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It is known that for an IP∗ setA inN and a sequence 〈xn〉∞n=1 there exists a sum subsystem 〈yn〉∞n=1 of
〈xn〉∞n=1 such that FS(〈yn〉∞n=1)∪FP(〈yn〉∞n=1) ⊆ A. Similar types of results also have been proved for
central∗ sets. In this present work wewill extend the results for dense subsemigroups of ((0,∞),+).

1. Introduction

One of the famous Ramsey theoretic results is Hindman’s Theorem.

Theorem 1.1. Given a finite coloring N =
⋃r

i=1 Ai there exists a sequence 〈xn〉∞n=1 in N and i ∈
{1, 2, . . . , r} such that

FS(〈xn〉∞n=1) =
{
∑

n∈F
xn : F ∈ Pf(N)

}

⊆ Ai, (1.1)

where for any set X,Pf(X) is the set of finite nonempty subsets of X.

The original proof of this theorem was combinatorial in nature. But later using
algebraic structure of βN a very elegant proof of this theorem was established in [1, Corollary
5.10]. First we give a brief description of algebraic structure of βSd for a discrete semigroup
(S, ·).
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We take the points of βSd to be the ultrafilters on S, identifying the principal ultrafilters
with the points of S and thus pretending that S ⊆ βSd. Given A ⊆ S,

c�A = A =
{
p ∈ βSd : A ∈ p

}
(1.2)

is a basis for the closed sets of βSd. The operation · on S can be extended to the Stone-Čech
compactification βSd of S so that (βSd, ·) is a compact right topological semigroup (meaning
that for any p ∈ βSd, the function ρp : βSd → βSd defined by ρp(q) = q · p is continuous)with
S contained in its topological center (meaning that for any x ∈ S, the function λx : βSd → βSd

defined by λx(q) = x · q is continuous). A nonempty subset I of a semigroup T is called a left
ideal of S if TI ⊂ I, a right ideal if IT ⊂ I, and a two-sided ideal (or simply an ideal) if it is both
a left and right ideal. A minimal left ideal is the left ideal that does not contain any proper left
ideal. Similarly, we can define minimal right ideal and smallest ideal.

Any compact Hausdorff right topological semigroup T has a smallest two-sided ideal:

K(T) =
⋃

{L : L is a minimal left ideal of T}

=
⋃{

R : R is a minimal right ideal of T
}
.

(1.3)

Given a minimal left ideal L and a minimal right ideal R, L ∩ R is a group, and in
particular contains an idempotent. An idempotent in K(T) is a minimal idempotent. If p and
q are idempotents in T we write p ≤ q if and only if pq = qp = p. An idempotent is minimal
with respect to this relation if and only if it is a member of the smallest ideal.

Given p, q ∈ βS, and A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p, where
x−1A = {y ∈ S : x ·y ∈ A}. See [1] for an elementary introduction to the algebra of βS and for
any unfamiliar details.

A ⊆ N is called an IP∗ set if it belongs to every idempotent in βN. Given a sequence
〈xn〉∞n=1 in N, we let FP(〈xn〉∞n=1) be the product analogue of Finite Sum. Given a sequence
〈xn〉∞n=1 in N, we say that 〈yn〉∞n=1 is a sum subsystem of 〈xn〉∞n=1 provided there is a sequence
〈Hn〉∞n=1 of nonempty finite subsets of N such that maxHn < minHn+1 and yn =

∑
t∈Hn

xt for
each n ∈ N.

Theorem 1.2. Let 〈xn〉∞n=1 be a sequence in N and let A be an IP ∗ set in (N,+). Then there exists a
sum subsystem 〈yn〉∞n=1 of 〈xn〉∞n=1 such that

FS
(〈
yn

〉∞
n=1

) ∪ FP
(〈
yn

〉∞
n=1

) ⊆ A. (1.4)

Proof. See [2, Theorem 2.6] or see [1, Corollary 16.21].

Definition 1.3. A subset C ⊆ S is called central if and only if there is an idempotent p ∈ K(βS)
such that C ∈ p.

The algebraic structure of the smallest ideal of βS has played a significant role in
Ramsey Theory. It is known that any central subset of (N,+) is guaranteed to have substantial
additive structure. But Theorem 16.27 of [1] shows that central sets in (N,+) need not have
any multiplicative structure at all. On the other hand, in [2] we see that sets which belong
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to every minimal idempotent of N, called central∗ sets, must have significant multiplicative
structure. In fact central∗ sets in any semigroup (S, ·) are defined to be those sets which meet
every central set.

Theorem 1.4. If A is a central∗ set in (N,+) then it is central in (N, ·).

Proof. See [2, Theorem 2.4].

In case of central∗ sets a similar result has been proved in [3] for a restricted class of
sequences called minimal sequences, where a sequence 〈xn〉∞n=1 in N is said to be a minimal
sequence if

∞⋂

m=1

FS(〈xn〉∞n=m) ∩K
(
βN

)
/= ∅. (1.5)

Theorem 1.5. Let 〈yn〉∞n=1 be a minimal sequence and let A be a central∗ set in (N,+). Then there
exists a sum subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 such that

FS(〈xn〉∞n=1) ∪ FP(〈xn〉∞n=1) ⊆ A. (1.6)

Proof. See [3, Theorem 2.4].

A strongly negative answer to the partition analogue of Hindman’s theorem was
presented in [4]. Given a sequence 〈xn〉∞n=1 in N, let us denote PS(〈xn〉∞n=1)= {xm+xn : m,n ∈ N

and m/=n} and PP(〈xn〉∞n=1) = {xm · xn : m,n ∈ N and m/=n}.

Theorem 1.6. There exists a finite partition R of N with no one-to-one sequence 〈xn〉∞n=1 in N such
that PS(〈xn〉∞n=1) ∪ PP(〈xn〉∞n=1) is contained in one cell of the partition R.

Proof. See [4, Theorem 2.11].

A similar result in this direction in the case of dyadic rational numbers has been proved
by V. Bergelson et al..

Theorem 1.7. There exists a finite partition D \ {0} =
⋃r

i=1 Ai such that there do not exist i ∈
{1, 2, . . . , r} and a sequence 〈xn〉∞n=1 with

FS(〈xn〉∞n=1) ∪ PP(〈xn〉∞n=1) ⊆ Ai. (1.7)

Proof. See [5, Theorem 5.9].

In [5], the authors also presented the following conjecture and question.

Conjecture 1.8. There exists a finite partition Q \ {0} =
⋃r

i=1 Ai such that there do not exists i ∈
{1, 2, . . . , r} and a sequence 〈xn〉∞n=1 with

FS(〈xn〉∞n=1) ∪ FP(〈xn〉∞n=1) ⊆ Ai. (1.8)
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Question 1. Does there exist a finite partition R \ {0} =
⋃r

i=1 Ai such that there do not exist
i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 with

FS(〈xn〉∞n=1) ∪ FP(〈xn〉∞n=1) ⊆ Ai? (1.9)

In the present paper our aim is to extend Theorems 1.2 and 1.5 for dense subsemi-
groups of ((0,∞),+).

Definition 1.9. If S is a dense subsemigroup of ((0,∞),+) one defines 0+(S) = {p ∈ βSd :
(for all ε > 0)((0, ε) ∈ p)}.

It is proved in [6], that 0+(S) is a compact right topological subsemigroup of (βSd,+)
which is disjoint from K(βSd) and hence gives some new information which are not
available from K(βSd). Being compact right topological semigroup 0+(S) contains minimal
idempotents of 0+(S). A subset A of S is said to be IP∗-set near 0 if it belongs to every
idempotent of 0+(S) and a subset C of S is said to be central∗ set near 0 if it belongs to every
minimal idempotent of 0+(S). In [7] the authors applied the algebraic structure of 0+(S) on
their investigation of image partition regularity near 0 of finite and infinite matrices. Article
[8] used algebraic structure of 0+(R) to investigate image partition regularity of matrices with
real entries from R.

2. IP∗ and Central∗ Set Near 0

In the following discussion, we will extend Theorem 1.2 for a dense subsemigroup of
((0,∞),+) in the appropriate context.

Definition 2.1. Let S be a dense subsemigroup of ((0,∞),+). A subset A of S is said to be
an IP set near 0 if there exists a sequence 〈xn〉∞n=1 such that

∑∞
n=1 xn converges and such that

FS(〈xn〉∞n=1) ⊆ A. One calls a subset D of S an IP∗set near 0 if for every subset C of S which is
IP set near 0, C ∩D is IP set near 0.

From [6, Theorem 3.1] it follows that for a dense subsemigroup S of ((0,∞),+) a subset
A of S is an IP set near 0 if and only if there exists some idempotent p ∈ 0+(S) with A ∈ p.
Further it can be easily observed that a subset D of S is an IP∗ set near 0 if and only if it
belongs to every idempotent of 0+(S).

Given c ∈ R \ {0} and p ∈ βRd \ {0}, the product c · p is defined in (βRd, ·). One has
A ⊆ R is a member of c · p if and only if c−1A = {x ∈ R : c · x ∈ A} is a member of p.

Lemma 2.2. Let S be a dense subsemigroup of ((0,∞),+) such that S ∩ (0, 1) is a subsemigroup of
((0, 1), ·). IfA is an IP set near 0 in S then sA is also an IP set near 0 for every s ∈ S∩ (0, 1). Further
if A is a an IP∗ set near 0 in (S,+) then s−1A is also an IP∗ set near 0 for every s ∈ S ∩ (0, 1).

Proof. Since A is an IP set near 0 then by [6, Theorem 3.1] there exists a sequence 〈xn〉∞n=1 in S
with the property that

∑∞
n=1 xn converges and FS(〈xn〉∞n=1) ⊆ A. This implies that

∑∞
n=1(s · xn)

is also convergent and FS(〈sxn〉∞n=1) ⊆ sA. This proves that sA is also an IP∗ set near 0.
For the second let A be a an IP∗ set near 0 and s ∈ S ∩ (0, 1). To prove that s−1A is a

an IP∗ set near 0 it is sufficient to show that if B is any IP set near 0 then B ∩ s−1A/= ∅. Since B
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is an IP set near 0, sB is also an IP set near 0 by the first part of the proof, so that A ∩ sB /= ∅.
Choose t ∈ sB ∩A and k ∈ B such that t = sk. Therefore k ∈ s−1A so that B ∩ s−1A/= ∅.

Given A ⊆ S and s ∈ S, s−1A = {t ∈ S: st ∈ A}, and −s +A = {t ∈ S: s + t ∈ A}.

Theorem 2.3. Let S be a dense subsemigroup of ((0,∞),+) such that S ∩ (0, 1) is a subsemigroup of
((0, 1), ·). Also let 〈xn〉∞n=1 be a sequence in S such that

∑∞
n=1 xn converges and let A be a IP∗ set near

0 in S. Then there exists a sum subsystem 〈yn〉∞n=1 of 〈xn〉∞n=1 such that

FS
(〈
yn

〉∞
n=1

) ∪ FP
(〈
yn

〉∞
n=1

) ⊆ A. (2.1)

Proof. Since
∑∞

n=1 xn converges, from [6, Theorem 3.1] it follows that we can find some
idempotent p ∈ 0+(S) for which FS(〈xn〉∞n=1) ∈ p. In fact T =

⋂∞
m=1 c�βSdFS(〈yn〉∞n=m) ⊆ 0+(S)

and p ∈ T . Again, since A is a IP∗ set near 0 in S, by Lemma 2.2 for every s ∈ S ∩ (0, 1),
s−1A ∈ p. Let A� = {s ∈ A: −s + A ∈ p}. Then by [1, Lemma 4.14] A� ∈ p. We can choose
y1 ∈ A� ∩ FS(〈xn〉∞n=1). Inductively letm ∈ N and 〈yi〉mi=1, 〈Hi〉mi=1 in Pf(N) be chosen with the
following properties:

(1) i ∈ {1, 2, . . . , m − 1}maxHi < minHi+1;

(2) if yi =
∑

t∈Hi
xt then

∑
t∈Hm

xt ∈ A� and FP(〈yi〉mi=1) ⊆ A.

We observe that {∑t∈H xt :H ∈ Pf(N), minH > maxHm} ∈ p. Let B = {∑t∈H xt :H ∈
Pf(N), minH > maxHm}, let E1 = FS(〈yi〉mi=1) and E2 = FP(〈yi〉mi=1). Now consider

D = B ∩A� ∩
⋂

s∈E1

(−s +A�) ∩
⋂

s∈E2

(
s−1A�

)
. (2.2)

Then D ∈ p. Now choose ym+1 ∈ D and Hm+1 ∈ Pf(N) such that minHm+1 > max Hm.
Putting ym+1 =

∑
t∈Hm+1

xt shows that the induction can be continued and proves the theorem.

If we turn our attention to central∗ sets then the above result holds for a restricted class
of sequences which we call minimal sequence near 0.

Definition 2.4. Let S be a dense subsemigroup of ((0,∞),+). A sequence 〈xn〉∞n=1 in S is said
to be a minimal sequence near 0 if

∞⋂

m=1

FS(〈xn〉∞n=m) ∩K(0+(S))/= ∅. (2.3)

The notion of piecewise syndetic set near 0 was first introduced in [6].

Definition 2.5. For a dense subsemigroup S of ((0,∞),+), a subset A of S is piecewise syndetic
near 0 if and only if c�βSdA ∩K(0+(S))/= ∅.

The following theorem characterizes minimal sequences near 0 in terms of piecewise
syndetic set near 0.
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Theorem 2.6. Let S be a dense subsemigroup of ((0,∞),+). Then the following conditions are
equivalent:

(a) 〈xn〉∞n=1 is a minimal sequence near 0.

(b) FS(〈xn〉∞n=1) is piecewise syndetic near 0.
(c) There is an idempotent in

⋂∞
m=1 FS(〈xn〉∞n=m) ∩K(0+(S))/= ∅.

Proof. (a) ⇒ (b) follows from (see [6, Theorem 3.5]).
To prove that (b) implies (a) let us consider that FS(〈xn〉∞n=1) be a piecewise syndetic

near 0. Then there exists a minimal left ideal L of 0+(S) such that L ∩ FS(〈xn〉∞n=1)/= ∅. We
choose q ∈ L∩FS(〈xn〉∞n=1). By [6, Theorem 3.1],

⋂∞
m=1 c�βSdFS(〈xn〉∞n=m) is a subsemigroup of

0+(S), so it suffices to show that for eachm ∈ N, L∩FS(〈xn〉∞n=m)/= ∅. In fact minimal left ideals
being closed, we can conclude that L ∩⋂∞

n=m FS(〈xn〉∞n=m)/= ∅ and so L ∩⋂∞
n=m FS(〈xn〉∞n=m) is

a compact right topological semigroup so that it contains idempotents. To this end, let m ∈ N

with m > 1. Then FS(〈xn〉∞n=1) = FS(〈xn〉∞n=m) ∪ FS(〈xn〉m−1
n=1 ) ∪

⋃{t + FS(〈xn〉∞n=m) : t ∈
FS(〈xn〉m−1

n=1 )}. So we must have one of the following:

(i) FS(〈xn〉∞n=m) ∈ q,

(ii) FS(〈xn〉m−1
n=1 ) ∈ q,

(iii) t + FS(〈xn〉∞n=m) ∈ q for some t ∈ FS(〈xn〉m−1
n=1 ).

Clearly (ii) does not hold, because in that case q becomes a member of S while it is
a member of minimal left ideal. If (iii) holds then we have t + FS(〈xn〉∞n=m) ∈ q for some
t ∈ FS(〈xn〉m−1

n=1 ). Since q ∈ 0+(S), we have (0, t) ∩ S ∈ q. But (0, t) ∩ (t + FS(〈xn〉∞n=m)) = ∅, a
contradiction. Hence (i) must hold so that q ∈ L ∩ FS(〈xn〉∞n=m).

(a) ⇔ (c) is obvious.

Let us recall following lemma for our purpose.

Lemma 2.7. Let S be a dense subsemigroup of ((0,∞),+) such that S ∩ (0, 1) is a subsemigroup of
((0, 1), ·) and assume that for each y ∈ S ∩ (0, 1) and each x ∈ S, x/y ∈ S and yx ∈ S. If A ⊆ S and
y−1A is a central set near 0, then A is also a central set near 0.

Proof. See [6, Lemma 4.8].

Lemma 2.8. Let S be a dense subsemigroup of ((0,∞),+) such that S ∩ (0, 1) is a subsemigroup of
((0, 1), ·) and assume that for each s ∈ S ∩ (0, 1) and each t ∈ S, t/s ∈ S and st ∈ S. If A is central
set near 0 in S then sA is also central set near 0.

Proof. Since s−1(sA) = A and A is central set near 0 then by Lemma 2.7, sA is central set near
0.

Lemma 2.9. Let S be a dense subsemigroup of ((0,∞),+) such that S ∩ (0, 1) is a subsemigroup of
((0, 1), ·) and assume that for each s ∈ S∩ (0, 1) and each t ∈ S, t/s ∈ S and st ∈ S. IfA is a central∗

set near 0 in (S,+) then s−1A is also central∗ set near 0.

Proof. Let A be a central∗ set near 0 and s ∈ S ∩ (0, 1). To prove that s−1A is a central∗ set near
0 it is sufficient to show that for any central set near 0 C, C ∩ s−1A/= ∅. Since C is central set
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near 0, sC is also central set near 0 so that A ∩ sC /= ∅. Choose t ∈ sC ∩A and k ∈ C such that
t = sk. Therefore k ∈ s−1A so that C ∩ s−1A/= ∅.

We end this paper by following generalization of Theorem 2.3, whose proof is also
straight forward generalization of Theorem 2.3 and hence omitted.

Theorem 2.10. Let S be a dense subsemigroup of ((0,∞),+) such that S ∩ (0, 1) is a subsemigroup
of ((0, 1), ·) and assume that for each s ∈ S ∩ (0, 1) and each t ∈ S, t/s ∈ S and st ∈ S. Also let
〈xn〉∞n=1 be a minimal sequence near 0 and let A be a central∗ set near 0 in S. Then there exists a sum
subsystem 〈yn〉∞n=1 of 〈xn〉∞n=1 such that

FS
(〈
yn

〉∞
n=1

) ∪ FP
(〈
yn

〉∞
n=1

) ⊆ A. (2.4)
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