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The purpose of this paper is to give some identities on the Frobenius-Euler numbers and
polynomials by using the fermionic p-adic q-integral equation on Zp.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
algebraic closure of Qp, respectively. Let N be the set of natural numbers and Z+ = N ∪ {0}.
The p-adic absolute value on Cp is normalized so that |p|p = 1/p. Assume that q ∈ Cp with
|1 − q|p < 1.

Let f be a continuous function on Zp. Then the fermionic p-adic q-integral on Zp for f
is defined by Kim as follows:

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1 + q

1 + qp
N

pN−1∑

x=0

f(x)
(−q)x, (see [1]). (1.1)

From (1.1), we note that

qnI−q
(
fn
)
= (−1)nI−q

(
f
)
+
(
1 + q

)n−1∑

l=0

(−1)n−1−lf(l)ql, (1.2)
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where n ∈ N and fn(x) = f(x+n) (see [1]). The ordinary Euler polynomials En(x) are defined
by

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
tn

n!
, (1.3)

with the usual convention about replacing En(x) by En(x) (see [1–10]). In the special case,
x = 0, En(0) = En is called the nth Euler number.

As the extension of (1.3), the Frobenius-Euler polynomials are defined by

1 − q

et − q
ext =

∞∑

n=0

Hn

(
q, x
) tn

n!
, (see [2]). (1.4)

In the special case, x = 0, Hn(q, 0) = Hn(q) is called the nth Frobenius-Euler number.
By (1.3) and (1.4), we easily get Hn(−1, x) = En(x).
From (1.4), we note that

Hn

(
q, x
)
=

n∑

l=0

(
n

l

)

Hl

(
q
)
xn−l =

(
H
(
q
)
+ x
)n
, (see [2]), (1.5)

with the usual convention about replacing H(q)n byHn(q).
In this paper, we consider the fermionic p-adic q-integral on Zp for the Frobenius-

Euler numbers and polynomials. From these p-adic q-integrals on Zp, we derive some new
and interesting identities on the Frobenius-Euler numbers and polynomials.

2. Identities on the Frobenius-Euler Numbers

From (1.2) and (1.4), we can derive the following:

∫

Zp

e(x+y)tdμ−q
(
y
)
=

1 + q−1

et + q−1
ext =

∞∑

n=0

Hn

(
−q−1, x

) tn

n!
. (2.1)

Thus, by (2.1), we get Witt’s formula for Hn(−q−1, x) as follows:

∫

Zp

(
x + y

)n
dμ−q

(
y
)
= Hn

(
−q−1, x

)
, n ∈ Z+. (2.2)

By (1.5) and (2.1), we get

(
H
(
−q−1

)
+ 1
)n

+ q−1Hn

(
−q−1

)
=

⎧
⎨

⎩

1 + q−1, if n = 0,

0, if n > 0,
(2.3)

with the usual convention about replacing H(−q−1)n byHn(−q−1).
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From (1.5) and (2.3), we note that

H0

(
−q−1

)
= 1, Hn

(
−q−1, 1

)
+ q−1Hn

(
−q−1

)
= 0, if n > 0. (2.4)

By (2.1) and (2.2), we get

∫

Zp

(
y + 1 − x

)n
dμ−q

(
y
)
= (−1)n

∫

Zp

(
y + x

)n
dμ−q−1

(
y
)
. (2.5)

Therefore, by (2.5), we obtain the following lemma.

Lemma 2.1. For n ∈ Z+, one has

Hn

(
−q−1, 1 − x

)
= (−1)nHn

(−q, x). (2.6)

From (2.3), we can derive the following:

q2Hn

(
−q−1, 2

)
− q2 − q = q2

n∑

l=0

(
n

l

)(
H
(
−q−1

)
+ 1
)l − q2 − q

= q
n∑

l=1

(
n

l

)

q
(
H
(
−q−1

)
+ 1
)l − q

= −q
n∑

l=0

(
n

l

)

Hl

(
−q−1

)

= −(1 + q
)
δ0,n +Hn

(
−q−1

)
,

(2.7)

where δk,n is the Kronecker symbol.
Therefore, by (2.7), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has

Hn

(
−q−1, 2

)
= 1 + q−1 − q−2

(
1 + q

)
δ0,n + q−2Hn

(
−q−1

)
. (2.8)
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First we consider the fermionic p-adic q-integral on Zp for the nth Frobenius-Euler
polynomials as follows:

I1 =
∫

Zp

Hn

(
−q−1, x

)
dμ−q(x)

=
n∑

l=0

(
n

l

)

Hl

(
−q−1

)∫

Zp

xn−ldμ−q(x)

=
n∑

l=0

(
n

l

)

Hl

(
−q−1

)
Hn−l

(
−q−1

)
, where n ∈ Z+.

(2.9)

On the other hand, by (2.5) and Lemma 2.1, we get

I1 =
∫

Zp

Hn

(
−q−1, x

)
dμ−q(x) = (−1)n

∫

Zp

Hn

(−q, 1 − x
)
dμ−q(x)

= (−1)n
n∑

l=0

(
n

l

)

Hn−l
(−q)

∫

Zp

(1 − x)ldμ−q(x)

=
n∑

l=0

(
n

l

)

(−1)n−lHn−l
(−q)

∫

Zp

(x − 1)ldμ−q(x)

=
n∑

l=0

(
n

l

)

(−1)n−lHn−l
(−q)Hl

(
−q−1,−1

)
.

(2.10)

From Lemma 2.1, Theorem 2.2, and (2.10), we note that

I1 =
n∑

l=0

(
n

l

)

(−1)n−lHn−l
(−q)Hl

(
−q−1,−1

)

=
n∑

l=0

(
n

l

)

(−1)nHn−l
(−q)Hl

(−q, 2)

=
n∑

l=0

(
n

l

)

(−1)nHn−l
(−q)

{
1 + q − q2

(
1 + q−1

)
δ0,l + q2Hl

(−q)
}

= (−1)n(1 + q
)((

1 + q
)
δ0,n − qHn

(−q)) −Hn

(−q)
(
q + q2

)
(−1)n

+ (−1)nq2
n∑

l=0

(
n

l

)

Hn−l
(−q)Hl

(−q).

(2.11)

Therefore, by (2.10) and (2.11), we obtain the following theorem.
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Theorem 2.3. For n ∈ Z+, one has

n∑

l=0

(
n

l

)

Hl

(
−q−1

)
Hn−l

(
−q−1

)
= (−1)n(1 + q

)((
1 + q

)
δ0,n − 2qHn

(−q))

+ (−1)nq2
n∑

l=0

(
n

l

)

Hn−l
(−q)Hl

(−q).
(2.12)

In particular, for n ∈ N, one has

n∑

l=0

(
n

l

)

Hl

(
−q−1

)
Hn−l

(
−q−1

)
= 2(−1)n+1q(1 + q

)
Hn

(−q)

+ (−1)nq2
n∑

l=0

(
n

l

)

Hn−l
(−q)Hl

(−q).
(2.13)

Let us consider the following fermionic p-adic q-integral on Zp for the product of
Bernoulli and Frobenius-Euler polynomials as follows:

I2 =
∫

Zp

Bm(x)Hn

(
−q−1, x

)
dμ−q(x)

=
m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(
−q−1

)∫

Zp

xk+ldμ−q(x)

=
m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(
−q−1

)
Hk+l

(
−q−1

)
.

(2.14)

It is known that Bn(x) = (−1)nBn(1 − x).
On the other hand, by Lemma 2.1, we get

I2 = (−1)m+n
∫

Zp

Bm(1 − x)Hn

(−q, 1 − x
)
dμ−q(x)

= (−1)m+n
m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(−q)

∫

Zp

(1 − x)k+ldμ−q(x)

= (−1)m+n
m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(−q)

{(
1 + q

) − q2
(
1 + q−1

)
δ0,k+l + q2Hk+l

(−q)
}

= (−1)m+n(1 + q
)
Bm(1)Hn

(−q, 1) −
(
q2 + q

)
(−1)m+nBmHn

(−q)

+ q2(−1)m+n
m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(−q)Hk+l

(−q).

(2.15)

Therefore, by (2.14) and (2.15), we obtain the following theorem.
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Theorem 2.4. For m,n ∈ Z+, one has

m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(
−q−1

)
Hk+l

(
−q−1

)

= (−1)m+n(1 + q
)
Bm(1)Hn

(−q, 1) −
(
q2 + q

)
(−1)m+nBmHn

(−q)

+ q2(−1)m+n
m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(−q)Hk+l

(−q).

(2.16)

In particular, form ∈ N − {1}, n ∈ N, one has

m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(
−q−1

)
Hk+l

(
−q−1

)

= 2(−1)m+n+1
(
q2 + q

)
BmHn

(−q)

+ q2(−1)m+n
m∑

k=0

n∑

l=0

(
m

k

)(
n

l

)

Bm−kHn−l
(−q)Hk+l

(−q).

(2.17)

It is known that xn = (1/(n + 1))
∑n

l=0
(
n+1
l

)
Bl(x). Let us consider the following

fermionic p-adic q-integral on Zp:

∫

Zp

xndμ−q(x) =
1

n + 1

n∑

l=0

(
n + 1

l

)∫

Zp

Bl(x)dμ−q(x).

=
1

n + 1

n∑

l=0

(
n + 1

l

)
l∑

k=0

(
l

k

)

Bl−k

∫

Zp

xkdμ−q(x)

=
1

n + 1

n∑

l=0

(
n + 1

l

)
l∑

k=0

(
l

k

)

Bl−kHk

(
−q−1

)
.

(2.18)

Therefore by (2.18), we obtain the following theorem.
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Theorem 2.5. For n ∈ Z+, one has

Hn

(
−q−1

)
=

1
n + 1

n∑

l=0

(
n + 1

l

)
l∑

k=0

(
l

k

)

Bl−kHk

(
−q−1

)
. (2.19)

From (1.3), we can derive the following:

xn = En(x) +
1
2

n−1∑

l=0

(
n

l

)

El(x). (2.20)

Let us take the fermionic p-adic q-integral on Zp in (2.20) as follows:

∫

Zp

xndμ−q(x) =
∫

Zp

En(x)dμ−q(x) +
1
2

n−1∑

l=0

(
n

l

)∫

Zp

El(x)dμ−q(x)

=
n∑

l=0

(
n

l

)

En−lHl

(
−q−1

)
+
1
2

n−1∑

l=0

(
n

l

)
l∑

k=0

(
l

k

)

El−kHk

(
−q−1

)
.

(2.21)

Therefore, by (2.21), we obtain the following theorem.

Theorem 2.6. For n ∈ N, one has

Hn

(
−q−1

)
=

n∑

l=0

(
n

l

)

En−lHl

(
−q−1

)
+
1
2

n−1∑

l=0

(
n

l

)
l∑

k=0

(
l

k

)

El−kHk

(
−q−1

)
. (2.22)

By Theorems 2.5 and 2.6, we obtain the following corollary.

Corollary 2.7. For n ∈ N, one has

1
n + 1

n∑

l=0

(
n + 1

l

)
l∑

k=0

(
l

k

)

Bl−kHk

(
−q−1

)

=
n∑

l=0

(
n

l

)

En−lHl

(
−q−1

)
+
1
2

n−1∑

l=0

(
n

l

)
l∑

k=0

(
l

k

)

El−kHk

(
−q−1

)
.

(2.23)

By (1.3), we easily get En(x) = (−1)nEn(1 − x).
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Thus, we have

∫

Zp

xndμ−q(x)

= (−1)n
∫

Zp

En(1 − x)dμ−q(x) +
1
2

n−1∑

l=0

(
n

l

)

(−1)l
∫

Zp

El(1 − x)dμ−q(x)

= (−1)n
n∑

l=0

(
n

l

)

En−l

∫

Zp

(1 − x)ldμ−q(x)

+
1
2

n−1∑

l=0

(
n

l

)

(−1)l
l∑

k=0

(
l

k

)

El−k

∫

Zp

(1 − x)kdμ−q(x)

=
n∑

l=0

(
n

l

)

En−l(−1)n−lHl

(
−q−1,−1

)
+
1
2

n−1∑

l=0

(
n

l

)
l∑

k=0

(
l

k

)

El−k(−1)l−kHk

(
−q−1,−1

)

=
n∑

l=0

(
n

l

)

En−l(−1)nHl

(−q, 2) + 1
2

n−1∑

l=0

(
n

l

)
l∑

k=0

(
l

k

)

El−k(−1)lHk

(−q, 2).

(2.24)

Therefore, by (2.24), we obtain the following theorem.

Theorem 2.8. For n ∈ N, one has

Hn

(
−q−1

)
=

n∑

l=0

(
n

l

)

En−l(−1)nHl

(−q, 2)

+
1
2

n−1∑

l=0

(
n

l

)
l∑

k=0

(
l

k

)

El−k(−1)lHk

(−q, 2).
(2.25)
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