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The aim of the present paper is to obtain common fixed point theorems by employing the
recently introduced notion of weak reciprocal continuity. The new notion is a proper generalization
of reciprocal continuity and is applicable to compatible mappings as well as noncompatible
mappings. We demonstrate that weak reciprocal continuity ensures the existence of common fixed
points under contractive conditions, which otherwise do not ensure the existence of fixed points.
Our results generalize and extend Banach contraction principle and Meir-Keeler-type fixed point
theorem.

1. Introduction

In his earlier works, Pant [1, 2] introduced the notion of reciprocal continuity and obtained
the first results that established a situation in which a collection of mappings has a fixed
point, which is a point of discontinuity for all the mappings. These papers are the genesis
of a large number of papers (e.g., [3–16]) that employ or deal with reciprocal continuity to
study fixed points of discontinuousmappings in various settings. Imdad andAli [4] used this
concept in the setting of non-self-mappings. Singh et al. [9, 10] have obtained applications of
reciprocal continuity for hybrid pair of mappings. Balasubramaniam et al. [14] (see also [15])
extended the study of reciprocal continuity to fuzzy metric spaces. Kumar and Pant [16]
studied this concept in the setting of probabilistic metric space. Muralisankar and Kalpana
[11] established a common fixed point theorem in an intuitionistic fuzzy metric space using
contractive condition of integral type.

In 1986, Jungck [17] generalized the notion of weakly commutingmaps by introducing
the concept of compatible maps.
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Definition 1.1. Two self-maps f and g of a metric space (X, d) are called compatible [17] if
limnd(fgxn, gfxn) = 0, whenever {xn} is a sequence in X such that limnfxn = limngxn = t
for some t in X.

The definition of compatibility implies that the mappings f and g will be non-
compatible if there exists a sequence {xn} in X such that limnfxn = limngxn = t for some
t in X but limnd(fgxn, gfxn) is either nonzero or nonexistent.

Definition 1.2. Two self-maps f and g are called pointwise R-weakly commuting [1] (see also
[18, 19]) on X if given x in X there exists R > 0 such that d(fgx, gfx) ≤ Rd(fx, gx).

Definition 1.3. Two self-maps f and g are called pointwise R-weakly commuting of type (Af)
[20] (see also [21]) onX if given x inX there existsR > 0 such that d(fgx, ggx) ≤ Rd(fx, gx).

Definition 1.4. Two self-maps f and g are called pointwise R-weakly commuting of type (Ag)
[20] on X if given x in X there exists R > 0 such that d(ffx, gfx) ≤ Rd(fx, gx).

Definition 1.5. A pair (f, g) of self-mappings defined on a nonempty setX is said to be weakly
compatible [22] if the pair commutes on the set of coincidence points, that is, fx = gx (x ∈ X)
implies fgx = gfx.

It is well known now that pointwise R-weak commutativity and analogous notions of
pointwise R-weak commutativity of type (Af) or pointwise R-weak commutativity of type
(Ag) are equivalent to commutativity at coincidence points and in the setting of metric spaces
these notions are equivalent to weak compatibility. On the other hand, pointwise R-weak
commutativity and analogous notions of pointwise R-weak commutativity of type (Af) or
(Ag) are more useful in establishing common fixed point theorems since they not only imply
commutativity at coincidence points but may also help in the determination of coincidence
points [19, 21].

In a recent work, Al-Thagafi and Shahzad [23] generalized the notion of nontrivial
weakly compatible maps by introducing the notion of occasionally weakly compatible
mappings.

Definition 1.6. A pair (f, g) of self-mappings defined on a nonempty set X is said to be
occasionally weakly compatible [23] (in short owc) if there exists a point x in X, which is
a coincidence point of f and g at which f and g commute.

Definition 1.7. Two self-mappings f and g of a metric space (X, d) are called conditionally
commuting [24] if they commute on a nonempty subset of the set of coincidence points
whenever the set of their coincidences is nonempty.

From the definition itself, it is clear that if two maps are weakly compatible or owc
then they are necessarily conditionally commuting; however, the conditionally commuting
mappings are not necessarily weakly compatible or owc [24].

Definition 1.8. Let f and g(f /= g) be two self-maps of a metric space (X, d), then f is called g-
absorbing [25] if there exists some positive real number R such that d(gx, gfx) ≤ Rd(fx, gx)
for all x in X. Similarly, g will be called f-absorbing if there exists some positive real number
R such that d(fx, fgx) ≤ Rd(fx, gx) for all x in X.

It is well known that the absorbing maps are neither a subclass of compatible maps
nor a subclass of noncompatible maps [25].
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Definition 1.9. Two self-mappings f and g of a metric space (X, d) are called reciprocally
continuous [1, 2] if and only if fgxn → ft and gfxn → gtwhenever {xn} is a sequence such
that limnfxn = limngxn = t for some t in X.

If f and g are both continuous, then they are obviously reciprocally continuous but
the converse is not true [1, 2]. The notion of reciprocal continuity is mainly applicable to
compatible mapping satisfying contractive conditions [7]. To widen the scope of the study
of fixed points from the class of compatible mappings satisfying contractive conditions to a
wider class including compatible as well as noncompatible mappings satisfying contractive,
nonexpansive, or Lipschitz-type condition Pant et al. [7] generalized the notion of reciprocal
continuity by introducing the new concept of weak reciprocal continuity as follows.

Definition 1.10. Two self-mappings f and g of a metric space (X, d) are called weakly
reciprocally continuous [7] iff fgxn → ft or gfxn → gt, whenever {xn} is a sequence in
X such that limnfxn = limngxn = t for some t in X.

We now give examples of compatible and weakly reciprocally continuous mappings
with or without common fixed points.

Example 1.11. Let X = [0, 1] and d be the usual metric on X. Define f, g : X → X by

fx = x, ∀x, gx =
x

2
if x > 0, g(0) = 1. (1.1)

Then it can be verified that f and g are compatible as well as weakly reciprocally continuous
mappings but do not have a common fixed point.

Example 1.12. Let X = [0, 1] and d be the usual metric on X. Define f, g : X → X by

fx = (1 − x), ∀x, gx = fractional part of (1 − x). (1.2)

It may be noted that f and g are compatible as well as weakly reciprocally continuous map-
pings and have infinitely many common fixed points. Examples of noncompatible weakly
reciprocally continuous mappings are given on the following pages.

If f and g are reciprocally continuous, then they are obviously weakly reciprocally
continuous but, as shown in Example 2.2 below, the converse is not true. As an application
of weak reciprocal continuity we prove common fixed point theorems under contractive
conditions that extend the scope of the study of common fixed point theorems from the
class of compatible continuous mappings to a wider class of mappings, which also includes
noncompatible and discontinuous mappings. Our results also demonstrate the usefulness of
the notion of the absorbing maps in fixed point considerations.
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2. Main Results

Theorem 2.1. Let fand g be weakly reciprocally continuous pointwise R-weakly commuting of type
(Af) self-mappings of a complete metric space (X, d) such that

(i) fX ⊆ gX,

(ii) d(fx, fy) ≤ kd(gx, gy), k ∈ [0, 1).

If g is f-absorbing or f is g-absorbing, then f and g have a unique common fixed point.

Proof. Let x0 be any point in X. Define sequences {xn} and {yn} in X by

yn = fxn = gxn+1. (2.1)

We claim that {yn} is a Cauchy sequence. Using (ii), we obtain

d
(
yn, yn+1

)
= d

(
fxn, fxn+1

) ≤ kd
(
gxn, gxn+1

)

= kd
(
yn−1, yn

) ≤ · · · ≤ knd
(
y0, y1

)
.

(2.2)

Moreover, for every integer p > 0, we get

d
(
yn, yn+p

) ≤ d
(
yn, yn+1

)
+ d

(
yn+1, yn+2

)
+ · · · + d

(
yn+p−1, yn+p

)

≤ d
(
yn, yn+1

)
+ kd

(
yn, yn+1

)
+ · · · + kp−1d

(
yn, yn+1

)

=
(
1 + k + k2 + · · · + kp−1

)
d
(
yn, yn+1

)

≤
(

1
1 − k

)
d
(
yn, yn+1

) ≤
(

kn

1 − k

)
d
(
y0, y1

)
.

(2.3)

This means that d(yn, yn+p) → 0 as n → ∞. Therefore, {yn} is a Cauchy sequence. Since X is
complete, there exists a point t in X such that yn → t. Moreover, yn = fxn = gxn+1 → t.

Suppose that g is f-absorbing. Now, weak reciprocal continuity of f and g implies
that fgxn → ft or gfxn → gt. Let gfxn → gt. By virtue of (2.1), this also yields ggxn+1 =
gfxn → gt. Since g is f-absorbing, d(fxn, fgxn) ≤ Rd(fxn, gxn). On letting n → ∞, we
obtain fgxn → t. Using (ii), we get d(ft, fgxn) ≤ kd(gt, ggxn). On making n → ∞ we get
fgxn → ft.Hence t = ft. Since fX ⊆ gX, there exists u inX such that t = ft = gu. Now using
(ii), we obtain d(fxn, fu) ≤ kd(gxn, gu). On letting n → ∞, we get fu = gu. Since f and g
are pointwise R-weak commutative of type (Af), we have d(fgu, ggu) ≤ R1d(fu, gu) = 0
for some R1 > 0, that is, fgu = ggu. Thus fgu = gfu = ggu = ffu. Finally using (ii),
we obtain d(fu, ffu) ≤ kd(gu, gfu) = kd(fu, ffu), that is, (1 − k)d(fu, ffu) = 0. Hence
fu = ffu = gfu and fu is a common fixed point of f and g.

Next suppose that fgxn → ft. Since g is f-absorbing, d(fxn, fgxn) ≤ Rd(fxn, gxn).
On letting n → ∞, we get t = ft. Since fX ⊆ gX, there exists u in X such that t = ft = gu.
Now using (ii), we obtain d(fxn, fu) ≤ kd(gxn, gu). On letting n → ∞, we get fu = t.
Thus fu = gu. Since f and g are pointwise R-weak commutative of type (Af), we have
d(fgu, ggu) ≤ R1d(fu, gu) = 0 for some R1 > 0, that is, fgu = ggu. Thus fgu = gfu =
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ggu = ffu. Finally using (ii), we obtain d(fu, ffu) ≤ kd(gu, gfu) = kd(fu, ffu), that is,
(1 − k)d(fu, ffu) = 0. Hence fu = ffu = gfu and fu is a common fixed point of f and g.

Finally suppose that f is g-absorbing. Now, weak reciprocal continuity of f and g
implies that fgxn → ft or gfxn → gt. Let us first assume that gfxn → gt. Since f is g-
absorbing, d(gxn, gfxn) ≤ Rd(fxn, gxn). On making n → ∞, we get t = gt. Using (ii)we get
d(fxn, ft) ≤ kd(gxn, gt). On letting n → ∞, we get fxn → ft. Hence t = ft = gt and t is a
common fixed point of f and g.

Next suppose that fgxn → ft. Then fX ⊆ gX implies that ft = gu for some u ∈ X and
fgxn → gu. By virtue of (2.1), this also yields ffxn−1 → gu. Since f is g-absorbing, d(gxn,
gfxn) ≤ Rd(fxn, gxn). On letting n → ∞, we get gfxn → t. Now, using (ii), we get d(fxn,
ffxn) ≤ kd(gxn, gfxn). On making n → ∞, we obtain t = gu. Again, by virtue of (ii), d(fxn,
fu) ≤ kd(gxn, gu). Making n → ∞ we get fu = t. Hence t = fu = gu. Since f and g are
pointwise R-weak commutative of type (Af), we have d(fgu, ggu) ≤ R1d(fu, gu) = 0 for
some R1 > 0, that is, fgu = ggu. Thus fgu = gfu = ggu = ffu. Finally using (ii), we obtain
d(fu, ffu) ≤ kd(gu, gfu) = kd(fu, ffu), that is, (1 − k)d(fu, ffu) = 0. Hence fu = ffu =
gfu and fu is a common fixed point of f and g.

Uniqueness of the common fixed point theorem follows easily in each of the two cases.
We now give an example to illustrate the above theorem.

Example 2.2. Let X = [2, 20] and d be the usual metric on X. Define f, g : X → X as follows:

fx = 2 if x = 2 or x > 5, fx = 6 if 2 < x ≤ 5,

g2 = 2, gx = 12 if 2 < x ≤ 5, gx =
(x + 1)

3
if x > 5.

(2.4)

Then f and g satisfy all the conditions of Theorem 2.1 and have a unique common
fixed point at x = 2. It can be verified in this example that f and g satisfy the contraction
condition (ii) for k = 4/5. The mappings f and g are pointwise R-weakly commuting of
type (Af) maps as they commute at their only coincidence point x = 2. Furthermore, f
is g-absorbing with R = 29/18. It can also be noted that f and g are weakly reciprocally
continuous. To see this, let {xn} be a sequence in X such that fxn → t, gxn → t for some t.
Then t = 2 and either xn = 2 for each n from some place onwards or xn = 5+εn, where εn → 0
as n → ∞. If xn = 2 for each n from some place onwards, fgxn → 2 = f2 and gfxn →
2 = g2. If xn = 5+εn, then fxn → 2, gxn = (2+∈n/3) → 2, fgxn = f(2+∈n/3) → 6/= f2, and
gfxn → g2 = 2. Thus limn→∞gfxn = g2 but limn→∞fgxn /= f2. Hence f and g are weakly
reciprocally continuous. It is also obvious that f and g are not reciprocally continuous
mappings.

Remark 2.3. Putting g equal to identity map, we get the famous Banach fixed point theorem
as a particular case of the above theorem.

We now establish a common fixed point theorem for a pair of mappings satisfying an
(∈, δ) type contractive condition. It is nowwell known (e.g., Example 2.4 below) that an (∈, δ)
contractive condition does not ensure the existence of a fixed point.
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Example 2.4 (see [26]). Let X = [0, 2] and d be the Euclidean metric on X. Define f : X → X
by

fx =
(1 + x)

2
if x < 1, fx = 0 if x ≥ 1. (2.5)

Then f satisfies the contractive condition

ε ≤ max
{
d
(
x, y

)
, d

(
x, fx

)
, d

(
y, fy

)}
< ε + δ =⇒ d

(
fx, fy

)
< ε (2.6)

with δ(ε) = 1 for ε ≥ 1 and δ(ε) = 1 − ε for ε < 1 but f does not have a fixed point.

In view of the above example, the next theorem demonstrates the usefulness of weak
reciprocal continuity and shows that the new notion ensures the existence of a common fixed
point under an (ε, δ) contractive condition.

Theorem 2.5. Let f and g be weakly reciprocally continuous pointwise R-weakly commuting of type
(Af) self-mappings of a complete metric space (X, d) such that

(i) fX ⊆ gX;

(ii) d(fx, fy) < d(gx, gy) whenever gx /= gy;

(iii) given ε > 0 there exists δ > 0 such that

ε < d
(
gx, gy

)
< ε + δ =⇒ d

(
fx, fy

) ≤ ε. (2.7)

If g is f-absorbing or f is g-absorbing, then f and g have a unique common fixed point.

Proof. Let x0 be any point in X. Define sequences {xn} and {yn} in X by

yn = fxn = gxn+1. (2.8)

We claim that {yn} is a Cauchy sequence. Using (ii), we obtain

d
(
yn, yn+1

)
= d

(
fxn, fxn+1

)
< d

(
gxn, gxn+1

)
= d

(
yn−1, yn

)
. (2.9)

Thus {d(yn, yn+1)} is a strictly decreasing sequence of positive real numbers and, therefore,
tends to a limit r ≥ 0, that is, limn→∞d(yn, yn+1) = r, r ≥ 0. We assert that r = 0. For, if not,
suppose that r > 0. Then given δ > 0, no matter small δ may be, there exists a positive integer
N such that for each n ≥ N, we have

r < d
(
yn, yn+1

)
= d

(
fxn, fxn+1

)
< r + δ, (2.10)

that is,

r < d
(
gxn+1, gxn+2

)
< r + δ. (2.11)
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Selecting δ in (2.11) in accordance with (iii), for each n ≥ N, we get d(fxn+1, fxn+2) ≤ r, that
is, d(yn+1, yn+2) ≤ r, a contradiction to (2.11). Therefore, limn→∞d(yn, yn+1) = 0. We now
show that {yn} is a Cauchy sequence. Suppose it is not. Then there exist an ε > 0 and a
subsequence {yni} of {yn} such that d(yni , yni+1) ≥ 2ε. Select δ in (iii) so that 0 < δ ≤ ε. Since
limn→∞d(yn, yn+1) = 0, there exists an integerN such that d(yn, yn+1) < δ/6 whenever n ≥ N.

Let ni ≥ N. Then, there exist integersmi satisfying ni < mi < ni+1 such that d(yni , ymi) ≥
ε + (δ/3). If not, then

d
(
yni , yni+1

) ≤ d
(
yni , yni+1−1

)
+ d

(
yni+1−1, yni+1

)

< ε +
(
δ

3

)
+
(
δ

6

)
< 2ε,

(2.12)

a contradiction. Let mi be the smallest integer such that d(yni , ymi) ≥ ε + (δ/3). Then d(yni ,
ymi−2) < ε + (δ/3) and

ε +
(
δ

3

)
≤ d

(
yni , ymi

) ≤ d
(
yni , ymi−2

)
+ d

(
ymi−2, ymi−1

)
+ d

(
ymi−1, ymi

)

< ε +
(
δ

3

)
+
(
δ

6

)
+
(
δ

6

)
< ε +

(
2δ
3

)
,

(2.13)

that is, ε < ε+(δ/3) ≤ d(gxni+1, gxmi+1) < ε+(2/3)δ. In view of (iii), this yields d(yni+1, ymi+1) ≤
ε. But then

d
(
yni , ymi

) ≤ d
(
yni , yni+1

)
+ d

(
yni+1, ymi+1

)
+ d

(
ymi+1, ymi

)

<

(
δ

6

)
+ ε +

(
δ

6

)
= ε +

(
δ

3

)
,

(2.14)

which contradicts (2.13). Hence {yn} is a Cauchy sequence. Since X is complete, there exists
a point t in X such that yn → t. Moreover, yn = fxn = gxn+1 → t.

Suppose that g is f-absorbing. Now, weak reciprocal continuity of f and g implies
that fgxn → ft or gfxn → gt. Let gfxn → gt. By virtue of (2.8), this also yields ggxn+1 =
gfxn → gt. Since g is f-absorbing, d(fxn, fgxn) ≤ Rd(fxn, gxn). On letting n → ∞, we get
fgxn → t. Using (ii), we get d(ft, fgxn) < d(gt, ggxn). On making n → ∞, we get fgxn →
ft. Hence t = ft. Since fX ⊆ gX, there exists u in X such that t = ft = gu. Now using (ii), we
obtain d(fxn, fu) < d(gxn, gu). On letting n → ∞, we get fu = t. Thus fu = gu. Since f and
g are pointwise R-weak commutative of type (Af), we have d(fgu, ggu) ≤ R1d(fu, gu) = 0
for some R1 > 0, that is, fgu = ggu. Thus fgu = gfu = ggu = ffu. If fu/= ffu, then using
(ii) we get d(fu, ffu) < d(gu, gfu) = d(fu, ffu), a contradiction. Hence fu = ffu = gfu
and fu is a common fixed point of f and g.

Next suppose that fgxn → ft. Since g is f-absorbing, d(fxn, fgxn) ≤ Rd(fxn, gxn).
On letting n → ∞, we get t = ft. Since fX ⊆ gX, there exists u in X such that t = ft =
gu. Now using (ii), we obtain d(fxn, fu) < d(gxn, gu). On letting n → ∞, we get fu = t.
Thus fu = gu. Since f and g are pointwise R-weak commutative of type (Af), we have
d(fgu, ggu) ≤ R1d(fu, gu) = 0 for some R1 > 0, that is, fgu = ggu. Thus fgu = gfu =
ggu = ffu. If fu/= ffu then using (ii) we get d(fu, ffu) < d(gu, gfu) = d(fu, ffu), a
contradiction. Hence fu = ffu = gfu and fu is a common fixed point of f and g.
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When f is assumed g-absorbing, the proof follows on similar lines as in the corre-
sponding part of Theorem 2.1.

We now give an example to illustrate Theorem 2.5.

Example 2.6. Let X = [2, 20] and d be the usual metric on X. Define f, g : X → X as follows:

fx = 2 if x = 2 or x > 5, fx = 6 if 2 < x ≤ 5,

g2 = 2, gx =
(x + 31)

3
if 2 < x ≤ 5, gx =

(x + 1)
3

if x > 5.
(2.15)

Then f and g satisfy all the conditions of Theorem 2.5 and have a unique common fixed point
at x = 2. It can be seen in this example that f and g satisfy the condition (ii) and the condition

ε < d
(
gx, gy

)
< ε + δ =⇒ d

(
fx, fy

) ≤ ε (2.16)

with δ(ε) = 1 for ε ≥ 4 and δ(ε) = 4−ε for ε < 4. Furthermore, f is g-absorbing with R = 2.
It can also be noted that f and g are weakly reciprocally continuous. To see this, let {xn} be
a sequence in X such that fxn → t, gxn → t for some t. Then t = 2 and either xn = 2 for
each n from some place onwards or xn = 5 + εn where εn → 0 as n → ∞. If xn = 2 for each
n from some place onwards, fgxn → 2 = f2 and gfxn → 2 = g2. If xn = 5 + εn, then
fxn → 2, gxn = (2 + ∈n/3) → 2, fgxn = f(2 + ∈n/3) → 6/= f2, and gfxn → g2 =2. Thus
limn→∞gfxn = g2 but limn→∞fgxn /= f2. Hence f and g are weakly reciprocally continuous.
It is also obvious that f and g are not reciprocally continuous mappings. Further, f and g are
pointwiseR-weakly commuting of type (Af)maps as they commute at their only coincidence
point x = 2.

Remark 2.7. Theorem 2.5 generalizes the well-known fixed point theorem of Meir and Keeler
[27].

It may be observed that the mappings f and g in Examples 2.2 and 2.6 are
noncompatible mappings. However, in the case of noncompatible mappings there is an
alternative method of proving the existence of fixed points [6, 7, 11, 19, 24, 26, 28–32]. This
alternative method was introduced by Pant [19, 26, 28–30] and is also applicable under
strictly contractive [19, 26, 31–33], nonexpansive [7], and Lipschitz-type conditions [6, 24, 30].
The existence of such a method is important since there is no general method for studying
the fixed points of nonexpansive or Lipschitz-type mapping pairs in ordinary metric spaces.

In the area of fixed point theory, Lipschitz type mappings constitute a very
important class of mappings and include contraction mappings, contractive mappings and,
nonexpansive mappings as subclasses. The next theorem provides a good illustration of
the applicability of recently introduced notions of conditional commutativity and weak
reciprocal continuity to establish a situation in which a pair of mappings may possess
common fixed points as well as coincidence points, which may not be common fixed points.

Theorem 2.8. Let f and g be weakly reciprocally continuous noncompatible self-mappings of a metric
space (X, d) satisfying

(i) fX ⊆ gX,

(ii) d(fx, fy) ≤ kd(gx, gy), k ≥ 0.
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If f and g are conditionally commuting and g is f-absorbing or f is g-absorbing, then f and
g have a common fixed point.

Proof. Since f and g are noncompatible maps, there exists a sequence {xn} in X such that
fxn → t and gxn → t for some t in X but either limnd(fgxn, gfxn)/= 0 or the limit does
not exist. Since fX ⊆ gX, for each xn there exists yn in X such that fxn = gyn. Thus fxn →
t, gxn → t and gyn → t as n → ∞. By virtue of this and using (ii), we obtain fyn → t.
Therefore, we have

fxn = gyn −→ t, gxn −→ t, fyn −→ t. (2.17)

Suppose that g is f-absorbing. Then d(fxn, fgxn) ≤ Rd(fxn, gxn) and d(fyn, fgyn) ≤
Rd(fyn, gyn). On letting n → ∞, these inequalities yield

fgxn −→ t, fgyn

(
= ffxn

) −→ t. (2.18)

Weak reciprocal continuity of f and g implies that fgxn → ft or gfxn → gt. Let gfxn → gt.
By virtue of (ii), we get d(ffxn, ft) ≤ kd(gfxn, gt). On letting n → ∞, we get ffxn → ft.
In view of (2.18), this yields t = ft. Since fX ⊆ gX, there exists u in X such that t = ft = gu.
Now using (ii), we obtain d(fxn, fu) ≤ kd(gxn, gu). On letting n → ∞, we get fu = t. Thus
fu = gu. Conditional commutativity of f and g implies that f and g commute at u, or there
exists a coincidence point v of f and g at which f and g commute. Suppose f and g commute
at the coincidence point v. Then fv = gv and fgv = gfv. Also ffv = fgv = gfv = ggv. Since
g is f-absorbing d(fv, fgv) ≤ Rd(fv, gv). This yields fv = fgv. Hence fv = ffv = gfv and
fv is a common fixed point of f and g.

Next suppose that fgxn → ft. In view of (2.18), we get t = ft. Since fX ⊆ gX, there
exists u in X such that t = ft = gu. Now using (ii), we obtain d(fxn, fu) ≤ kd(gxn, gu). On
letting n → ∞, we get fu = t. Thus fu = gu. This, in view of conditional commutativity and
f-absorbing property of g, implies that f and g have a common fixed point.

Now suppose that f is g-absorbing. Then d(gxn, gfxn) ≤ Rd(fxn, gxn) and d(gyn,
gfyn) ≤ Rd(fyn, gyn). On letting n → ∞, these inequalities yield

gfxn

(
= ggyn

) −→ t, gfyn −→ t. (2.19)

Weak reciprocal continuity of f and g implies that fgyn → ft or gfyn → gt. Let us first
assume that gfyn → gt. In view of (2.19), this yields t = gt. Using (ii) we get d(fxn, ft) ≤
kd(gxn, gt). On letting n → ∞, we obtain t = ft. Hence t = ft = gt and t is a common fixed
point of f and g.

Next suppose that fgyn → ft. Then fX ⊆ gX implies that ft = gu for some u ∈ X.
Therefore, fgyn → ft = gu. Using (ii) and in view of (2.19), we get d(fyn, fgyn) ≤ kd(gyn,
ggyn). On letting n → ∞, we get t = gu. Again, by virtue of (ii), we obtain d(fyn, fu) ≤
kd(gyn, gu). Making n → ∞, we get t = fu. Hence fu = gu. Conditional commutativity
of f and g implies that f and g commute at u or there exists a coincidence point v of f
and g at which f and g commute. Suppose f and g commute at the coincidence point v.
Then fv = gv and fgv = gfv. Also ffv = fgv = gfv = ggv. Since f is g-absorbing,
d(gv, gfv) ≤ Rd(fv, gv). This yields gv = gfv. Hence fv = ffv = gfv and fv is a common
fixed point of f and g. This completes the proof of the theorem.
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We now give examples to illustrate Theorem 2.8.

Example 2.9. Let X = [0, 1] and d be the usual metric on X. Define f, g : X → X by fx =
(1/2) − |x − (1/2)|,

gx =
2
3
(1 − x). (2.20)

Then f and g satisfy all the conditions of the above theorem and have two coincidence
points x = 1, 2/5 and a common fixed point x = 2/5. It may be verified in this example that
f(X) = [0, 1/2], g(X) = [0, 2/3] and fX ⊆ gX. Also that f and g are noncompatible but
conditionally commuting maps. Furthermore, f and g are conditionally commuting since
they commute at their coincidence point 2/5. To see that f and g are noncompatible, let us
consider the sequence {xn} given by xn = 1 − (1/n). Then fxn → 0, gxn → 0, fgxn → 0,
and gfxn → 2/3. Hence f and g are noncompatible. It may also be verified that f and g are
not pointwise R-weakly commuting of type (Af) as they do not commute at the coincidence
point x = 1, since f(g(1)) = 0 and g(f(1)) = 2/3. It is also easy to verify that f and g satisfy
the Lipschitz-type condition d(fx, fy) ≤ (3/2)d(gx, gy) together with f-absorbing condition
d(fx, fgx) ≤ d(fx, gx) for all x. It can also be noted that f and g are weakly reciprocally
continuous since both f and g are continuous.

In Example 2.9, f and g are not pointwise R-weakly commuting of type (Af) as they
do not commute at the coincidence point x = 1. We now give an example of pointwise R-
weakly commuting of type (Af)maps satisfying Theorem 2.8.

Example 2.10. Let X = [0, 1] and d be the usual metric on X. Define f, g : X → X as follows:

fx =
1
2
−
∣∣∣∣x − 1

2

∣∣∣∣,

gx =
(
2
3

)
fractional part of (1 − x).

(2.21)

Then f and g satisfy all the conditions of the above theorem and have three coincidence
points x = 0, 2/5, 1 and two common fixed point x = 0, 2/5. It may be verified in this example
that f(X) = [0, 1/2], g(X) = [0, 2/3) and fX ⊆ gX. Also, f and g are pointwise R-weakly
commuting of type (Af) maps, hence also conditionally commuting, since they commute at
each of their coincidence points, namely, x = 0, 2/5, 1. To see that f and g are noncompatible,
let us consider the sequence {xn} given by xn = 1−1/n. Then fxn → 0, gxn → 0, fgxn → 0,
and gfxn → 2/3. Hence f and g are noncompatible. It is also easy to verify that f and
g satisfy the Lipschitz-type condition d(fx, fy) ≤ (3/2)d(gx, gy). The mapping g is f-
absorbing since d(fx, fgx) ≤ d(fx, gx) for all x. It can also be noted that f and g are weakly
reciprocally continuous. To see this, let {xn} be a sequence in X such that fxn → t, gxn → t
for some t. Then t = 0 and either xn = 0 for each n or xn → 1. If xn = 0 for each n, then fxn →
0, gxn → 0, fgxn → 0 = f(0), and gfxn → 0 = g(0). If xn → 1, then fxn → 0, gxn → 0,
fgxn → 0 = f(0), and gfxn → 2/3/= g(0). Thus limn→∞fgxn = f(0) but limn→∞gfxn /=
g(0). Hence f and g are weakly reciprocally continuous.

Putting k = 1 in Theorem 2.8, we get a common fixed point theorem for a non-ex-
pansive-type mapping pair.
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Corollary 2.11. Let f and g be weakly reciprocally continuous noncompatible self-mappings of a
metric space (X, d) satisfying

(i) fX ⊆ gX,

(ii) d(fx, fy) ≤ d(gx, gy).

If f and g are conditionally commuting and g is f-absorbing or f is g-absorbing, then f and
g have a common fixed point.
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