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We find approximate expressions x̃(k, n, a) and ỹ(k, n, a) for the real and imaginary parts of the kth
zero zk = xk + iyk of the Bessel polynomial yn(x;a). To obtain these closed-form formulas we use
the fact that the points of well-defined curves in the complex plane are limit points of the zeros of
the normalized Bessel polynomials. Thus, these zeros are first computed numerically through an
implementation of the electrostatic interpretation formulas and then, a fit to the real and imaginary
parts as functions of k, n and a is obtained. It is shown that the resulting complex number
x̃(k, n, a) + iỹ(k, n, a) is O(1/n2)-convergent to zk for fixed k.

1. Introduction

The polynomial solutions of the differential equation

z2y′′(z) + (az + 2)y′(z) − n(n + a − 1)y(z) = 0, a > 0, z ∈ C, (1.1)

were studied systematically in [1] by the first time. They are named (generalized) Bessel
polynomials and are given explicitly by

yn(z;a) =
n
∑

k=0

n!(n + a − 1)k
(n − k)!k!

(z

2

)k
, (1.2)

as it can be shown in [2]. Here, (x)k is the Pochhammer symbol and n = 0, 1, . . .. Many
properties as well as applications are associated to this equation; the traveling waves in the
radial direction which are solutions of the wave equation in spherical coordinates can be



2 International Journal of Mathematics and Mathematical Sciences

written in terms of the polynomial solutions of (1.1). Also, this equation has application in
network and filter design, isotropic turbulence fields, and more (see the monograph [2] or
[3–14] and references therein for some other results). Among these, several results about the
important problem concerning the location of its zeros have been obtained [8–11] and in
[12], explicit expressions for sum rules and for the homogeneous product sum symmetric
functions of zeros of these polynomials are given. On the other hand, the electrostatic
interpretation of these zeros as the equilibrium configuration in the complex plane with a
logarithmic electric potential and a dipole at the origin has been given in [13], and in [14]
it is shown that this equilibrium configuration is not stable. Thus, these cases show that it is
desirable to acquire new analytical knowledge about the location of the zeros of the Bessel
polynomials.

In this paper we give approximate explicit formulas for both the real and imaginary
parts of the kth zero zk = xk + iyk of yn(z;a) and show that the approximation order of these
new formulas to the exact zeros of the Bessel polynomials is O(1/n2) for fixed k.

The approach followed in this paper is simple and based on three items. The first is
the electrostatic interpretation of the zeros of polynomials satisfying second-order differential
equations [15–17], the second is a simple curve fitting of numerical data, and the third is the
known fact that the points of well-defined curves in the complex plane are limit points of the
zeros of the normalized Bessel polynomials [8–11]. The formulas yielded by the electrostatic
interpretation of the zeros of Bessel polynomials are used to find them numerically as it has
been done previously with these and other sets of points [7–19]. Several sets of zeros are
computed in this way and the sets of real and imaginary values are fitted by polynomials
depending on the index k whose coefficients depend on n and a.

2. Asymptotic Expressions for the Zeros

Let zk = xk + iyk, k = 1, 2, . . . , n, be the zeros of the Bessel polynomial yn(z;a), ordered
according to the imaginary part. Then, from (1.1) it follows that (A procedure for obtaining
this kind of nonlinear equations for the zeros of a polynomial satisfying second and higher
order differential equations is given in [19].)

n
∑

k=1

1
zj − zk

+

(

azj + 2
)

2z2j
= 0, (2.1)

where j = 1, 2, . . . , n, that is, the real and imaginary parts of the zeros should satisfy the
electrostatic equations

n
∑

k=1

xj − xk
(

xj − xk

)2 +
(

yj − yk

)2
+
ax3

j + 2x2
j + axjy

2
j − 2y2

j

2
(

x2
j + y2

j

)2
= 0,

n
∑

k=1

yj − yk
(

xj − xk

)2 +
(

yj − yk

)2
+
yj

(

ax2
j + 4xj + ay2

j

)

2
(

x2
j + y2

j

)2
= 0.

(2.2)
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Figure 1: Real and imaginary parts of the zeros of the normalized Bessel polynomials yn(2z/(2n+a−2);a)
for a = 2, 40, 100. They are plotted as functions of k for n = 100, 200, 300, 400, 500, in gray-level intensity,
from lower to higher, according to the value of n.

This set of nonlinear equations can be solved by standard methods. We have used a Newton
method to solve them up to n = 500 and a = 100.

Let ωk = μk + iνk be the kth zero of the normalized Bessel polynomials yn(2z/(2n+a−
2);a), that is, μk = (2n + a − 2)xk/2 and νk = (2n + a − 2)xk/2. As it is shown in Figure 1,
the piecewise linear interpolation of the real and imaginary parts of ωk can be fitted by
polynomials of the second and third degree in the index k.

Thus, we propose the following expressions

μ̃(k, n, a) = a2(n, a)k2 + a1(n, a)k + a0(n, a),

ν̃(k, n, a) = b3(n, a)k3 + b2(n, a)k2 + b1(n, a)k + b0(n),
(2.3)
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Figure 2: Dependence of μ̃(1, n, a) and μ̃(n/2, n, a) on n for a = 10, 20, 30, 40, 100. Plots are shown in gray-
level intensity, from lower to higher, according to the value of a.

for the approximate zero ω̃k = μ̃(k, n, a) + iν̃(k, n, a) to fit our data. To find the dependence of
the coefficients of these polynomials on n and a, we take into account the numerical behavior
of the data at the middle and end points.

We begin by finding the coefficients of the second-order polynomial giving the real
part by fitting the values of μ̃(k, n, a) at k = 1 and k = n/2. In Figure 2 we show the
dependence of μ̃(1, n, a) and μ̃(n/2, n, a) on n for some values of a.

A fit of these data to the models −A/(n + B) and −A/(n + B) − 3/2 yields

μ̃(1, n, a) = − 54a + 860
100n + 50a + 715

, μ̃
(n

2
, n, a

)

= − 75n − 2a + 400
50n + 11a + 220

. (2.4)

These conditions and the symmetry of μ̃(k, n, a)with respect to the middle point lead to the
following coefficients:

a2(n, a) =
p2(n, a)
r(n, a)

, a1(n, a) =
p1(n, a)
r(n, a)

, a0(n, a) =
p0(n, a)
r(n, a)

, (2.5)

where

p2(n, a) = 4
(

7500n2 + 50625n + 850an − 694a2 − 2770a + 96800
)

,

p1(n, a) = −4(n + 1)
(

7500n2 + 50625n + 850an − 694a2 − 2770a + 96800
)

,

p0(n, a) = −100
(

130n2 − 993n − 7656
)

− 20
(

135n2 + 627n − 1580
)

a − 2(297n + 794)a2,

r(n, a) = 5n(n − 2)(50n + 11a + 220)(20n + 10a + 143).

(2.6)

Now, to find the coefficients of the third-order polynomial giving the imaginary part we
follow a similar procedure. The dependence of the real part of ν̃(1, n, a) and ∂ν̃(k, n, a)/
∂k|k=n/2 on n for some values of a is shown in Figure 3.
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Figure 3: Dependence of ν̃(1, n, a) and ∂ν̃(k, n, a)/∂k|k=n/2 on n for a = 10, 20, 30, 40, 100. Plots are shown
in gray-level intensity, from lower to higher, according to the value of a.

Again, a fit of these data to the models A/(n + B) − 1 and A/n yields

ν̃(1, n, a) = −25n − a − 50
25(n − 1)

,
∂ν̃(k, n, a)

∂k

∣

∣

∣

∣

k=n/2
=

96
n(a + 25)

. (2.7)

In addition, we have that

ν̃
(n

2
, n, 2

)

= 0, ν̃(n, n, 2) = −ν̃(1, n, 2), (2.8)

therefore, the coefficients are given by

b3(n, a) =
q3(n, a)
s(n, a)

, b2(n, a) =
q2(n, a)
s(n, a)

,

b1(n, a) =
q1(n, a)
s(n, a)

, b0(n, a) =
q0(n, a)
s(n, a)

,

(2.9)

where

q3(n, a) = −200
(

23n3 − 92n2 + 90n + 4
)

+ 200
(

n3 − 5n2 + 8n − 6
)

a

− 8
(

n2 − 2n + 2
)

a2,

q2(n, a) = 100
(

69n4 − 255n3 + 186n2 + 92n + 8
)

− 100
(

3n4 − 12n3 + 9n2 + 4n − 12
)

a + 4
(

3n3 − 3n2 + 4
)

a2,

q1(n, a) = 50
(

21n4 + 54n3 − 522n2 + 748n − 176
)

− 50
(

3n4 − 9n3 − 6n2 + 26n − 24
)

a + 2
(

3n3 − 6n + 8
)

a2,
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q0(n, a) = −25
(

25n4 − 217n3 + 618n2 − 660n + 184
)

− 25
(

n4 − 2n3 − 7n2 + 16n − 12
)

a +
(

n3 + n2 − 4n + 4
)

a2

s(n, a) = 25(n − 1)2(n − 2)2(a + 25).

(2.10)

Thus, the substitution of (2.10), (2.9), (2.6), and (2.5), respectively, in (2.3) yields the approxi-
mate closed-form expressions

z̃k = x̃(k, n, a) + iỹ(k, n, a) =
2μ̃(k, n, a)
2n + a − 2

+ i
2ν̃(k, n, a)
2n + a − 2

, (2.11)

where k = 1, 2, . . . , n, for the zeros of the unnormalized Bessel polynomial yn(z;a). The
expressions given in (2.11) converge to the zeros zk of these polynomials, as we will show
in the following.

3. Convergence

Following [9], we define

W(z) =
e
√

1+1/z2

z
(

1 +
√

1 + 1/z2
) , (3.1)

and denote by Γ the curve defined by

Γ =
{

z ∈ C : |W(z)| = 1,
∣

∣arg z
∣

∣ ≥ π

2

}

, (3.2)

which contains the limit points ω̂k of the zeros of the normalized Bessel polynomial
yn(2z/(2n+a−2);a). Then, it has been proved in [8] that the zeroωk of yn(2z/(2n+a−2);a)
approaches to order O(1/n) the limit value ω̂k, that is,

|ωk − ω̂k| = O

(

1
n

)

, (3.3)

as n → ∞.
Thus, if we show that |ω̃k − ω̂k| = O(1/n), we will have proved that

|ωk − ω̃k| = O

(

1
n

)

, (3.4)

and therefore, taking into account that ωk = (2n + a − 2)zk/2, the explicit expression (2.11)
approaches to order O(1/n2) the zero zk of the Bessel polynomial yn(z;a).
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To this purpose, we simply substitute the expression for ω̃k = μ̃(k, n, a) + iν̃(k, n, a)
given by (2.3) in (3.1) to obtain, after a lengthy calculation, that the expansion of W(ω̃k) in
terms of 1/n is

W(ω̃k) = 1+

[

2a2 − 100a(3k − 2) − 50(42k − 67)
25(a + 25)

+

√

h(k, a)
25(a + 25)

(

cos2(t(k, a)) − sin2(t(k, a))
)

]

1
n
+O

(

1
n3/2

)

,

(3.5)

where

h(k, a) = (25 + a)2(130 + 27a + 300k)2 +
(

2a2 − 100a(3k − 2) − 50(42k − 67)
)2
,

t(k, a) =
(25 + a)(130 + 27a + 300k)

4(1675 − 100a + a2 − 1050k + 150ak)
.

(3.6)

This implies that

|W(ω̃k)| = 1 +O

(

1
n

)

, (3.7)

for fixed k and a. Thus, ω̃k approaches to order O(1/n) the Γ curve and (3.4) follows. From
here we have that

|zk − z̃k| = O

(

1
n2

)

, (3.8)

as n → ∞. Numerical calculations confirm and extend this result. Figure 4 shows the
behavior of the maxima of |zk − z̃k| over k as they depend on n for the particular case of a = 2.
The numbers computed by (2.2) are taken as the exact zeros zk. A fit of these data gives 1/na

with a = 1.7.

4. Some Few Tests

Just to give examples of the application of the approximate expression (2.11), we consider the
following cases.

4.1. The Real Zero

A closed-form formula for the unique real zero αn(a) of the Bessel polynomial yn(z;a) can be
obtained by the substitution of k = (n + 1)/2 in the real part of (2.11), x̃(k, n). This gives

α̃n(a) = −4n
3

+
1
75

(50 − 71a) +

(−707a2 + 5900a + 35000
)

7500n
+O

(

1
n2

)

, (4.1)
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as our new result. In [2, 11] very accurate expressions for αn(a) are given. Particularly, the
following formula:

2
αn(a)

= −1.325486838n − 1.00628995a + 1.349836480 +O

(

1
2n + a − 2

)

, (4.2)

is given in [11]. Expanding 2/α̃n(a) in powers of n we find that

2
α̃n(a)

� −1.33333n − 0.946667a + 0.666667, (4.3)

indicating good relative agreement between the two results.

4.2. Power Sums

Here we carry out the corresponding multiplications and use some cases of Faulhaber’s
formula. Then we compare our results with the exact ones.

(1) Sum of the Zeros. The simple sum of z̃k (cf. (2.11)) gives a complicated expression
for the real part. However, expanding both the real and imaginary parts of this sum gives

s̃1(n) =
n
∑

k=1

z̃k = −1 +
(

53a
100

− 71
30

+ i
32

a + 25

)

1
n
+O

(

1
n2

)

. (4.4)

The exact result is s1(n) = −1, as can be seen from (1.2).
(2) Sum of the Squares of the Zeros. In this case we take the particular case of a = 1. For

this value we obtain

s̃2(n) =
n
∑

k=1

z̃2k =
3469
5915n

+O

(

1
n2

)

. (4.5)
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The exact sum

s2(n) =
1

2n − 1
=

1
2n

+O

(

1
n2

)

(4.6)

can be found elsewhere [12].
The use of the approximate formula (2.11) for obtaining sums of higher powers of

these zeros is not expected to give satisfactory results, since the powers and the summagnify
the total error.

5. Final Comment

The approximate formula for zk given above is far from being unique. There exist many other
functions to fit the zeros obtained through the electrostatic equations (2.2), and there are other
conditions to impose at the extreme andmiddle points of the fitting interval. For instance, the
imaginary part ỹ(k, n) can be fitted by a polynomial of degree 5, but this does not improve
the rate of convergence and, on the other hand, the calculations become more complicated.

Acknowledgment

The authors thank Consejo Nacional de Ciencia y Tecnologı́a for the financial support given
to this project.

References

[1] H. L. Krall and O. Frink, “A new class of orthogonal polynomials: the Bessel polynomials,” Trans-
actions of the American Mathematical Society, vol. 65, pp. 100–115, 1949.

[2] E. Grosswald, Bessel Polynomials, vol. 698 of Lecture Notes in Mathematics, Springer, Berlin, Germany,
1978.

[3] H. M. Srivastava, “Some orthogonal polynomials representing the energy spectral functions for a
family of isotropic turbulence fields,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 64, no.
6, pp. 255–257, 1984.
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