)

From this and (2.26), we get

lim inf
n→∞

α
(
(E0E1 · · ·En)1/n+1dn

)

[α(n)]ρ
≥ α
(
expF

[
n, T ′, ρ

])

[α(n)]ρ
≥ T ′ > T(α, F) (2.30)

which contradicts (2.16). Hence the proof is complete.

Remark 2.7. The function α(x) = logpx, p ≥ 1, and α(x) = exp(logx)ρ, 0 < δ < 1, satisfy the
assumptions of Corollary 2.6.
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