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We combine suitable arithmetic average approximations, with explicit backward Euler formula,
and derive a third-order L-stable derivative-free error-corrected trapezoidal rule (LSDFECT).
Then, we apply LSDFECT rule to the linearized Burgers’ equation with inconsistent initial and
boundary conditions and test its stability and exactness. We use Mathematica 7.0 for computation.

1. Introduction

Nonlinear phenomena play a crucial role in applied mathematics and physics and in
mechanics and biology. Burgers’ equation has been found to describe various kinds of
phenomena such as a mathematical model of turbulence and the approximate theory of
flow through a shock wave traveling in a viscous fluid. The equation has found applications
in field as diverse as number theory, gas dynamics, heat conduction, and elasticity. In
past years, a growing interest has been given to the propagation of nonlinear waves in
nonlinear dynamical systems. A nonlinear wave is one of the fundamental objects of nature.
These waves appear in a great array of contexts such as hydrodynamics, nonlinear optics,
plasmas, solid-state physics, nuclear physics, and many other nonlinear phenomena. The
systems are often described by nonlinear partial differential equations with constant or
variable coefficients. In this paper, we are proposing a method which can deal efficiently with
numerical solutions of Burgers’ equation which contains inconsistencies in terms of initial
and boundary conditions.

L-stable numerical methods are sought whenever inconsistencies are present in the
initial and boundary conditions or in some other cases. So, in the present paper, we use
derivative-free error-corrected trapezoidal rule [1], arithmetic average approximation, and
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explicit Euler’s backward formula on y′ = f(t, y) and develop L-stable derivative-free error-
corrected trapezoidal type quadrature formula.

We use these results to study the numerical solution of one-dimensional quasilinear
partial differential equation, that is, Burgers’ equation

∂w

∂t
+w

∂w

∂x
− νd

2
∂2w

∂x2
= 0, (x, t) ∈ [0, 1] × [0, T], (1.1)

with initial condition

w(x, 0) = g(x), 0 < x < 1, (1.2)

and Dirichlet boundary conditions

w(0, t) = 0 = w(1, t), 0 ≤ t ≤ T, (1.3)

where νd > 0 is a coefficient of viscous diffusion and g is sufficiently smooth given function.
We consider some examples of Burgers’ equation with Dirichlet boundary condition

and transform it into linear diffusion equation with Neumann boundary condition for
which CN produces unacceptable oscillations while the present L-stable derivative-free error-
corrected trapezoidal type rule provides both stable and accurate result.

The Crank and Nicolson [2] scheme isA-stable not L-stable and produces undesirable
oscillations in the case of inconsistencies in the initial and boundary conditions [3] or when
time step taken is large [4]. As an alternative to CN, Chawla et al. [5] have proposed
generalized trapezoidal formula (GTF(α)) which is second-order L-stable schemes for α > 0
and gives quite stable and accurate approximations for a judicious choice of the parameter α.

For higher-order accuracy, Chawla et al. [6] proposed a modified A-stable Simpson’s
1/3 rule (ASIMP) but, since it lacks L-stability, ASIMP also produces unwanted oscillations.
To rectify this, Chawla and Evans [7] and Pandey et al. [8] presented a L-stable version of the
Simpson’s 1/3 rule and Simpson’s 3/8 rule, respectively, and employed it to derive a third-
order time integration scheme for the diffusion equation. These L-stable schemes provide
stable and accurate approximations.

This paper is organized in 4 sections. In Section 2, we discuss derivative-free error-
corrected trapezoidal rule. In Section 3 we derive L-stable version of derivative free error
corrected trapezoidal rule and discuss its local truncation error and stability and apply it to
linearized Burgers’ equation. Finally, in Section 4, we illustrate our findings numerically.

2. Derivative-Free Error-Corrected Trapezoidal Rule

Let f(x) be defined over the interval [a, b]. Let us divide the interval [a, b] into n subintervals
[xi−1, xi] for i = 1(1)n, where xi = x0 + i ∗ h, x0 = a and xn = b. Then

∫b
a

f(x)dx =
n∑
i=1

Trap[xi−1, xi],

∫b
a

f(x)dx =
1
2

{
n−1∑
i=1

Simp1/3[xi−1, xi+1] + Simp1/3[x0, x1] + Simp1/3[xn−1, xn]

}
,

(2.1)
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where

Trap[xi−1, xi] =
h

2
[
f(xi−1) + f(xi)

]
,

Simp1/3[xi−1, xi+1] =
h

3
[
f(xi−1) + 4f(xi) + f(xi+1)

]
.

(2.2)

Now derivative-free corrector is the difference between (2.1) and is given by (cf. [1])

−h
4
(
f0 + fn

)
+
h

3
(
f1/2 + fn−(1/2)

) − h

12
(
f1 + fn−1

)
. (2.3)

Hence derivative-free error-corrected trapezoidal rule is given by

h

[
1
2
f0 + f1 + f2 + · · · + fn−1 + 1

2
fn

]
− h
4
(
f0 + fn

)
+
h

3
(
f1/2 + fn−(1/2)

) − h

12
(
f1 + fn−1

)
. (2.4)

The above quadrature formula will have error proportional to (b − a)h4, and it does
not contain any derivative term.

3. L-Stable Derivative-Free Error-Corrected Trapezoidal-Type Rule

Definition 3.1. Amethod is said to be L-stable if it is A-stable, and, in addition, when applied
to the scalar test equation y′ = λy, λ ∈ C, Re(λ) < 0, it yields yn+1 = Ψ(z)yn, z = λh (h is step
size), where |Ψ(z)| → 0 as Re(z) → −∞.

Consider the first-order initial value problem

y′(t) = f
(
t, y
)
, y(t0) = η. (3.1)

The derivative-free error-corrected trapezoidal-type rule is given by

yn+1 = yn +
h

36
[
3
(
fn + fn+1

)
+ 11

(
fn+(1/3) + fn+(2/3)

)
+ 4
(
fn+(1/6) + fn+(5/6)

)]
. (3.2)

We start with following suitable weighted average approximations

yn+1/3 =
2yn + yn+1

3
,

yn+2/3 =
yn + 2yn+1

3
,

yn+1/6 =
5yn + yn+1

6
,

yn+5/6 =
yn + 5yn+1

6
.

(3.3)
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The explicit backward Euler formula (Chawla et al. [9]) is

yn = yn+1 − hfn+1. (3.4)

Now we use (3.3) to obtain the following approximations:

yn+1/3 =
4yn + 5yn+1

9
− 2
9
hfn+1,

yn+2/3 =
yn + 8yn+1

9
− 2
9
hfn+1,

yn+1/6 =
23yn + 13yn+1

36
− 7
36
hfn+1,

yn+5/6 =
yn + 11yn+1

12
− 1
12
hfn+1.

(3.5)

Define fi = f(xi, yi) and use it to derive our new LSDFECT rule which is given by

yn+1 = yn +
h

36

[
3
(
fn + fn+1

)
+ 11

(
fn+1/3 + fn+2/3

)
+ 4
(
fn+1/6 + fn+5/6

)]
. (3.6)

3.1. Local Truncation Error

Since

yn+1/3 =
2yn + yn+1

3
− 1
9
h2y′′

n −
4
81
h3y′′′

n − 13
324

h4y
(4)
n +O

(
h5
)
,

yn+2/3 =
yn + 2yn+1

3
− 1
9
h2y′′

n −
5
81
h3y′′′

n − 19
972

h4y
(4)
n +O

(
h5
)
,

yn+1/6 =
5yn + yn+1

6
− 5
72
h2y′′

n −
35
1296

h3y′′′
n − 215

31104
h4y

(4)
n +O

(
h5
)
,

yn+5/6 =
yn + 5yn+1

6
− 5
72
h2y′′

n −
55
1296

h3y′′′
n − 455

31104
h4y

(4)
n +O

(
h5
)
,

yn = yn+1 − hfn+1 + 1
2
h2y′′

n +
1
3
h3y′′′

n +
1
8
h4y

(4)
n +O

(
h5
)
.

(3.7)
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We deduce that

yn+1/3 = yn+1/3 −
2
81
h3y′′′

n +
1
81
h4y

(4)
n +O

(
h5
)
,

yn+2/3 = yn+2/3 −
1
81
h3y′′′

n − 2
243

h4y
(4)
n +O

(
h5
)
,

yn+1/6 = yn+1/6 −
1
36
h2y′′

n +
23
1296

h3y
(3)
n +O

(
h4
)
,

yn+5/6 = yn+5/6 +
1
36
h2y′′′

n − 19
1296

h3y
(3)
n +O

(
h4
)
.

(3.8)

Again since

yn+1 = yn +
h

36
[
3
(
fn + fn+1

)
+ 11

(
fn+1/3 + fn+2/3

)
+ 4
(
fn+1/6 + fn+5/6

)]
+O
(
h5
)
, (3.9)

it can be shown that

yn+1 = yn +
h

36

[
3
(
fn + fn+1

)
+ 11

(
fn+1/3 + fn+2/3

)
+ 4
(
fn+1/6 + fn+5/6

)]
+ tn(h), (3.10)

where

tn(h) = O
(
h4
)
. (3.11)

Thus scheme is of third order.

3.2. Stability

Applying scheme (3.6) to the test equation

y′ = −λy, λ > 0, (3.12)

and setting z = λh, we have

yn+1 = Ψ(z)yn, (3.13)

where Ψ(z) = ((1 − (1/3)z)/(1 + (2/3)z + (1/6)z2)). Since Ψ(z) → 0 as z → ∞, the scheme
(3.6) is L-stable.

Therefore, it follows that time integration scheme (3.6) is of third order and L-stable.
We call it LSDFECT rule for the first-order initial value problem.



6 International Journal of Mathematics and Mathematical Sciences

4. LSDFECT Rule for Partial Differential Equation

4.1. The Hopf and Cole Transformation

Hopf [10] and Cole [11] suggested that (1.1) can be reduced to linear heat equation by a
nonlinear transformation given by

ψ = −νd
(
logφ

)
,

w = ψx.
(4.1)

Using (4.1) in (1.1), we have

∂φ

∂t
=
νd
2
∂2φ

∂x2
, (4.2)

φx(0, t) = φx(1, t) = 0, (4.3)

φ(x, 0) = f(x). (4.4)

The Fourier series solution to the linearized heat equation (4.2) is

φ(x, t) = A0 +
∞∑
n=1

An exp

(
−νdn

2π2t

2

)
cosnπx (4.5)

with Fourier coefficients at t = 0 as

A0 =
∫1

0
exp
(
− 1
νd

∫x
0
w0(ξ)dξ

)
dx,

An = 2
∫1

0
exp
(
− 1
νd

∫x
0
w0(ξ)dξ

)
cos(nπx)dx,

(4.6)

where w0(ξ) = w(ξ, 0).
Hence, the exact solution of (1.1) is given by

w(x, t) = πνd

( ∑∞
n=1An exp

(−νdn2π2t/2
)
n sinnπx

A0 +
∑∞

n=1An exp(−νdn2π2t/2) cosnπx

)
. (4.7)

4.2. LSDFECT Rule for Linear Parabolic Equation with
Neumann Boundary Condition

We consider the application of LSDFECT rule for the time integration of diffusion equation
(4.2).

As a first step, replacing the spatial derivative by the central second-order finite
difference formula, we obtain the resulting semidiscretization as follows.
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Figure 1: Comparison of the numerical solution by our method (LSDFECT), CN method, and exact
solution of Problem 1 at different space points forN = 80, νd = 2, and k = 0.01 at T = 0.1.

For a positive integerN, define the spatial grid xi = ih, i = 0, 1, . . . ,N, where h = 1/N.
For a positive integer M, define the temporal grid tj = jk, j = 0, 1, . . . ,M. Now set φi(t) =
φ(xi, t) and so forth. Let

Φ(t) =
[
φ0(t), φ1(t), . . . , φN(t)

]T
, (4.8)

and J is a (N + 1) × (N + 1) matrix given by

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
. . . . . . . . . . . .

...
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.9)

The semidiscretization of (4.2) with the Neumann boundary conditions

φx(0, t) = 0 = φx(1, t) (4.10)
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Figure 2: Comparison of the numerical solution by our method (LSDFECT), CN method, and exact
solution of Problem 2 at different space points forN = 80, νd = 2, and k = 0.01 at T = 0.1.

can be written as follows:

∂Φ(t)
∂t

= − νd
2h2

JΦ(t), (4.11)

where Φ(0) = [f(x0), f(x1), . . . , f(xN)]. Now setting ρ = νdk/2h2 and applying LSDFECT
rule for the time integration of (4.11), we get

Φj+1 = Φj − 1
36
ρJ
[
3
(
Φj +Φj+1

)
+ 11

(
Φj+1/3 +Φj+2/3

)
+ 4
(
Φj+1/6 +Φj+5/6

)]
, (4.12)

where

Φj+1/3 =
1
9
[
4Φj +

(
5I + 2ρJ

)
Φj+1

]
,

Φj+2/3 =
1
9
[
Φj +

(
8I + 2ρJ

)
Φj+1

]
,

Φj+1/6 =
1
36
[
23Φj +

(
13I + 7ρJ

)
Φj+1

]
,

Φj+5/6 =
1
12
[
Φj +

(
11I + ρJ

)
Φj+1

]
,

(4.13)
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Figure 3: Comparison of the numerical solution by our method (LSDFECT), CN method, and exact
solution of Problem 3 at different space points forN = 80, νd = 2, and k = 0.01 at T = 0.1.

and I is a (N + 1) × (N + 1) identity matrix. Using (4.12) to (4.13), we deduce

(
I +

2
3
ρJ +

1
6
ρ2J2

)
Φj+1 =

(
I − 1

3
ρJ

)
Φj , (4.14)

which is the LSDFECT rule for the linearized Burgers’ equation, which is the same as the
L-stable scheme developed by Chawla and Evans [7] and later by Pandey et al. [8].

4.3. Unconditional Stability

We write (4.14) in the following form:

Φj+1 = QΦj , j = 0, 1, 2 . . . , (4.15)

where

Q =
(
I +

2
3
ρJ +

1
6
ρ2J2

)−1(
I − 1

3
ρJ

)
. (4.16)

Using the Gershgorin Circle Theorem, one can prove that J has positive eigenvalues. Then,
it is easy to see that all the eigenvalues of Q are inside unit circle. Thus, LSDFECT rule is an
unconditionally stable method for all ρ > 0.
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Figure 4: Comparison of the numerical solution by our method (LSDFECT), CN method, and exact
solution of Problem 4 at different space points forN = 80, νd = 2, and k = 0.01 at T = 0.1.

5. Numerical Illustrations

To illustrate the computational performance of the LSDFECT rule and to compare its
performance with CN, we consider five examples. First four examples contain inconsistent
initial and boundary conditions. It is easily seen from Figures 1, 2, 3, and 4 that LSDFECT rule
gives us stable and accurate result whereas CN method has large oscillations near boundary
points.

In Problem 5, we have considered consistent initial and boundary conditions. We have
calculated solutions for h = 0.1 and k = 4.0 for νd = 0.02 for time T = 80. We observe that,
since time step size k > 1/π , CNmethod gives large oscillations which is unacceptable, while
LSDFECT rule gives quite stable and accurate solutions (see Figure 5).

5.1. Problem 1

Consider (1.1)with the boundary conditions (1.3) and initial condition

w(x, 0) = 2, 0 < x < 1. (5.1)

The exact solution is given by (4.7), where

A0 =
∫1

0
exp
(−2x
νd

)
dx, An = 2

∫1

0
exp
(−2x
νd

)
cos(nπx)dx. (5.2)
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Figure 5: Comparison of the numerical solution by our method (LSDFECT), CN method, and exact
solution of Problem 5 at different space points for h = 0.1, νd = 0.02, and k = 4 at T = 80.

5.2. Problem 2

Consider (1.1)with the boundary conditions (1.3) and initial condition

w(x, 0) = 2x, 0 < x < 1. (5.3)

The exact solution is given by (4.7), where

A0 =
∫1

0
exp

(
−x2

νd

)
dx, An = 2

∫1

0
exp

(
−x2

νd

)
cos(nπx)dx. (5.4)

5.3. Problem 3

Consider (1.1)with the boundary conditions (1.3) and initial condition

w(x, 0) = cos
π

4
x, 0 < x < 1. (5.5)

The exact solution is given by (4.7), where

A0 =
∫1

0
exp
(
− 4
πνd

sin
π

4
x

)
dx, An = 2

∫1

0
exp
(
− 4
πνd

sin
π

4
x

)
cos(nπx)dx. (5.6)
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5.4. Problem 4

Consider (1.1)with the boundary conditions (1.3) and initial condition

w(x, 0) = sin
π

4
x, 0 < x < 1. (5.7)

The exact solution is given by (4.7), where

A0 =
∫1

0
exp
(

4
πνd

(
cos

π

4
x − 1

))
dx, An = 2

∫1

0
exp
(

4
πνd

(
cos

π

4
x − 1

))
cos(nπx)dx.

(5.8)

5.5. Problem 5

Consider (1.1)with the boundary conditions (1.3) and initial condition

w(x, 0) = sinπx, 0 < x < 1. (5.9)

The exact solution is given by (4.7), where

A0 =
∫1

0
exp
( −1
πνd

(1 − cosπx)
)
dx,

An = 2
∫1

0
exp
( −1
πνd

(1 − cosπx)
)
cosnπxdx.

(5.10)

6. Conclusion

Using derivative-free error-corrected trapezoidal rule, suitable average approximation, and
explicit backward Euler formula, we derive third-order integration scheme in time which is
L-stable. The present method provides accurate and stable results whenever inconsistencies
are present.
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