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Unsteady pulsatile flow of blood through porous medium in an artery has been studied under
the influence of periodic body acceleration and slip condition in the presence of magnetic field
considering blood as an incompressible electrically conducting fluid. An analytical solution of the
equation of motion is obtained by applying the Laplace transform. With a view to illustrating
the applicability of the mathematical model developed here, the analytic explicit expressions of
axial velocity, wall shear stress, and fluid acceleration are given. The slip condition plays an
important role in shear skin, spurt, and hysteresis effects. The fluids that exhibit boundary slip
have important technological applications such as in polishing valves of artificial heart and internal
cavities. The effects of slip condition, magnetic field, porous medium, and body acceleration have
been discussed. The obtained results, for different values of parameters into the problem under
consideration, show that the flow is appreciably influenced by the presence of Knudsen number
of slip condition, permeability parameter of porous medium, Hartmann number of magnetic field,
and frequency of periodic body acceleration. The study is useful for evaluating the role of porosity
and slip condition when the body is subjected to magnetic resonance imaging (MRI).

1. Introduction

The investigations of blood flow through arteries are of considerable importance in many
cardiovascular diseases particularly atherosclerosis. The pulsatile flow of blood through an
artery has drawn the attention of researchers for a long time due to its great importance
in medical sciences. Under normal conditions, blood flow in the human circulatory system
depends upon the pumping action of the heart and this produces a pressure gradient
throughout the arterial network. Chaturani and Palanisamy [1] studied pulsatile flow of
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blood through a rigid tube under the influence of body acceleration as a Newtonian fluid.
Elsoud et al. [2] studied the interaction of peristaltic flow with pulsatile couple stress fluid.
The mathematical model considers a viscous incompressible couple stress fluid between
infinite parallel walls on which a sinusoidal travelling wave is imposed. El-Shehawey et
al. [3] investigated the pulsatile flow of blood through a porous medium under periodic
body acceleration. The arterial MHD pulsatile flow of blood under periodic body acceleration
has been studied by Das and Saha [4]. Assuming blood to be an incompressible biviscous
fluid, the effect of uniform transverse magnetic field on its pulsatile motion through an axi-
symmetric tube was analyzed by Sanyal and Biswas [5]. Rao et al. [6] analyzed the flow of
combined two phase motion of viscous ideal medium through a parallel plate channel under
the influence of an imposed pressure gradient and periodic body acceleration.

During recent years, the effect of magnetic field on the flow of viscous fluid through
a uniform porous media has been the subject of numerous applications. The red blood
cell (RBC) is a major biomagnetic substance, and the blood flow may be influenced by
the magnetic field. In general, biological systems are affected by an application of external
magnetic field on blood flow, through human arterial system. The presence of the stationary
magnetic field contributes to an increase in the friction of flowing blood. This is because
the anisotropic orientation of the red blood cells in the stationary magnetic field disturbs
the rolling of the cells in the flowing blood and thereby the viscosity of blood increases.
The properties of human blood as well as blood vessels and magnetic field effect were the
subjects of interest for several researchers. Mekheimer [7] investigated the effect of amagnetic
field on peristaltic transport of blood in a non-uniform two-dimensional channel. The blood
is represented by a viscous, incompressible, and electrically conducting couple stress fluid.
A mathematical model for blood flow in magnetic field is studied by Tzirtzilakis [8]. This
model is consistent with the principles of ferrohydrodynamics and magnetohydrodynamics
and takes into account both magnetization and electrical conductivity of blood. Jain et al. [9]
investigated a mathematical model for blood flow in very narrow capillaries under the effect
of transverse magnetic field. It is assumed that there is a lubricating layer between red blood
cells and tube wall. Fluid flow analysis of blood flow through multistenosis arteries in the
presence of magnetic field is investigated by Verma and Parihar [10]. In this investigation, the
effect of magnetic field and shape of stenosis on the flow rate is studied. Singh and Rathee
[11] studied the analytical solution of two-dimensional model of blood flow with variable
viscosity through an indented artery due to LDL effect in the presence of magnetic field.

Porous medium is defined as a material volume consisting of solid matrix with an
interconnected void. It is mainly characterized by its porosity, ratio of the void space to
the total volume of the medium. Earlier studies in flow in porous media have revealed the
Darcy law which relates linearly the flow velocity to the pressure gradient across the porous
medium. The porous medium is also characterized by its permeability which is a measure of
the flow conductivity in the porous medium. An important characteristic for the combination
of the fluid and the porous medium is the tortuosity which represents the hindrance to
flow diffusion imposed by local boundaries or local viscosity. The tortuosity is especially
important as related to medical applications [12]. Flow through porous medium has been
studied by a number of workers employing Darcy’s law. A mathematical modeling of blood
flow in porous vessel having double stenosis in the presence of an external magnetic field
has been investigated by Sinha et al. [13]. The magnetohydrodynamics effects on blood flow
through a porous channel have been studied by Ramamurthy and Shanker [14]. Eldesoky and
Mousa [15] investigated the peristaltic flow of a compressible non-Newtonian Maxwellian
fluid through porous medium in a tube. Reddy and Venkataramana [16] investigated the
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peristaltic transport of a conducting fluid through a porousmedium in an asymmetric vertical
channel.

No slip boundary conditions are a convenient idealization of the behavior of viscous
fluids near walls. The inadequacy of the no-slip condition is quite evident in polymer melts
which often exhibit microscopic wall slip. The slip condition plays an important role in
shear skin, spurt, and hysteresis effects. The boundary conditions relevant to flowing fluids
are very important in predicting fluid flows in many applications. The fluids that exhibit
boundary slip have important technological applications such as in polishing valves of
artificial heart and internal cavities [17]. The slip effects on the peristaltic flow of a non-
Newtonian Maxwellian fluid have been investigated by El-Shehawy et al. [18]. The influence
of slip condition on peristaltic transport of a compressible Maxwell fluid through porous
medium in a tube has been studied by Eldesoky [19]. Many recent researches have been
made in the subject of slip boundary conditions [20–25].

In situations like travel in vehicles, aircraft, operating jackhammer, and sudden
movements of body during sports activities, the human body experiences external body
acceleration. Prolonged exposure of a healthy human body to external accelerationmay cause
serious health problem like headache, increase in pulse rate and loss of vision on account of
disturbances in blood flow [6]. Manymathematical models have already been investigated by
several research workers to explore the nature of blood flow under the influence of external
acceleration. Sometimes human being suffering from cardiogenic or anoxic shock may
deliberately be subjected to whole body acceleration as a therapeutic measure [4]. El-Shahed
[26] studied pulsatile flow of blood through a stenosed porous medium under periodic body
acceleration. El-Shehawey et al. [3, 27–30] studied the effect of body acceleration in different
situations. They studied the effect of MHD flow of blood under body acceleration. Also,
studied Womersley problem for pulsatile flow of blood through a porous medium. The flow
of MHD of an elastic-viscous fluid under periodic body acceleration has been studied. The
blood flow through porous medium under periodic body acceleration has been studied.

In the present paper, the effect of slip condition on unsteady blood flow through a
porous medium has been studied under the influence of periodic body acceleration and
an external magnetic field. The analysis is carried out by employing appropriate analytical
methods and some important predictions have been made basing upon the study. This
investigation can play a vital role in the determination of axial velocity, shear stress, and fluid
acceleration in particular situations. Since this study has been carried out for a situation when
the human body is subjected to an external magnetic field, it bears the promise of significant
application inmagnetic or electromagnetic therapy, which has gained enough popularity. The
study is also useful for evaluating the role of porosity and slip condition when the body is
subjected to magnetic resonance imaging (MRI).

2. Mathematical Modeling of the Problem

Consider the unsteady pulsatile flow of blood in an axisymmetric cylindrical artery of radius
R through porous mediumwith body acceleration. The fluid subjected to a constant magnetic
field acts perpendicular to the artery as in Figure 1. Induced magnetic field and external
electric field are neglected. The slip boundary conditions are also taken into account. The
cylindrical coordinate system (r, θ, z) are introduced with z-axis lies along the center of the
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Figure 1: schematic diagram for the flow geometry.

artery and r transverse to it. The pressure gradient and body acceleration are respectively
given by

−∂p
∂z

= Ao +A1 cos
(
ωpt
)
,

G = ao cos(ωbt),

(2.1)

where Ao and A1 are pressure gradient of steady flow and amplitude of oscillatory part
respectively, ao is the amplitude of the body acceleration, ωp = 2πfp, ωb = 2πfb with fp is
the pulse frequency, and fb is the body acceleration frequency and t is time.

The governing equation of the motion for flow in cylindrical polar coordinates is given
by

ρ
∂u

∂t
= −∂p

∂z
+ μ∇2u + ρG −

(
μ

k

)
u + J × B. (2.2)

Maxwell’s equations are

∇ · B = 0, ∇ × B = μoJ, ∇ × E = −∂B
∂t

. (2.3)

Ohm’s law is

J = σ
(
E + V × B

)
, (2.4)

where V = (0, 0, u) is the velocity distribution, ρ the blood density, μo magnetic permeability,
B = (0, Bo, 0) the magnetic field, E the electric field, J the current density, k is the
permeability parameter of porous medium, μ the dynamic viscosity of the blood, and σ the
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electric conductivity of the blood. For small magnetic Reynolds number, the linearlized
magnetohydrodynamic force J × B can be put into the following form:

J × B = − σB2
Ou, (2.5)

where u(r, t) represents the axial velocity of the blood.
The shear stress τ is given by [13] as

τ = − μ
∂ u

∂ r
. (2.6)

Under the above assumptions the equation of motion is

ρ
∂u

∂t
= Ao +A1 cos

(
ωpt
)
+ μ

(
∂2u

∂r2
+
1
r

∂u

∂r

)

+ ρ(ao cos(ωbt)) −
(
μ

k

)
u − σB2

Ou. (2.7)

The boundary conditions that must be satisfied by the blood on the wall of artery are
the slip conditions. For slip flow the blood still obeys the Navier-Stokes equation, but the
no-slip condition is replaced by the slip condition ut = Ap∂ut/∂n, where ut is the tangential
velocity, n is normal to the surface, and Ap is a coefficient close to the mean free path of the
molecules of the blood [31]. Although the Navier condition looked simple, analytically it is
much more difficult than the no-slip condition, and then the boundary conditions on the wall
of the artery are

u(0, t) is finite at r = 0,

u(R, t) = Ap
∂u(r, t)

∂r

∣∣∣∣
r=R

,
(
Slip condition

)
.

(2.8)

Let us introduce the following dimensionless quantities:

u∗ =
u

ωR
, r∗ =

r

R
, t∗ = tω, A∗

o =
R

μω
Ao,

A∗
1 =

R

μω
A1, a∗

o =
ρR

μω
ao, z∗ =

z

R
, k∗ =

k

R2
, b =

ωb

ωp
.

(2.9)

The Hartmann number Ha, the Womersley parameter α, and the Knudsen number kn, are
defined respectively by

Ha = BoR

√
σ

μ
, α = R

√
ρω

μ
, kn =

A

R
. (2.10)
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Under the above assumptions (2.7) and (2.8) can be rewritten in the non-dimensional form
after dropping the stars as

α2 ∂u

∂t
= Ao +A1 cos(t) + ao cos(bt) +

∂2u

∂r2
+
1
r

∂u

∂r
−
(
Ha2 +

1
k

)
u. (2.11)

Also the boundary conditions are

u(0, t) is finite at r = 0 (2.12a)

u(1, t) = kn
∂u(r, t)
∂ r

∣
∣
∣
∣
r=1

. (2.12b)

And the initial condition is

u(r, 0) = 1 (at t = 0) (2.12c)

3. Solution of the Problem

Applying Laplace Transform to (2.11), we get

α2(su∗(r, s) − u∗(r, o)) = Ao

(
1
s

)
+A1

(
s

s2 + 1

)
+ ao

(
s

s2 + b2

)

+
d2u∗

dr2
+
1
r

du∗

dr
−
(
Ha2 +

1
k

)
u∗,

(3.1)

where u∗(r, s) =
∫∞
0 u(r, t) e−st dt, (s > 0).

Substituting by the I.C. equation (2.12c) into (3.1) and dropping the stars, we get

r2
d2u

dr2
+ r

du

dr
− λ2r2u = − r2G, (3.2)

where

λ2 = α2s +Ha2 +
1
k
= α2

(

s +
Ha2 + (1/k)

α2

)

,

G = α2 +Ao

(
1
s

)
+A1

(
s

s2 + 1

)
+ ao

(
s

s2 + b2

)
.

(3.3)

Homogenous solution is as follows:

r2
d2u

dr2
+ r

du

dr
− λ2r2u = 0. (3.4)
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This equation is modified Bessel differential equation so the solution is

uh = C1IO(λr) + C2KO(λr), (3.5)

where IO and KO are modified Bessel functions of order zero. Since the solution is bounded
at r = 0, then the constant C2 equals zero, then

uh = C1IO(λr). (3.6)

We can get the particular solution using the undetermined coefficients as the following:

up = β1 + β2r,

dup

dr
= β2,

d2up

dr2
= 0.

(3.7)

Substituting into (3.2) and comparing the coefficients of r and r2 we get

up =
G

λ2
. (3.8)

The general solution is

ug = uh + up = C1IO(λr) +
G

λ2
. (3.9)

Substituting from (2.12b) into (3.9) to calculate the constant C1 we get

C1 =
−(G/λ2

)

−knλI1(λ) + Io(λ)
. (3.10)

Then the general solution can obtained on the following form:

ug(r, s) =
G

λ2

(
1 − IO(λr)

IO(λ) − knλI1(λ)

)
. (3.11)

For the sake of analysis, the part (1 − ((IO(λr))/(IO(λ) − knλI1(λ)))) which represents an
infinite convergent series as its limit tends to zero when r tends to one and kn tends to zero
has been approximated [32, 33].
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The final form of the general solution as a function of r and s is

ug(r, s)

= 16
(
1 − r2 − 2kn

)

×
(

α2+Ao(1/s)+A1
(
s/
(
s2 + 1

))
+ao

(
s/
(
s2+b2

))

64+16(α2s+((Ha2+(1/k)/α2)))(1−2kn)+(α2(s+((Ha2+(1/k))/α2)))2(1−4kn)

)

+
(
1 − r4 − 4kn

)

×

⎛

⎜
⎝

(
α2(s+

((
Ha2+(1/k)

)
/α2)))

(
α2+Ao(1/s)+A1

(
s/
(
s2+1

))
+ao

(
s/
(
s2+b2

)))

64+16(α2(s+((Ha2+(1/k))/α2)))(1−2kn)+(α2(s + ((Ha2+(1/k))/α2)))2(1−4kn)

⎞

⎟
⎠.

(3.12)

Rearranging the terms and taking the inversion of Laplace Transform of (3.12) which gives
the final solution as

ug(r, t) = 16
(
1 − r2 − 2kn

) {
(−1/16)(M0) +Aok

2(M1) +A1k
2(M2) + aok

2(M3)
}

+
(
1 − r4 − 4kn

) {
α2k(M4) +Aok(M5) +A1k(M6) + aok(M7)

}
.

(3.13)

The expression for the shear stress is given by

τ(r, t) = μ16(2r)
{
(−1/16)(M0) +Aok

2(M1) +A1k
2(M2) + aok

2(M3)
}

+ μ
(
4r3
) {

α2k(M4) +Aok(M5) +A1k(M6) + aok(M7)
}
.

(3.14)

The expression for the fluid acceleration is given by:

F(r, t) =
∂u

∂t
. (3.15)

4. Numerical Results and Discussion

We studied unsteady pulsatile flow of blood through porous medium in an artery under the
influence of periodic body acceleration and slip condition in the presence of magnetic field
considering blood as an incompressible electrically conducting fluid. The artery is considered
a circular tube. We have shown the relation between the different parameters of motion such
as Hartmann number Ha, Knudsen number kn, Womersley parameter α, frequency of the
body acceleration b, the permeability parameter of porous medium k, and the axial velocity,
shear stress, fluid acceleration to investigate the effect of changing these parameters on the
flow of the fluid. Hence, we can be controlling the process of flow.
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Figure 2: Effect of Hartmann number on the axial velocity b = 2, α = 3, ao = 3, Ao = 2, A1 = 4, t = 1, kn =
0.001, and k = 0.5.
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Figure 3: Effect of Knudsen number on the axial velocity b = 2, α = 3, ao = 3, Ao = 2, A1 = 4, t = 1, Ha =
1.0, and k = 0.5.
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Figure 4: Effect of permeability parameter on the axial velocity b = 2, α = 3, ao = 3, Ao = 2, A1 = 4, t =
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A numerical code has been written to calculate the axial velocity, shear stress, and fluid
acceleration according to ((3.13)–(3.15)), respectively. In order to check our code, we run it for
the parameters related to a realistic physical problem similar to the ones used by other authors
[9, 33–36]. For instance, for b = 2, α = 3, ao = 3, Ao = 2, A1 = 4, t = 1, k = 0.5, r = 0.5, and
kn = 0.0 we obtain the axial velocity u = 0.88340, which equals (if we keep five digits after
the decimal point) to the result of the authors of [34]. The same confirmation was made with
the references [1, 26, 33].

The axial velocity profile computed by using the velocity expression (3.13) for different
values of Hartmann number Ha, Knudsen number kn, Womersley parameter α, frequency
of the body acceleration b, the permeability parameter of porous medium k and have been
shown through Figures 2 to 13. It is observed that from Figure 2 that as the Hartmann number
increases the axial velocity decreases. Figure 3 shows that by increasing the Knudsen number
the axial velocity decreases with small amount.

In Figure 4 the axial velocity of the blood increases with increasing the permeability
parameter of porous medium k. The effect of Womersley parameter α on the axial elocity u
has been showed in Figure 5. We can see that the axial velocity increases with increasing the
Womersley parameter.

Figures 6, 7, 8, and 9 present the effect of the frequency of the body acceleration b on
the axial velocity distribution for various values of Knudsen number kn. We note that the
axial velocity decreases with increasing the frequency of body acceleration b. In Figure 6 we
note that there is no reflux at kn = 0.001 (negative values of the axial velocity). The reflux
appears in Figure 7 at kn = 0.1 the negative values begin at r = 0.9 (near to the wall of artery)
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Figure 19: Effect of frequency of body acceleration on the blood acceleration α = 3, Ha = 1, ao = 3, Ao = 2,
A1 = 4, t = 1, kn = 0.01, and k = 0.5.

With increasing the value of Knudsen number kn (kn = 0.2) as in Figure 8 the reflux occurs
at r = 0.6. Whereas the reflux occurs at r = 0 (kn = 0.3) as shown in Figure 9.

The blood acceleration profile is computed by using (3.15) for different values of
Hartmann number Ha, Knudsen number kn, permeability parameter of porous medium k,
the Womersley parameter, and the frequency of the body acceleration b. It is observed from
Figure 15 that the blood acceleration decreases with increasing the Hartmann number Ha up
to t = 0.2 and then increases with increasing the Hartmann number Ha up to t = 1. The blood
acceleration increases with increasing each of Knudsen number kn, permeability parameter
of porous medium k and Womersley parameter α up to t = 0.3 as shown in Figures 16, 17,
and 18.

The effect of Hartmann number Ha on the shear stress τ is presented in Figure 10. In
all our calculations the dynamic viscosity of the blood is taken μ = 2.5 ref. to [9]. We note
that the shear stress equals zero at the center of the artery and decreases with increasing the
Hartmann number Ha. Also the shear stress τ decreases with increasing the frequency of the
body acceleration b as shown in Figure 14. Figures 11, 12, and 13 show that the shear stress
τ increases with increasing the permeability parameter of porous medium k, the Womersley
parameter α and the Knudsen number kn.

Figure 19 represents the effect of the frequency of body acceleration on the blood
acceleration. We note that there is no effect (approximately) up to t = 0.4 then the blood
acceleration decreases with increasing the frequency of body acceleration.
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5. Conclusions

In the present mathematical model, the unsteady pulsatile blood flow through porous
medium in the presence of magnetic field with periodic body acceleration through a rigid
straight circular tube (artery) has been studied. The slip condition on the wall artery has
been considered. The velocity expression has been obtained in an approximation way. The
corresponding expressions for shear stress and fluid acceleration are also obtained. It is
of interest to note that the axial velocity increases with increasing of the permeability
parameter of porousmedium andWomersley parameter whereas it decreases with increasing
the Hartmann number, frequency of body acceleration, and Knudsen number. Also, the
shear stress increases with increasing the permeability parameter of porous medium,
Womersley parameter, and Knudsen number whereas decreases with increasing Hartmann
number and the frequency of body acceleration. Finally, the blood acceleration increases
with increasing the permeability parameter of porous medium, Womersley parameter, and
Knudsen number whereas decreases with increasing Hartmann number and the frequency
of body acceleration.

The present model gives a most general form of velocity expression from which the
other mathematical models can easily be obtained by proper substitutions. It is of interest to
note that the result of the present model includes results of different mathematical models
such as:

(1) The results of Megahed et al. [34] have been recovered by taking Knudsen number
kn = 0.0 (no slip condition).

(2) The results of Kamel and El-Tawil [33] have been recovered by taking Knudsen
number kn = 0.0, the permeability of porous medium k → ∞ without stochastic
and no body acceleration.

(3) The results of El-Shahed [26] have been recoverd by taking Knudsen number
kn=0.0 and Hartmann number Ha = 0.0 (no magnetic field).

(4) The results of Chaturani and Palanisamy [1] have been recovered by taking
Knudsen number kn = 0.0, the permeability of porous medium k → ∞ and
Hartmann number Ha = 0.0 (no magnetic field).

It is possible that a proper understanding of interactions of body acceleration with
blood flow may lead to a therapeutic use of controlled body acceleration. It is therefore
desirable to analyze the effects of different types of vibrations on different parts of the body.
Such a knowledge of body acceleration could be useful in the diagnosis and therapeutic
treatment of some health problems (joint pain, vision loss, and vascular disorder), to better
design of protective pads and machines.

By using an appropriate magnetic field it is possible to control blood pressure and also
it is effective for conditions such as poor circulation, travel sickness, pain, headaches, muscle
sprains, strains, and joint pains. The slip condition plays an important role in shear skin, spurt
and hysteresis effects. The fluids that exhibit boundary slip have important technological
applications such as in polishing valves of artificial heart and internal cavities.

Hoping that this investigation may have for further studies in the field of medical
research, the application of magnetic field for the treatment of certain cardiovascular diseases,
and also the results of this analysis can be applied to the pathological situations of blood flow
in coronary arteries when fatty plaques of cholesterol and artery clogging blood clots are
formed in the lumen of the coronary artery.
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(A.6)
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