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By using a particular class of directional wavelets (namely, the conical wavelets, which are
wavelets strictly supported in a proper convex cone in the k-space of frequencies), in this paper,
it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic
functions arising from the complexification of the translational parameter of thewavelet transform.
Moreover, we show that for a given distribution f ∈ S′(Rn), the continuous wavelet transform of f
with respect to a conical wavelet is defined in such a way that the directional wavelet transform of
f yields a function on phase space whose high-frequency singularities are precisely the elements
in the analytic wavefront set of f .

1. Introduction

Wavelets, as well as the theory of distributions, have found applications in various
fields of pure and applied mathematics, physics, and engineering. The requirements of
modern mathematics, mathematical physics and engineering, have brought the necessity to
incorporate ideas from wavelet analysis to the distribution theory, and reciprocally. Over
the last decades, a number of authors have studied the relationship between wavelets and
the theory of distributions for different purposes (see, e.g., [1–17] and references therein).
Particularly related to this note, in [5, 7, 11], the authors investigate the singularities
of tempered distributions via the wavelet transform. In [5], Moritoh introduced a class
of wavelet transform as a continuous and microlocal version of the Littlewood-Paley
decomposition and compared the wavefront sets defined by his wavelet transform and
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Hörmander’s wavefront sets. More recently, Pilipović and Vuletić [11] gave some more
precise information concerning the work of Moritoh. They consider a special wavelet
transform of Moritoh and gave new definitions of wavefront sets of tempered distributions
via that wavelet transform. The major result in [11] is that these wavefront sets are equal to
the wavefront sets in the sense of Hörmander in the cases n = 1, 2, 4, 8. If n ∈ N \ {1, 2, 4, 8},
they combined results for dimensions n = 1, 2, 4, 8 and characterized wavefront sets in ξ-
directions, where ξ are presented as products of nonzero points of R

n1 , . . . ,Rns , n1+· · ·+ns = n,
ni ∈ {1, 2, 4, 8}, i = 1, . . . , s. In the paper [7], Navarro introduced an analyzing wavelet
in S(R2) and an irreducible group action with the property that the associated wavelet
transform of a tempered distribution is singular along the wavefront set of the distribution.
The main result relates the notion of the wavefront set and the wavelet transform of
distributions in S′(R2). It should be noted that the core of the construction of Navarro
(the irreducible group action on L2(R2)) parallels that of Kutyniok and Labate [18], where
they consider a different notion of wavefront set based on the concept of continuous shearlet
transform.

In this short note, by using a particular class of directional wavelets (namely, the
conical wavelets, which are wavelets strictly supported in a proper convex cone in the k-
space of frequencies [19, 20]), it is shown that a distribution f ∈ S′(Rn) is obtained as
a finite sum of boundary values of analytic functions arising from the complexification of
the variable x corresponding to the location of the continuous wavelet transform of f with
respect to directional wavelet ψ. Furthermore, we characterize the analytic wavefront set
of a tempered distribution in terms of the behavior of its directional wavelet transform.
The main results of this work are given in Lemma 3.4 and Theorem 3.5. In Lemma 3.4, we
prove that the distributional wavelet transform with respect to the directional wavelet is
an analytic function of tempered growth. By using Lemma 3.4, we show that the tempered
distributions can be obtained as a finite sum of boundary values of analytic functions of
tempered growth (Theorem 3.5). In Section 4, we apply Theorem 3.5 in the study of analytic
wavefront set of tempered distributions. We show that, for a given distribution f ∈ S′(Rn),
the wavelet transform of f with respect to a conical wavelet is defined in such a way that the
directional wavelet transform of f yields a function on phase space whose high-frequency
singularities are precisely the elements in the analytic wavefront set of f . In [21], Hörmander
introduced the notion of the analytic wavefront setWFa(f) of f as a subset of the cotangent
space T ∗(X) \ 0, whose projection to X coincides with the analytic singular support of f . His
definition relies on the use of the Fourier transform of f . In this note, following Nishiwada
[22, 23], we present an alternative definition of WFa(f) in terms of generalized boundary
values of analytic functions arising from the complexification of the variable x corresponding
to the location of the continuous wavelet transform of f with respect to directional wavelet ψ.

2. A Glance at the Wavelets: Definitions and Basic Properties

We shall recall in this section some definitions and basic properties of the wavelets. But before
we establish some notation. We will use the standard multi-index notation. Let R

n (resp. C
n)

be the real (resp. complex) n-space whose generic points are denoted by x = (x1, . . . , xn)
(resp. z = (z1, . . . , zn)), such that x + y = (x1 + y1, . . . , xn + yn), λx = (λx1, . . . , λxn), x ≥ 0
means x1 ≥ 0, . . . , xn ≥ 0, 〈x, y〉 = x1y1 + · · · + xnyn and |x| = |x1| + · · · + |xn|. Moreover, we
define α = (α1, . . . , αn) ∈ N

n
o , where No is the set of nonnegative integers, such that the length
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of α is the corresponding �1-norm |α| = α1 + · · · + αn, α + β denotes (α1 + β1, . . . , αn + βn), α ≥ β
means (α1 ≥ β1, . . . , αn ≥ βn), α! = α1! . . . αn!, xα = xα11 . . . xαnn , and

Dαϕ(x) =
∂|α|ϕ(x1, . . . , xn)
∂xα11 ∂x

α2
2 , . . . , ∂x

αn
n

. (2.1)

We consider two n-dimensional spaces—x-space and k-space—with the Fourier
transform defined as follows

̂f(k) = F[f(x)](k) =
∫

Rn

dnx f(x)e−i〈k,x〉, (2.2)

while the Fourier inversion formula is

f(x) = F−1
[

̂f(k)
]

(x) =
1

(2π)n

∫

Rn

dnk ̂f(k)ei〈k,x〉. (2.3)

The variable kwill always be taken real while xwill also be complexified: when it is complex,
it will be noted z = x + iy.

Definition 2.1. A wavelet is a complex-valued function ψ in L2(Rn, dnx), satisfying the
admissibility condition

Cψ = (2π)n
∫

dnk

|k|n
∣

∣ψ̂(k)
∣

∣

2
<∞, (2.4)

where ψ̂ is the Fourier transform of ψ.

If ψ is sufficiently regular—enough to take ψ ∈ L1(Rn, dnx) ∩ L2(Rn, dnx)—then the
admissibility condition above means that

ψ̂(0) = 0 ⇐⇒
∫

dnx ψ(x) = 0. (2.5)

Definition 2.2. The continuous wavelet transform of a distribution f(x) ∈ S′(Rn)with respect
to some analyzing wavelet ψ is defined as the following convolution:

Wψf
(

x′, �
)

=
〈

f(x), ψx′,�(x)
〉

=
∫

dnx ψx′,�(x)f(x), (2.6)

where

ψx′,�(x) =
1
�n
ψ
(

�−1
(

x − x′)
)

, (2.7)

with � ∈ R+ as the length scale at which we analyze f(x) and x′ ∈ R
n as the translation

parameter corresponding to the position of the analyzing wavelet ψ.
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Remark 2.3. Throughout this article the Fourier transform, the wavelet transform, and
boundary values of analytic functions are always interpreted in a distributional sense.

Note that the wavelet transform may also be written as

Wψf
(

x′, �
)

=
1

(2π)n

∫

dnk Ŵψf(k, �)ei〈k,x
′〉, (2.8)

where

Ŵψf(k, �) = ψ̂(�k) ̂f(k), (2.9)

is the Fourier transform of Wψf . With this we have the following (see [24, Lemma 8.2.6, page
441] for the one-dimensional space).

Lemma 2.4. For any f ∈ L2(Rn), we have

F[Wψf
(

x′, �
)]

(k, �) =
∫

Rn

dnx Wψf
(

x′, �
)

e−i〈k,x
′〉

= ψ̂(�k) ̂f(k).

(2.10)

Remark 2.5. The domain of a wavelet transform is usually the L2 space, but the Lemma 2.4
can be extended to S′(Rn), which is the dual space of S(Rn). In particular, see Remark 3.2, the
class of conical wavelets belongs to the space S(Rn). This allows us to define the directional
wavelet transform of a distribution f ∈ S′(Rn) in such a way that the wavelet transform
of f yields a function on phase space whose high-frequency singularities are precisely the
elements in the analytic wavefront set of f .

3. Distributional Boundary Values

In this section, the directional wavelet transform is used to show that analytic functions which
satisfy a tempered growth condition obtain distributional boundary values in S′(Rn). Before
that, in order to define a directional wavelet, we need some terminology and simple facts
concerning cones.

An open set C ⊂ R
n is called a cone if C (unless specified otherwise, all cones will

have their vertices at zero) is invariant under positive homotheties; that is, if for all λ > 0,
λC ⊂ C. A cone C is an open connected cone if C is an open connected set. Moreover, C is
called convex if C + C ⊂ C and proper if it contains no any straight line (observe that if C is
a cone, then C is proper if and only if x ∈ C and x /= 0 implie −x /∈ C). A cone C′ is called

compact in C—we write C′ � C—if the projection prC
′ def= C

′ ∩ Sn−1 ⊂ prC def= C ∩ Sn−1, where
Sn−1 is the unit sphere in R

n. Being given a cone C in x-space, we associate with C a closed
convex cone C∗ in k space which is the set C∗ = {k ∈ R

n | 〈k, x〉 ≥ 0, ∀x ∈ C}. The cone C∗ is
called the dual cone of C.

Definition 3.1. A wavelet ψ(x) is said to be directional if the effective support of its Fourier
transform ψ̂(k) is contained in a convex and proper cone in the k-space of frequencies, with
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vertex at the origin, or a finite union of disjoint such cones; in that case, one will usually call
ψ multidirectional.

Remark 3.2. According to [19], for us to reach a genuinely directional wavelet ψ(x), it suffices
to consider a smooth function ψ̂(k)with support in the strictly convex cone C∗ in the k space
of frequencies having an arbitrary large number of vanishing moments on the boundary of the
supporting cone and behaving inside C∗ as P(k1, . . . , kn)e−〈k,y〉, where y ∈ Cand P(·) denotes
a polynomial in n variables. In this case, the resulting directional wavelet is also called conical.
We also observe that, for all y ∈ C, the exponential e−〈k,y〉, considered as a function of k ∈ C∗,
belongs to the space of rapidly decreasing functions S(Rn). Then, P(k1, . . . , kn)e−〈k,y〉 ∈ S(Rn)
too. Since the inverse Fourier transform is a topological isomorphism of S(Rn) onto S(Rn), it
follows that directional wavelet ψ(x) ∈ S(Rn).

In particular, from the above remark, it follows that for a directional wavelet (2.8) can
be rewritten as

Wψf(z, �) =
1

(2π)n

∫

dnk P(�k) ̂f(k)ei〈k,z〉, (3.1)

where we have introduced the complex variable z = x + i�y ∈ R
n + iC. Remember that here

x corresponds to the location of the continuous wavelet transform of f with respect to ψ.
Consequently, it is clear from (3.1) that the directional wavelet transform, Wψf(x, �), of a
distribution f ∈ S′(Rn) is naturally extensible as an analytic function in a domain in C

n, for
each arbitrary but fixed � > 0. Still, since C∗ is a regular set [25, pages 98, 99], it follows that
supp(Ŵψf) = supp(ψ̂) ⊆ C∗.

Let Ω be an open subset in C
n. Then we shall denote by O(Ω) the space of analytic

functions in Ω. Let C be a proper open convex cone, and let C′ be an arbitrary compact cone
contained in C. Denote by T(C′) the subset of C

n consisting of all elements whose imaginary
parts lie in C′. T(C′) is referred to as a tube domain. We will deal with tubes defined as the set
of all points z ∈ C

n such that

T
(

C′) =
{

z = x + iy ∈ C
n | x ∈ R

n, y ∈ C′,
∣

∣y
∣

∣ < δ
}

, (3.2)

where δ > 0 is an arbitrary number.

Definition 3.3. Let Z be a complex neighbourhood of R
n. An analytic function f(z) ∈ O(Z ∩

T(C′)) is said to be of tempered growth if there are an integer α and a constant M depending
on C′ such that

∣

∣f
(

x + iy
)∣

∣ ≤ M
(

C′)∣
∣y

∣

∣

−α
, (3.3)

for all point z = x + iy in Z ∩ T(C′).

Lemma 3.4. For an arbitrary but fixed scale � ∈ R+, assume that the function Wψf(z, �), arising
from the complexification of the variable x corresponding to the location of the continuous wavelet
transform of f ∈ S′(Rn) with respect to directional wavelet ψ, is analytic in Z ∩ T(C′). Then
Wψf(z, �) is of tempered growth as a function of z.
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Proof. We start considering the formula

Wψf
(

x + i�y, �
)

=
1

(2π)n

∫

C∗
dnk P(�k) ̂f(k)ei〈k,z〉. (3.4)

By Theorem 7.13 of [26], since P(�k) is a polynomial and ̂f(k) a tempered distribution, then
P(�k) ̂f(k) is also tempered. Note that, we can write

P(�k) = Pm(�k) + Pm−1(�k) + · · · + P0, (3.5)

where Pj is homogeneous of degree j and Pm(�k)/= 0 when k /= 0. It follows that for
some constant M, we have that |P(�k)| ≤ M�m|P(k)|. This implies that |P(�k) ̂f(k)| ≤
M�m|P(k) ̂f(k)|. Still, the character tempered of P(k) ̂f(k) implies that there exist an integer
N and a constant M1 such that P(k) ̂f(k) satisfies the estimate

∣

∣

∣P(k) ̂f(k)
∣

∣

∣ ≤ M1(1 + |k|)N. (3.6)

Hence,

∣

∣

∣P(�k) ̂f(k)
∣

∣

∣ ≤ �mM2(1 + |k|)N. (3.7)

Using the binomial theorem, the above estimate can be rewritten as

∣

∣

∣P(�k) ̂f(k)
∣

∣

∣ ≤ �mM2

N
∑

j=0

cj |k|j . (3.8)

Now, letC′ be a cone, such thatC′ � C. Then there exists c > 0 so that 〈k, �y〉 ≥ c|k‖�y|,
for all k ∈ C∗ and for all y ∈ C′. Hence for x + i�y ∈ R

n + iC′,

∣

∣Wψf
(

x + i�y, �
)∣

∣ ≤ �m

(2π)n

∫

C∗
dnk

∣

∣

∣P(k) ̂f(k)
∣

∣

∣e−〈k,�y〉

≤ �mM2

(2π)n
N
∑

j=0

cj

∫

C∗
dnk |k|je−c|k||ly|.

(3.9)

Following Schwartz [25, Proposition 32, page 39], we get the following:

∣

∣Wψf
(

x + i�y, �
)∣

∣ ≤ �mM2

(2π)n
N
∑

j=0

cjσ
n−1

∫∞

0
dt tn+j−1e−c|�y|t

≤ M3
(

C′)∣
∣�y

∣

∣

−(n+N)
,

(3.10)

where σn−1 is the area of the unit sphere in R
n.
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Now, let C be an open cone of the form C = ∪mj=1Cj ,m <∞, where each Cj is an proper
open convex cone. If we write C′ � C, we mean that C′ = ∪mj=1C′

j with C′
j � Cj . Furthermore,

we define by C∗
j = {k ∈ R

n | 〈k, x〉 ≥ 0, ∀x ∈ Cj} the dual cones of Cj , such that the dual cones
C∗
j , j = 1, . . . , m, have the properties

R
n \

(

∪mj=1C∗
j

)

,

C∗
j ∩ C∗

k , j /= k, j, k = 1, . . . , m,
(3.11)

that are sets of Lebesgue measure zero. Moreover, assume that P(�k) ̂f(k) can be written
as P(�k) ̂f(k) =

∑m
j=1 λj(k)P(�k) ̂f(k), where λj(k) denotes the characteristic function of C∗

j ,
j = 1, . . . , m. We shall consider the asymptotic property of Wψf(z, �) as � → 0 for z = x+i�y ∈
Z ∩ T(C′).

Theorem 3.5. Let f ∈ S′(Rn). Then f can be expressed as a finite sum

f =
m
∑

j=1

bC′
j

(

Wψfj(z, �)
)

, (3.12)

where each Wψfj(z, �), arising from the complexification of the variable x corresponding to the
location of the continuous wavelet transform of fj ∈ S′(Rn) with respect to directional wavelet ψ,
is analytic in Z ∩ T(C′

j) and of tempered growth, and where bC′
j
(Wψfj(z, �)) denotes the boundary

value in S′(Rn).

Proof. The proof that each Wψfj(z, �) is of tempered growth is obtained by the similar way as
in Lemma 3.4. Let ϕ ∈ S(Rn). Choose now y0 ∈ C′

j and write y = �y0 (this defines a half-line
for 0/=y0 ∈ C′

j). Note that with y = �y0 in (3.1), then � → 0 when y → 0. Thus, we have

〈

bC′
j

(

Wψfj
)

, ϕ
〉

= lim
y→ 0

∫

Rn

dnxWψfj
(

x + iy, �
)

ϕ(x)

= lim
y→ 0

∫

Rn

dnx

(

1
(2π)n

∫

C∗
j

dnkλj(k)P(�k) ̂f(k)ei〈k,x+iy〉
)

ϕ(x)

= lim
y→ 0

1
(2π)n

∫

C∗
j

dnkλj(k)P(�k) ̂f(k)ϕ̂(−k)e−〈k,y〉

=
1

(2π)n

∫

C∗
j

dnkλj(k) ̂f(k)ϕ̂(−k)

=
〈

fj , ϕ
〉

.

(3.13)
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Hence, using the linearity of f ∈ S′(Rn) and the assumptions (3.11), we obtain that

〈

f, ϕ
〉

=
m
∑

j=1

〈

fj , ϕ
〉

=
m
∑

j=1

〈

bC′
j

(

Wψfj
)

, ϕ
〉

. (3.14)

Thus, the limit of each Wψfj(z, �) as C′
j � y → 0 exists in S′(Rn); that is, f admits the

distributional boundary value
∑m

j=1 bC′
j
(Wψfj) in the sense of weak convergence. But from

[27, Corollary 1, page 358], the latter implies strong convergence since S(Rn) is Montel.

4. Analytic Wavefront Set

From what we have seen in the previous section, a distribution f ∈ S′(Rn) is obtained as a
finite sum of boundary values of analytic functions Wψfj(z, �), with j = (1, . . . , m), arising
from the complexification of the variable x corresponding to the location of the continuous
wavelet transform of fj with respect to directional wavelet ψ, and where a tempered growth
condition was described to characterize such boundary values. We now translate growth
condition in terms of the analytic wavefront set.

Definition 4.1. Let f ∈ S′(Rn), such that f = bC(Wψf(z, �)), where bC(Wψf(z, �)) denotes
the strong boundary value in S′(Rn) of an analytic function Wψf(z, �) arising from the
complexification of the variable x corresponding to the location of the continuous wavelet
transform of f with respect to directional wavelet ψ. Let q = (x0, k0). Then, q /∈ WFa(f) if and
only if there exist M(C′) andN for which we have the estimate

∣

∣Wψf(z, �)
∣

∣ ≤ M
(

C′)∣
∣�y

∣

∣

−N
, z = x + i�y ∈ Z ∩ T(C′). (4.1)

WFa(f) is called analytic wavefront set of f .

Proposition 4.2. Let f ∈ S′(Rn) be the boundary value, in the distributional sense, of a function
Wψf(z, �) analytic in Z ∩ T(C′), arising from the complexification of the variable x corresponding to
the location of the continuous wavelet transform of f with respect to directional wavelet ψ and which
satisfies the estimate (3.3). Then near x0 the fibreWFa(f)|x0 is contained in C∗.

Proof. LetWFa(f)|x0 = {k ∈ (Rn \ 0) | (x0, k) ∈WFa(f)} be the fibre over x0. Let {C∗
j }j∈L be a

finite covering of closed properly convex cones of C∗. Decompose P(�k) ̂f(k) as follows:

P(�k) ̂f(k) =
m
∑

j=1

λj(k)P(�k) ̂f(k), (4.2)

where λj(k) denotes the characteristic function of C∗
j , j ∈ L. Then, by Theorem 3.5, the

decomposition (4.2) will induce a representation of f in the form of a sum of boundary
values of functions Wψfj(z, �), such that Wψfj(z, �) → fj in the strong topology of S′(Rn) as
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y → 0, y ∈ C′
j � Cj . According to Lemma 3.4, the family of functions Wψfj(z, �) satisfies the

following estimate:

∣

∣Wψfj(z, �)
∣

∣ ≤ M
(

C′)∣
∣�y

∣

∣

−N
, z = x + i�y ∈ Z ∩ T(C′), (4.3)

unless 〈k, Y〉 < 0 for k ∈ C∗
j and Y ∈ −C′

j , with |Y | < δ. Then, the cones of “bad” directions
responsible for the singularities of these boundary values are contained in the dual cones of
the base cones. So we have the inclusion

WFa
(

f
) ⊂ R

n ×
(

∪jC∗
j

)

. (4.4)

Then, by making a refinement of the covering and shrinking it to C∗, we obtain the desired
result.

Remark 4.3. It is remarked that in [21] the fiber over x0, WFa(f)|x0 , is completely
characterized by sequences of type fN = φNf , where {φN} is a bounded sequence in C∞

0 (X)
which is equal to 1 in a common neighborhood of x0 and satisfies the following estimate:

∣

∣

∣Dα+βφN
∣

∣

∣ ≤ Cα(CN)|β|, if
∣

∣β
∣

∣ ≤N. (4.5)

For the existence of such functions, we refer to Lemma 2.2 in [21].

We can meet Definition 4.1 and Proposition 4.2 in the following proposition.

Proposition 4.4. Let f ∈ S′(Rn) and (x0, k0) ∈ T ∗(Rn) \ 0, where T ∗(Rn) \ 0 := R
n × (Rn \ 0).

Then (x0, k0) /∈ WFa(f) if and only if there exists a finite family {Cj} of proper open convex cones in
R
n, a complex neighborhood Z of x0 in C

n and a decomposition of f

f =
m
∑

j=1

bC′
j

(

Wψfj(z, �)
)

, (4.6)

with each Wψfj(z, �) ∈ O(Z ∩ T(C′
j)) being of tempered growth and analytic near to x0 for every

j satisfying C′
j ⊂ {y | 〈k0, y〉 ≥ 0}, and where bC′

j
(Wψfj(z, �)) denotes the boundary value, in the

distributional sense, of analytic functions Wψfj(z, �) arising from the complexification of the variable
x corresponding to the location of the continuous wavelet transform of f with respect to directional
wavelet ψ.

Note that the above proposition shows that a decomposition of a tempered
distribution f into a sum of boundary values of analytic functions is equivalent to a
decomposition of analytic wavefront set of f since the fibre WFa(f)|x0 is contained in ∪jC∗

j .
Moreover, the decomposition (4.6) is carried out in the space of C∞ functions, provided that
f is C∞.

Finally, we recall that in [28] Hörmander defined the wavefront set, WF(f), for a
distribution as the set of points in the cotangent space which must be characteristic for
every pseudodifferential operator P such that Pf ∈ C∞. It is clear that WF(f) ⊂ WFa(f).
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Following Nishiwada [22] another characterization of WF(f) can be obtained based on the
above results.

Proposition 4.5. Let U be an open set in R
n, (x0, k0) ∈ T ∗(U) \ 0 and f ∈ S′(U). Then (x0, k0) /∈

WF(f) if there exists a finite family {Cj} of proper open convex cones in R
n, with j = 1, . . . , m, a

complex neighborhood Z of x0 and a decomposition of f near x0

f =
m
∑

j=1

bC′
j

(

Wψfj(z, �)
)

in U, (4.7)

with Wψfj(z, �) ∈ O(Z ∩ T(C′
j)) being of tempered growth, such that bC′

j
(Wψfj(z, �)) ∈ C∞ near

x0 for every j with C′
j ⊂ {y | 〈k, �y〉 ≥ 0}.

Proof. The proof is similar to the proof of the first part of Theorem 3.4 in [23].
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[28] L. Hörmander, “Fourier integral operators I,” Acta Mathematica, vol. 127, no. 1-2, pp. 79–183, 1971.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


