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We present fixed point theorems for a nonexpansive set-valued mapping from a closed convex
subset of a reflexive Banach space into itself under some asymptotic contraction assumptions.
Some existence results of coincidence points and eigenvalues for multimappings are given.

1. Introduction

In this paper, we investigate fixed point theorems for nonexpansive multifunctions (relations,
multimaps, set-valued mappings, or correspondences) satisfying some asymptotic condition.
This study has been the subject of numerous works [1–6] for an asymptotically contractive
mapping. Our aim here is to obtain some generalization by using the notion of (semi-)
asymptotically contractive multimappings which is introduced below. For doing so, we need
to fix some notations and conventions. Given a normed vector space (n.v.s.) (X, ‖·‖), the open
ball with center x and radius r in X is denoted by B(x, r); the closed, unit ball is denoted by
BX . For any subsets C, D ⊂ X, we set

d(x,D) = inf
y∈D

∥
∥x − y

∥
∥ with the convention inf

∅

= +∞,

e(C,D) = sup
x∈C

d(x,D) if C/=∅, e(∅, D) = 0,

d(C,D) = max(e(C,D), e(D,C)).

(1.1)
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Recall that a multifunction F : C → 2X is a contractive (resp., nonexpansive) multifunction
on C ⊂ X if there exists θ ∈ [0, 1) such that for any x, x′ ∈ C, one has

F(x) ⊂ F
(

x′) + θ
∥
∥x − x′∥∥BX,

(

resp., F(x) ⊂ F
(

x′) +
∥
∥x − x′∥∥BX

)

. (1.2)

Note that when F(x) := {f(x)}, where f : C → X is a mapping, F is a contraction with rate θ
(resp., nonexpansive) on C if and only if f is a contraction with rate θ (resp., nonexpansive)
mapping on C : for any x, x′ ∈ C

∥
∥f(x) − f

(

x′)∥∥ ≤ θ
∥
∥x − x′∥∥,

(

resp.,
∥
∥f(x) − f

(

x′)∥∥ ≤ ∥
∥x − x′∥∥). (1.3)

The existence theorem of fixed points for contractive multifunction is well known
(see [7]). More generally, a generalization of Picard-Banach theorem to pseudo-contractive
multifunction is given in ([8, 9], [10, Lemma 1, page 31] and [11, Proposition 2.5]). Let us
recall that result for the sake of clarity.

Proposition 1.1 (see [8, 10, 11]). Let (X, d) be a complete metric space, and let F : X → 2X be a
multifunction with closed, nonempty values. Suppose that F is pseudo-θ-contractive with respect to
some ballB(x0, r0) for some θ ∈ [0, 1) (i.e., e(F(x)∩B(x0, r0), F(x′)) ≤ θd(x, x′) for x, x′ ∈ B(x0, r0)
and r := (1 − θ)−1d(x0, F(x0)) < r0. Then the fixed point set FixF := {x ∈ X : x ∈ F(x)} of F is
nonempty and

d(x0,FixF ∩ B(x0, r0)) ≤ r. (1.4)

In this work, the reflexivity of Banach spaces and the property of demiclosedness of
multifunctions play an important role to have fixed points results. Let us recall that F : C →
2X is said to be demiclosed if its graph Gr(F) is sequentially closed in the product of the weak
topology on C with the norm topology on a Banach space X, that is,

((

xn, yn

))

n ⊂ Gr(F), (xn) ⇀ x,
(

yn

) −→ y =⇒ x ∈ C, y ∈ F(x), (1.5)

where Gr(F) := {(x, y) ∈ C ×X : y ∈ F(x)}.
It is well known that if f : C → X is nonexpansive on C, a closed convex subset of a

uniformly convex Banach space X, then I − f is demi-closed ([6], [12, Proposition 10.9, page
476]), where a Banach space (X, ‖·‖) is uniformly convex if and only if for any ε ∈ ]0, 2], there
exists δ(ε) ∈ ]0, 1] such that for any x, y ∈ X, r > 0, one has

[‖x‖ ≤ r,
∥
∥y

∥
∥ ≤ r,

∥
∥x − y

∥
∥ ≥ εr

]

=⇒
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
≤ (1 − δ(ε))r. (1.6)

As examples, every Hilbert space is uniformly convex, the spaces lp and Lp(Ω) are
uniformly convex for 1 < p < ∞ (Ω is a domain in R

n), which is not the case for p ∈ {1,∞}.
It is also well known that every uniformly convex Banach space is reflexive ([12, Proposition
10.7, page 475]).
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2. Fixed Point Theorem under Asymptotical Conditions

The following definition generalizes the notion of asymptotically contractive mapping to
set-valued mappings. Note that the meaning of the word “asymptotic” is not related to the
iterations of the multimapping as in [13] but bears on the behavior of the set-valued mapping
at infinity. This behavior can be studied using concepts of asymptotic cones and asymptotic
compactness as in [14–19].

Definition 2.1. Let C be a subset of a Banach space X, and let F : C → 2X be a multimapping with
nonempty values. We say that F is asymptotically contractive on C if there exists x0 ∈ C such that

lim sup
x∈C,‖x‖→∞

e(F(x), F(x0))
‖x − x0‖ < 1. (2.1)

Let us note that when F(x) := {f(x)}, where f : C → X is a mapping, we get the definition of
the asymptotically contractivemapping onC given in [6] as a variant of the notion introduced
in [17].

If e(F(x), F(x′)) < ∞ for any x, x′ ∈ C (particularly, if F is a multimapping with
bounded values), then the condition (2.1) is independent of the choice of x0 ∈ C: indeed,
let x1 ∈ C (x1 /=x0). Since e(F(x), F(x1)) ≤ e(F(x), F(x0)) + e(F(x0), F(x1)), we have

e(F(x), F(x1))
‖x − x1‖ ≤

(
e(F(x), F(x0))

‖x − x0‖ +
e(F(x0), F(x1))

‖x − x0‖
)‖x − x0‖
‖x − x1‖ ,

lim sup
x∈C,‖x‖→∞

e(F(x), F(x1))
‖x − x1‖ ≤ lim sup

x∈C,‖x‖→∞

e(F(x), F(x0))
‖x − x0‖ < 1.

(2.2)

Proposition 2.2 is a multivalued version of the main result of [6].

Proposition 2.2. Let X be a reflexive Banach space and C a (nonempty) closed convex subset of X.
Let F : C → 2X be a multifunction with closed and nonempty values such that F is nonexpansive
on C. Assume that F is asymptotically contractive on C at x0 with F(x0) bounded. If F(C) ⊂ C and
I − F is demi-closed, then F admits a fixed point.

Proof. Let (θn) be a sequence in (0, 1) such that θn → 1. For any n ∈ N, we define a multi-
function Fn : C ⇒ X by setting

Fn(x) := θnF(x) + (1 − θn)x0. (2.3)

It is clear that Fn(x) ⊂ C for any n and x ∈ C. On the other hand, for x, x′ ∈ C and vn ∈ Fn(x),
from (2.3), there exists un ∈ F(x) such that vn = θnun + (1 − θn)x0. Applying (1.2) since
F is nonexpansive, there exists u′

n ∈ F(x′) satisfying ‖un − u′
n‖ ≤ ‖x − x′‖. Thus, for v′

n =
θnu

′
n + (1 − θn)x0 ∈ Fn(x′), one has

∥
∥vn − v′

n

∥
∥ ≤ θn

∥
∥x − x′∥∥. (2.4)
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Then Fn is a contraction with rate θn on C. The Nadler’s theorem [7] ensures that each
multivalued Fn admits a fixed point xn in C. So, from (2.3) and for some yn ∈ F(xn), one has

yn − x0 = θ−1
n (xn − x0), (2.5)

(1 − θn)
(

x0 − yn

)

= xn − yn ∈ (I − F)(xn). (2.6)

Observe that if the sequence (xn) has a bounded subsequence, the proof is finished. Indeed,
taking a subsequence if necessary, (xn) admits a weak limit x ∈ C (C is closed, convex in the
reflexive space X). As (yn) is bounded (by equality (2.5)), the sequence (xn − yn) converges
to 0. We conclude that 0 ∈ (I − F)(x), that is, x is a fixed point of F.

Thus, to complete the proof of the proposition, let us show that the sequence (xn)
is bounded. If this is not the case, taking a subsequence if necessary, we may assume that
(‖xn‖) → ∞. As condition (2.1) is satisfied, there exist c ∈ (0, 1) and ρ > 0 such that

∀x ∈ C, ‖x‖ ≥ ρ : e(F(x), F(x0)) < c‖x − x0‖. (2.7)

For large n, we have θn > c and ‖xn‖ ≥ ρ, so that

d
(

yn, F(x0)
)

< c‖xn − x0‖. (2.8)

There exists then a sequence (zn) in F(x0) such that

∥
∥yn − zn

∥
∥ ≤ c‖xn − x0‖. (2.9)

On the other hand, from equalities (2.5) and (2.6), we get

‖xn‖ ≤ ∥
∥xn − yn

∥
∥ +

∥
∥yn − zn

∥
∥ + ‖zn‖,

≤ (1 − θn)
∥
∥x0 − yn

∥
∥ + c‖xn − x0‖ + ‖zn‖

≤
(

(1 − θn)θ−1
n + c

)

‖xn − x0‖ + ‖zn‖.

(2.10)

Dividing by ‖xn‖, we obtain

1 ≤
(

θ−1
n − 1 + c

)(

1 +
‖x0‖
‖xn‖

)

+
‖zn‖
‖xn‖ . (2.11)

Passing to the limit and using the fact that (‖zn‖) is bounded, (‖xn‖) → ∞ and θn → 1, a
contradiction follows. So the sequence (xn) has a bounded subsequence and the proposition
is proved.

The preceding results can be applied to coincidence properties between two multi-
functions. Let us give first a precise definition.
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Definition 2.3. Let X be a set, let Y be a linear space, and let F,G : X → 2Y be two multi-
mappings. We say that F and G present a coincidence on X if there exists u ∈ X such that

0 ∈ (F −G)(u). (2.12)

The point u is called a coincidence point of F and G.

Note that if Y = X and G(x) := {x} for all x ∈ X, we obtain the definition of a fixed
point of the multifunction F. Also observe that the relation 0 ∈ (F − G)(u) can be written
F(u) ∩ G(u)/=∅, so that two mappings f, g : X → Y present a coincidence on X if and only
if there exists u ∈ X such that f(u) = g(u).

The following corollary is an immediate consequence giving the existence of a fixed
point of a sum (resp., a coincidence point of two multifunctions).

Corollary 2.4. Let C be a nonempty closed convex cone of a reflexive Banach space X. Let θ ∈
(0, 1), F : C → 2C be a θ-contraction (resp., G : C → 2C be a (1 − θ)-contraction) set-valued
mapping on C with closed and nonempty values. Assume that I − (F + G) is demi-closed and there
exists x0 ∈ C such that F(x0), G(x0) are bounded and one has

lim sup
x∈C,‖x‖→∞

(
e(F(x), F(x0))

‖x − x0‖ +
e(G(x), G(x0))

‖x − x0‖
)

< 1. (2.13)

Then the multifunctionH := F +G admits a fixed point on C, which is a coincidence point of (I − F)
and G.

Proof. Since for any subsets A, A′, B, B′ of X one has

e
(

A + B,A′ + B′) ≤ e
(

A,A′) + e
(

B, B′), (2.14)

the multimapping H is nonexpansive and

lim sup
x∈C,‖x‖→∞

e(H(x),H(x0))
‖x − x0‖ < 1. (2.15)

SinceC is a convex cone,H(C) is contained inC, the result is a consequence of Proposition 2.2.

Observe that if x is a fixed point of H such that F(x) = G(x) and if F(x) is a convex
cone, then x is a common fixed point of F and G.

Corollary 2.5. Let C be a nonempty closed convex cone of a Banach uniformly convex space X. Let
θ ∈ (0, 1), f : C → C be a θ-contraction (resp., g : C → C be a (1 − θ)-contraction) set-valued
mapping on C. Assume that

lim sup
x∈C,‖x‖→∞

(∥
∥f(x) − f(x0)

∥
∥

‖x − x0‖ +

∥
∥g(x) − g(x0)

∥
∥

‖x − x0‖

)

< 1. (2.16)

Then the multifunction f + g admits a fixed point on C, which is a coincidence point of (I − f) and g.
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The notion of eigenvalue is very important in nonlinear analysis. It has many appli-
cations as the notion of fixed point. We present now some results related to eigenvalues. We
obtain in particular an existence result for eigenvalues of nonexpansive mappings.

Let us recall that a real number λ is said to be an eigenvalue for a set-valued mapping
F : C → 2X if there exists an element x ∈ C, x /= 0 such that λx ∈ F(x). When F(x) :=
{f(x)}, where f : C → X is a mapping, we obtain the usual definition of an eigenvalue for a
mapping.

The next proposition gives an existence result.

Proposition 2.6. Let C be a closed convex cone of a reflexive Banach space X. Let λ > 1 and let
F : C → 2C be a nonexpansive set-valued mapping on C whose values are nonempty, closed and
0 /∈ F(0). Assume that I−λ−1F is demi-closed and that there exists x0 ∈ C such that F(x0) is bounded
and one has

lim sup
x∈C,‖x‖→∞

e(F(x), F(x0))
‖x − x0‖ < 1. (2.17)

Then λ is an eigenvalue for F associated to an eigenvector x ∈ C. And if F(x) is a cone, then x is a
fixed point of F.

Proof. By taking H := θI + λ−1(1 − θ)F with θ ∈ (0, 1), we have H(C) ⊂ C (C a convex cone),
H(x0) bounded, and I −H = (1 − θ)(I − λ−1F) so that I −H is demi-closed. Moreover, using
the inequality (2.14), we get

e(H(x),H(x0))
‖x − x0‖ ≤ θ + λ−1(1 − θ)

e(F(x), F(x0))
‖x − x0‖ ,

lim sup
x∈C,‖x‖→∞

e(H(x),H(x0))
‖x − x0‖ ≤ θ + λ−1(1 − θ) lim sup

x∈C,‖x‖→∞

e(F(x), F(x0))
‖x − x0‖

< θ + λ−1(1 − θ) < θ + (1 − θ) = 1.

(2.18)

Therefore, there exists a fixed point x of θI + λ−1(1 − θ)F, that is, we have

x ∈ θx + λ−1(1 − θ)F(x),

(1 − θ)x ∈ λ−1(1 − θ)F(x),

x ∈ λ−1F(x),

(2.19)

so that λx ∈ F(x) and x /= 0 (0 /∈ F(0)). Remark that if F(x) is a cone, we get from (2.19) that
x ∈ λ−1F(x) ⊂ F(x), that is, x is a fixed point of F.
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Corollary 2.7. Let C be a closed convex cone of an uniformly convex Banach space X. Let λ > 1, and
let f : C → C be a nonexpansive mapping on C such that f(0)/= 0. Assume that there exists x0 ∈ C
such that

lim sup
x∈C,‖x‖→∞

∥
∥f(x) − f(x0)

∥
∥

‖x − x0‖ < 1. (2.20)

Then λ is an eigenvalue for F associated to an eigenvector x ∈ C.

2.1. Asymptotic Contraction Condition with Respect to Semi-Inner Product

In this section, we will present some fixed points results for multimappings under another
asymptotic condition. This study is inspired by the work [20]. For this aim, let us introduce
some definitions. Recall that a semi-inner product on a vector space X is a function [·, ·] :
X ×X → R satisfying the following properties for any x, y, z ∈ X and λ ∈ R:

[

x + y, z
]

= [x, z] +
[

y, z
]

,

[

λx, y
]

= λ
[

x, y
]

,

[x, x] > 0 for x /= 0,
∣
∣
[

x, y
]∣
∣
2 ≤ [x, x]

[

y, y
]

.

(2.21)

It is proved in [21, 22] that a semi-inner-product space is a normed linear space with
the norm ‖x‖s := [x, x]1/2 and every Banach space can be endowed with different semi-
inner-products unless for Hilbert spaces where [·, ·] is the inner product. We say that the
semi-inner-product on an n.v.s. (X, ‖ · ‖) is compatible with the norm ‖ · ‖ if [x, x] = ‖x‖2.

Let us introduce the following definition of asymptotically contractive multimappings
with respect to (w.r.t) a semi-inner product [·, ·] on a Banach X.

Definition 2.8. Let C be a subset of a Banach space X, and let F : C → 2X a multimapping
with nonempty values. We say that F is asymptotically contractive on C with respect to [·, ·]
if there exists (x0, y0) ∈ GrF such that

lim sup
x∈C,‖x‖→∞

sup
y∈F(x)

[

y − y0, x − x0
]

‖x − x0‖2
< 1. (2.22)

Note that when F(x) := {f(x)}, where f : C → X is a mapping, we get a definition
of the asymptotically contractive mapping on C as a variant of the notion introduced in [20].
Indeed, condition (2.22) becomes in this case as follows: there exists (x0, y0) ∈ GrF so that

lim sup
x∈C,‖x‖→∞

[

f(x) − y0, x − x0
]

‖x − x0‖2
< 1. (2.23)
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Observe that if X is a Hilbert space endowed with the scalar product noted by (· | ·)X , the
above inequality is then written

lim sup
x∈C,‖x‖→∞

(

f(x) − y0 | x − x0
)

X

‖x − x0‖2
< 1, (2.24)

and amap f : C → X is said to be scalarly asymptotically contractive onC if (2.24) is satisfied
for some (x0, y0) ∈ GrF.

In the sequel, we consider only semi-inner products on Banach spaces (X, ‖ · ‖) which
are compatible with the norm ‖ · ‖. The next theorem is a multivalued version of the main
result of [20, Theorem 3.2] for correspondances.

Theorem 2.9. Let X be a reflexive Banach space and C a (nonempty) closed convex subset of X. Let
F : C → 2X be a nonexpansive multifunction on C with closed and nonempty values. Assume that F
is asymptotically contractive on C with respect to [·, ·]. If F(C) ⊂ C and I − F is demi-closed, then F
admits a fixed point on C.

Proof. Let (x0, y0) ∈ GrF such that (2.22) is satisfied, and let (θn) be a sequence in (0, 1) such
that θn → 1. For any n ∈ N, we define a multifunction Fn : C ⇒ X by setting

Fn(x) := θnF(x) + (1 − θn)y0. (2.25)

It is clear that Fn(x) ⊂ C for any n and x ∈ C. On the other hand, for x, x′ ∈ C and vn ∈ Fn(x),
from (2.25), there exists un ∈ F(x) such that vn = θnun + (1 − θn)y0. Applying (1.2) since F
is nonexpansive and F(x′) is closed, convex in the reflexive space X, there exists u′

n ∈ F(x′)
satisfying ‖un − u′

n‖ ≤ ‖x − x′‖. Thus, for v′
n = θnu

′
n + (1 − θn)y0 ∈ Fn(x′), one has

∥
∥vn − v′

n

∥
∥ ≤ θn

∥
∥x − x′∥∥. (2.26)

Then Fn is a contraction with rate θn on C. The Nadler’s theorem [7] ensures that each
multivalued Fn admits a fixed point xn in C. So, from (2.25) and for some yn ∈ F(xn), one has

yn − y0 = θ−1
n

(

xn − y0
)

,

(1 − θn)
(

y0 − yn

)

= xn − yn ∈ (I − F)(xn).
(2.27)

As in the proof of Proposition 2.2, it suffices to show that (xn) is bounded. Suppose on the
contrary, by taking a subsequence if necessary, that (‖xn‖) → ∞. As condition (2.24) is
satisfied, there exist c ∈ (0, 1) and ρ > 0 such that

∀x ∈ C, ‖x‖ ≥ ρ, ∀y ∈ F(x) :
[

y − y0, x − x0
]

< c‖x − x0‖2. (2.28)

For large n, we have θn > c, ‖xn‖ ≥ ρ and xn = θnyn + (1 − θn)y0 ∈ Fn(xn) with yn ∈ F(xn) so
that

[

yn − y0, xn − x0
]

< c‖xn − x0‖2. (2.29)
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From the properties of the semi-inner product, we get

‖xn − x0‖2 = [xn − x0, xn − x0] =
[

xn − y0, xn − x0
]

+
[

y0 − x0, xn − x0
]

≤ θn
[

yn − y0, xn − x0
]

+
∥
∥y0 − x0

∥
∥‖xn − x0‖

< θnc‖xn − x0‖2 +
∥
∥y0 − x0

∥
∥‖xn − x0‖.

(2.30)

Dividing by ‖xn − x0‖2 and taking the limit, we obtain c ≥ 1, which leads to a contradiction
and the conclusion of the proposition follows.

Let us remark that when F(x) := {f(x)}, where f : C → X is a mapping, we get the
following corollary, which is a variant of [6, Proposition 1].

Corollary 2.10. Let X be a reflexive Banach space and C a (nonempty) closed convex subset of X. Let
f : C → X be a nonexpansive function on C. Assume that for some x0 ∈ C, one has

lim sup
x∈C,‖x‖→∞

[

f(x) − f(x0), x − x0
]

‖x − x0‖2
< 1. (2.31)

If f(C) ⊂ C and I − f is demi-closed, then f admits a fixed point.
We introduce now the following concept, which generalizes the definition of ϕ-asymptotically

bounded maps to multimaps.

Definition 2.11. Let X be a Banach space, C a (nonempty) closed convex subset of X, F :
C → 2X a multifunction with nonempty values, and let ϕ : R+ → R+. We say that F is ϕ-
symptotically bounded on C if for some (x0, y0) ∈ GrF, there exist ρ, c > 0 such that for any
x ∈ C \ B(0, ρ) and y ∈ F(x) one has

∥
∥y − y0

∥
∥ ≤ cϕ(‖x − x0‖). (2.32)

Wewant to give a fixed point result for a nonexpansive multimapping F when F −G satisfies
some asymptotic contraction condition under the assumption that G is ϕ-asymptotically
bounded multifunction. More precisely, we have the following proposition.

Proposition 2.12. Let X be a reflexive Banach space and C a (nonempty) closed convex subset of X.
Let F : C → 2X be a nonexpansive multifunction with (nonempty) closed values, and letG : C → 2X

be a ϕ-asymptotically bounded multifunction on C at (x0, z0) ∈ GrG with limt→∞(ϕ(t)/t) = 0.
Assume that there exist c ∈ (0, 1), ρ > 0 such that for some y0 ∈ F(x0) one has

∀x ∈ C, ‖x‖ ≥ ρ, ∀y ∈ F(x), ∃z ∈ G(x) :
[

y − z − y0, x − x0
]

< c‖x − x0‖2. (2.33)

If F(C) ⊂ C and I − F is demi-closed, then F admits a fixed point on C.
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Proof. It is enough to prove thatthe condition (2.22) is satisfied. Let (x0, z0) ∈ GrG, c ∈ (0, 1),
c′, ρ > 0 such that (2.32) and(2.33) are hold. Consider x ∈ C \ B(0, ρ) and y ∈ F(x). We have
then, for some z ∈ G(x),

[

y − y0, x − x0
]

‖x − x0‖2
=

[

y − z + z − z0 + z0 − y0, x − x0
]

‖x − x0‖2

=

[

y − z − y0, x − x0
]

‖x − x0‖2
+
[z − z0, x − x0]

‖x − x0‖2
+
[z0, x − x0]

‖x − x0‖2

< c +
‖z − z0‖
‖x − x0‖ +

‖z0‖
‖x − x0‖ .

(2.34)

We conclude that

sup
y∈F(x)

[

y − y0, x − x0
]

‖x − x0‖2
≤ c + c′

ϕ(‖x − x0‖)
‖x − x0‖ +

‖z0‖
‖x − x0‖ ,

lim sup
x∈C,‖x‖→∞

sup
y∈F(x)

[

y − y0, x − x0
]

‖x − x0‖2
≤ c + lim

‖x‖→∞

(

c′
ϕ(‖x − x0‖)
‖x − x0‖ +

‖z0‖
‖x − x0‖

)

,

≤ c < 1.

(2.35)

Hence by Theorem 2.9, F admits a fixed point.

Corollary 2.13. Let X be a reflexive Banach space and C a (nonempty) closed convex cone of X.
Let f : C → X be a θ-contraction mapping with θ ∈ (0, 1) and F : C → 2X a (1 − θ)-con-
traction multifunction with closed and nonempty values. Assume that F is ϕ-asymptotically bounded
multifunction at (x0, y0) ∈ GrF with limt→∞(ϕ(t)/t) = 0.

If f(C) ⊂ C, F(C) ⊂ C and I − (f + F) is demi-closed, then f + F admits a fixed point on C.

Proof. Let us verify the assumptions of Proposition 2.12 with [·, ·] a semi-inner-product
compatible with the norm in X. It is clear that H := f + F is nonexpansive on C and as C
is a convex cone, H(C) = f(C) + F(C) ⊂ C + C ⊂ C. Consider now z0 = f(x0) + y0 ∈ H(x0)
and (x, z) ∈ GrH. There exists then some y ∈ F(x) such that z = f(x) + y. By the properties
of [·, ·], we get the following inequalities:

[

z − y − z0, x − x0
]

=
[

f(x) − f(x0) − y0, x − x0
]

=
[

f(x) − f(x0), x − x0
]

+
[−y0, x − x0

]

≤ ∥
∥f(x) − f(x0)

∥
∥‖x − x0‖ +

∥
∥y0

∥
∥‖x − x0‖

≤ θ‖x − x0‖2 +
∥
∥y0

∥
∥‖x − x0‖.

(2.36)
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Thus for all x ∈ C such that ‖x − x0‖ ≥ 2(1 − θ)−1‖y0‖, we obtain

[

z − y − z0, x − x0
] ≤ θ‖x − x0‖2 + 1

2
(1 − θ)‖x − x0‖2

≤ 1
2
(1 + θ)‖x − x0‖2.

(2.37)

Hence the property (2.33) is satisfied with the constant c := (1/2)(1 + θ) ∈ (0, 1) and the
corollary follows.

The following result is close to Corollary 2.7 giving the existence of an eigenvalue of a
nonexpansive and ϕ-asymptotically bounded multifunction.

Corollary 2.14. Let C be a nonempty closed convex cone of a real reflexive Banach space X. Let
λ ≥ 1, θ ∈ (0, 1), and let F : C → 2C be a nonexpansive multifunction with closed and nonempty
values on C such that 0 /∈ F(0) and F(C) ⊂ C. Assume that I − λ−1F is demiclosed and that F is
ϕ-asymptotically bounded multifunction with limt→∞(ϕ(t)/t) = 0. Then λ is an eigenvalue of the
multifunction F associated to an eigenvector x ∈ C.

Proof. Since all assumptions of the above corollary are satisfied, there exists x ∈ θx + λ−1(1 −
θ)F(x) or (1−θ)x ∈ λ−1(1−θ)F(x). Thus λx ∈ F(x) and as 0 /∈ F(0), x /= 0. And the conclusion
follows.
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