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A new technique for solving a certain class of systems of autonomous ordinary differential
equations over K

n is introduced (K being the real or complex field). The technique is based on two
observations: (1), if K

n has the structure of certain normed, associative, commutative, and with a
unit, algebras A over K, then there is a scheme for reducing the system of differential equations
to an autonomous ordinary differential equation on one variable of the algebra; (2) a technique,
previously introduced for solving differential equations over C, is shown to work on the class
mentioned in the previous paragraph. In particular it is shown that the algebras in question include
algebras linearly equivalent to the tensor product of matrix algebras with certain normal forms.

1. Introduction

Throughout this work, K will stand for a field, usually the real R or the complex field C.
Consider the autonomous ordinary differential equation

dx

dt
= f(x), x ∈ Ω ⊂ K

n, t ∈ R, (1.1)

with f : Ω ⊂ K
n → K

n having certain regularity conditions.
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In general the solution is not easy to obtain since this is usually a system of
coupled differential equations. There is a vast literature regarding the solution of ordinary
differential equations by different means and in particular by techniques utilizing generalized
analytic functions, see for instance [1–14]. These include applications to the three-dimensional
Stokes problem, solutions of planar elliptic vector fields with degeneracies, the Dirichlet
problem, multidimensional stationary Schrödinger equation, among others [3, 5, 6, 12, 13]. In
particular, the technique that we present is of interest for people working on vector fields with
singularities. For instance, in order to gain insight into the behaviour of analytic vector fields,
correct visualization of vector fields in the vicinity of their singular set is required, in the case
of visualization of two-dimensional complex analytic vector fields with essential singularities
the usual methods only provide partial results (see [15–17]), whilst the technique which we
promote provides accurate and correct solutions [18, 19]. These questions arise naturally in
discrete and continuous dynamical systems (see [20–22]).

As a first step in obtaining a solution to (1.1), we notice that, if K
n can be given the

structure of a certain algebra A, it is possible to reduce this system to a single autonomous
differential equation

dζ

dt
= g̃(ζ), ζ ∈ Ω′ ⊂ A, t ∈ R, (1.2)

with g̃ being a function A-differentiable with respect to the variable ζ in the algebra A.
Having done so, we proceed to show that it is possible to solve (1.2) by extending a

geometric technique introduced in [18, 19] in the context of complex analytic vector fields
related to Newton vector fields which are first studied by [23]. This technique is based
upon the construction of two functions, which, are respectively, constant and linear on the
trajectories which are the solutions of (1.2).

The paper is organized as follows. In Section 2 the algebras in question are introduced,
in particular we introduce the notion of normed, associative, commutative, and with a unit,
finite dimensional algebra A over K, showing in Section 2.1 that these have a first fundamental
representation into the algebra of n × n matrices over K, M(n,K). Furthermore in Section 2.2
normal algebras are defined and their corresponding tensor products are constructed. This is
standard material which can be found in [24–26] but is presented here for completeness.

In Section 3 we give the definition of A-differentiability, and proceed to show that if
the family of matrices {Jf(x) : x ∈ Ω} is linearly equivalent to a subset of an algebra B

in M(n,K), that is, the image of the first fundamental representation of an algebra A with
respect to the canonical basis of K

n, that is, B = R(A), then in fact f is A-differentiable on Ω.
The problem of determining if a map f : Ω ⊂ K

n → K
n is A-differentiable for some algebra

A is treated indirectly in [27], where the conditions that are given ensure the existence of an
algebra A such that the set of relations are the generalized Cauchy-Riemann equations for
A, ([27, 28] show that these equations give a criterion for A-differentiability). Furthermore
[29] considers the case when K = C, where he proves that every analytic map f (in the usual
sense)which is A-differentiable has an expansion in power series (see [29, pp. 646 and 653]).

In Section 4 we show that for normal algebras it is possible to express the function f(x)
in terms of a single variable ζ in the algebra, and hence there is a function g̃(ζ) that represents
f(x). The analogy being the algebra of complex numbers, where z = x + iy is the variable
and the A-differentiable functions being the analytic functions. We also show that there is a
differentiable operator ∂/∂ζ which has the property that ∂g̃/∂ζ = g̃ ′, where g̃ ′ is the Lorch
derivative of g̃ (see [26]), hence providing a framework for the usual calculus of one variable.
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In Section 5 we start by showing that in this context the differential equation (1.1) takes
the form

dζ

dt
= g̃(ζ), ζ ∈ Ω′ \ S ⊂ A, t ∈ R, (1.3)

with g̃ being a function A-differentiable with respect to the variable ζ in the algebra A, and S
being a certain singular set, where the solutions are not defined.

We then proceed to show that the geometric technique, introduced in [18, 19], of
finding two functions h1 and h2 which are constant and linear on the trajectories ζ(t) which
are solutions of the differential equation, can be extended to the case of (1.3). We end the
section and the paper with an example.

2. Algebras

We introduce K-algebras (see, e.g., [24]).

Definition 2.1. A K-algebra (or algebra over K) is a finite dimensional K-linear space A on
which is defined a bilinear map A × A → A that is associative and commutative, and there is
a unit element e = eA in A that satisfies ex = xe = x for all x ∈ A.

An element a ∈ A is called regular if there exist a unique element in A denoted by
a−1 ∈ A called inverse of a such that a−1a = aa−1 = e. An element a ∈ A which is not regular is
called singular. If a, b ∈ A and b is regular, the quotient a/b will mean ab−1.

2.1. Algebras and Their Fundamental Representations

We define the first fundamental representation.
IfB = {β1, . . . , βn} is an ordered basis of an algebraA, the product between the elements

of B is given by

βiβj =
n
∑

k=1

cijkβk, (2.1)

where cijk ∈ K for i, j, k ∈ {1, 2, . . . , n} are called the structure constants of A. The first
fundamental representation of A associated to B is the isomorphism R : A → M(n,K) defined
by

R
(

x1β1 + x2β2 + · · · + xnβn
)

= x1R1 + x2R2 + · · · + xnRn, (2.2)

where Ri is the matrix whose entry (j, k) is cijk for i = 1, 2, . . . , n. The commutativity and the
associativity of A are equivalent to the identities

(1) cijk = cjik, for all i, j, k ∈ {1, 2 . . . , n} and
(2)

∑

l cijlclks =
∑

l cjklcils, for all i, j, k, s ∈ {1, 2 . . . , n},
respectively.
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Using R we assign to A the norm induced from the operator norm in M(n,K) (see
[24]). In this way each algebra is a normed algebra, that is, there exists a norm ‖ · ‖ : A → R

satisfying ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A and ‖e‖ = 1.

Example 2.2. Let A be the linear space R
3 with the product between the elements of the

standard basis B = {e1, e2, e3} given in the following equation:

e1 e2 e3

e1 e1 e2 e3
e2 e2 −2e1 + 2e2 + e3 −e1 + e2 + e3
e3 e3 −e1 + e2 + e3 −e1 + 2e3

, (2.3)

that extends to the product in R
3 given by

(

x, y, z
)

(u, v,w) =
(

e1x, e2y, e3z
)

(e1u, e2v, e3w)

= xue1e1 + xve1e2 + xwe1e3 + yue1e2 + yve2e2

+ ywe2e3 + zue1e3 + zve2e3 + xwe3e3

=
(

xu − 2yv − yw − zv − zw
)

e1

+
(

xv − yu − zyv − yw + zv
)

e2

+
(

zw + zu + yv + yw + zv + zw
)

e3.

(2.4)

The product between the elements of B define the structure constants cijk for i, j, k ∈
{1, 2, 3}. So, R

3 with the product given is an algebra A.

2.2. Normal Algebras and Their Tensor Products

Let B1, B2, . . . , Bl be matrices Bi ∈ M(ki,K), each Bi of one the following four types:

(r),

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

s 0 0 · · · 0
1 s 0 0
0 1 s 0
...

. . .
0 0 0 · · · s

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(

a −b
b a

)

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

C 0 0 · · · 0
I2 C 0 0
0 I2 C 0
...

. . .
0 0 0 · · · C

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.5)

where

C =
(

u −v
v u

)

, I2 =
(

1 0
0 1

)

, (2.6)
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r, s, a, b, u, v ∈ K and k1 + · · · + kl = n. In this case we will say that the matrix B given by

B =

⎛

⎜

⎜

⎜

⎝

B1 0 · · · 0
0 B2 0
...

. . .
0 0 · · · Bl

⎞

⎟

⎟

⎟

⎠

, (2.7)

is in its normal form. Wewill associate to B an algebra of matrices of dimension n over K which
contains B and use the following nomenclature: The first block will be called real simple block,
the second real Jordan block, the third simple complex block, and the fourth complex Jordan block.

For i = 1, 2, . . . , l, let σi : M(ki,K) → M(n,K) be the linear sections defined by
substituting the matrix M ∈ M(ki,K) in the block Bi of the matrix B and taking the other
entries as zero. The real Jordan block may be written in the following way Bi = aiDi + Ni,
where Di is the identity and Ni is a nilpotent matrix of order ki. The simple complex block
may be written in the form Bi = aiDi + biJi, where Di is a diagonal matrix and Ji is a matrix
with J2i = −Di. The complex Jordan blocks may be written in the form Bi = aiDi + biJi + Ni,
where Di is the identity and Ji is a matrix with J2i = −Di andNi is a nilpotent matrix of order
ki/2.

We define the matrices {βi,j : 1 ≤ i ≤ l, 1 ≤ j ≤ ki} whose entries are in the block Bi as
follows.

(i) If Bi is a real simple block, βi,1 := σi(1), in this case ki = 1.

(ii) If Bi is a real Jordan block, βi,1 := σi(Di) and βi,j := σi(N
j−1
i ) for j = 2, . . . , ki.

(iii) If Bi is a simple complex block, βi,1 := σi(Di) and βi,2 := σi(Ji).

(iv) If Bi is a complex Jordan block, βi,1 := σi(Di), βi,2 := σi(Ji), βi,2j−1 := σi(N
2j−1
i ), and

βi,2j := βi,2σi(N
2j−1
i ) for j = 2, . . . , ki/2.

Observe that the product of the matrices βi1,j1 and βi2,j2 is the zero matrix if i1 /= i2. The
products of βi,j1 and βi,j2 for i = 1, . . . , l are as follows.

(i) If Bi is a real simple block, βi,1βi,1 = βi,1.

(ii) If Bi is a real Jordan block, then

βi,1 βi,j1

βi,1 βi,1 βi,j1
βi,j2 βi,j1 βi,j1+j2

, (2.8)

for 2 ≤ j1, j2 ≤ ki, where βi,j1 = 0 when j1 ≥ ki + 1.

(iii) If Bi is a complex simple block, then

βi,1 βi,2

βi,1 βi,1 βi,2
βi,2 βi,2 −βi,1

(2.9)
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(iv) If Bi is a complex Jordan block, then

βi,1 βi,2 βi,2j1−1 βi,2j1

βi,1 βi,1 βi,2 βi,2j1−1 βi,2j1
βi,2 βi,2 −βi,1 βi,2j1 −βi,2j1−1

βi,2j2−1 βi,2j2−1 βi,2j2 βi,2(j1+j2−1)−1 βi,2(j1+j2−1)
βi,2j2 βi,2j2 −βi,2j2−1 βi,2(j1+j2−1) −βi,2(j1+j2−1)−1

, (2.10)

for 2 ≤ j1, j2 ≤ ki/2, where βi,j = 0 when j ≥ 2ki + 1.

The commutativity of the elements in the set

B =
{

β1,1, . . . , β1,k1 , . . . , βl,1, . . . , βl,kl
}

, (2.11)

with respect to thematrix product, follows from thewell-known result: For a Jordan canonical
form D +N the diagonal matrix D commutes with the nilpotent matrix N.

Moreover, the K-linear space spanned by B is an K-algebra, as is claimed in the
following proposition.

Proposition 2.3. The set B := {β1,1, . . . , β1,k1 , . . . , βl,1, . . . , βl,kl} is a base for an n-dimensional linear
space which is an algebra A with respect to the matrix product, and its first fundamental representation
R with respect to B is the identity isomorphism.

Proof. Let R be the first fundamental representation of A associated to B. As the algebra A is
generated by βi,1, βi,2 (considered only when this exists, i.e., ki ≥ 2), and βi,3 (considered only
in the case when Bi is a Jordan complex block), in order to prove that R is the identity, we
only need to prove that R(βi,j) = βi,j , but for these three cases the equality is trivial. So, R is
the identity isomorphism.

Definition 2.4. Given a matrix B ∈ M(n,K) in its normal form, one will call the algebra in
M(n,K), as constructed above, an K-normal algebra (containing B).

Definition 2.5. Two matrix algebras A1 and A2 in M(n,K) are linearly equivalent if there exists
an invertible matrix B ∈ M(n,K) such that A1 = {BAB−1 : A ∈ A2}.

For a proof of the following result, see [30].

Proposition 2.6. Let A and B be algebras. There exists a product in A ⊗ B satisfying

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2, (2.12)

where a1a2 and b1b2 denote the products in A and B, respectively. The product is associative and
eA ⊗ eB = eA⊗B.

Therefore, the finite tensor product of algebras is an algebra.

Definition 2.7. The complexification of an R-algebra A is the C-algebra A ⊗ C. One calls an
algebra which is the complexification of an R-normal algebra a C-normal algebra.
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As usual, if the context is clear, one will drop the C from the name and refer to the
C-normal algebra just as a normal algebra. The following proposition and its corollary follow
from a straightforward calculation.

Proposition 2.8. Let A and B be p- and q-dimensional matrix algebras in M(n,K) and M(m,K),
respectively, and P ∈ M(n,K) and Q ∈ M(m,K) be invertible matrices. Then, one has

PAP−1 ⊗QBQ−1 = [P ⊗Q][A ⊗ B][P ⊗Q]−1. (2.13)

Corollary 2.9. The tensor product of matrix algebras linearly equivalent to normal algebras is
algebras which are linearly equivalent to the tensor product of normal algebras.

So, by Corollary 2.9 the algebras linearly equivalent to the tensor product of normal
algebras are closed under the tensor product.

The following result shows that the first fundamental representation, with respect to
an appropriate base, of a tensor product of normal algebras is the inclusion of the algebra in
the corresponding matrix space.

Proposition 2.10. Let A and B be p- and q-dimensional K-algebras, and R1 : A → M(p,K) and
R2 : B → M(q,K) be first fundamental representations associated to the basisA = {α1, . . . , αp} and
B = {β1, . . . , βq}, respectively. Then, R : A ⊗ B → M(pq,K) defined by R = R1 ⊗ R2 is the first
fundamental representation of A ⊗ B associated to the base {αi ⊗ βj : 1 ≤ j ≤ p, 1 ≤ j ≤ q}.

Proof. Let {α1, . . . , αp} be a base of A and let {β1, . . . , βq} be a base of B. We use the notations
Ci and Gj for the matrices R1(αi) and R2(βj), respectively, for 1 ≤ i ≤ p, 1 ≤ j ≤ q. The set

{

αi ⊗ βj : 1 ≤ i ≤ p, 1 ≤ j ≤ q
}

(2.14)

is a base for A ⊗ B (see [30]). In order to find the structure constants of A ⊗ B we take the
products

[

αi ⊗ βl
][

αj ⊗ βs
]

= αiαj ⊗ βlβs

=

(

p
∑

k=1

cijkαk

)

⊗
(

q
∑

t=1

dlstβt

)

=
p

∑

k=1

q
∑

t=1

cijkdlst

(

αk ⊗ βt
)

,

(2.15)

from which we obtain a first fundamental representation R of A ⊗ B, where R(αi ⊗ βl) is the
matrix Hil whose entry (kl, js) is given by hil,kt,js := cijkdlst, where cijk and dlst are the entries
(k, j) and (t, s) of Ci and Gl for 1 ≤ i ≤ p and 1 ≤ l ≤ q, respectively.
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On the other hand we have that R1(αi)⊗R2(βl) = Ci ⊗Gl. The tensor product of Ci and
Gl is given by

Ci ⊗Gl =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ci11

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

di11 di21 . . . diq1

...

di1q di2q . . . diqq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

· · · cip1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

di11 di21 . . . diq1

...

di1q di2q . . . diqq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

...

ci1p

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

di11 di21 . . . diq1

...

di1q di2q . . . diqq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

· · · cipp

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

di11 di21 . . . diq1

...

di1q di2q . . . diqq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.16)

from which we see that in the position (kt, js) the element cijkdlst appears. Thus, we have the
equalities of matrices Hil = Ci ⊗Gl, for 1 ≤ i, l ≤ n. Therefore, R = R1 ⊗ R2.

Corollary 2.11. If A is a matrix algebra inM(n,K) which is a tensor product of K-normal algebras,
then there exists a base B of A in which the corresponding first fundamental representation R : A →
M(n,K) is the identity isomorphism, that is, R(x) = x for all x ∈ A.

Proof. We have that A = B1 ⊗ · · · ⊗ Bm, where Bi is a K-normal algebra for every i ∈
{1, . . . , m}. Obviously, for every i ∈ {1, . . . , m} we can consider a base for Bi as that given
in Proposition 2.3, and taking the corresponding tensor products of these basis we obtain a
base B for A. By Propositions 2.3 and 2.10 we have that the first fundamental representation
of A associated to B is the identity.

3. Differentiability on Algebras

In a paper published in 1893, Sheffers laid a foundation for a theory of analytic functions on
algebras, see [27, 29] and references therein.

Differentiability on algebras is a stronger concept than the usual differentiability over
K

n. If f : U ⊂ K
n → K

n is a differentiable map in the open set U, we denote by Jf(x) its
Jacobian matrix at the point x, in the standard base of K

n. We also use the notation JBf(x) for
the Jacobian matrix at the point x of f with respect to a base B.
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The following definition was introduced in [26].

Definition 3.1. Let A be an algebra and let f : Ω ⊂ A → A be a map defined in the open set
Ω. One says that f is A-differentiable at x0 ∈ A if there exists an element f ′(x0) ∈ A, which one
calls the A-derivative of f at x0, satisfying

lim
h→ 0

∥

∥f(x0 + h) − f(x0) − f ′(x0)h
∥

∥

‖h‖ = 0, (3.1)

where f ′(x0)h denotes the product in A of f ′(x0) with h. If f is A-differentiable at all the
points of Ω, one says that f is A-differentiable on Ω and one calls the map f ′ assigning f ′(x) to
the point x ∈ Ω the A-derivative of f , or Lorch derivative of f .

It follows (see, e.g., [26–29]) that a map f : Ω ⊂ A → A is A-differentiable at x0 if and
only if JBf(x0) ∈ R(A) and is continuous as a function of x0, where B := {e1, . . . , en} is a base
of A and R : A → M(n,K) is the first fundamental representation of the algebra A associated
to B.

In fact, in this case, JBf(x) is the image of f ′(x) under the map R, that is, if f is A-
differentiable, then

JBf(x) =
n
∑

i=1

ui(x)Ri, (3.2)

where Ri = R(ei) and ui : Ω → K for i = 1, 2, . . . , n.
If Ω′ := R(Ω), B := R(A), and g : Ω′ ⊂ B → B is defined by

g
(

y
)

= R ◦ f ◦ R−1(y
)

, (3.3)

then g is B-differentiable and its differential at y is given by g ′(y) =
∑n

i=1 ui(R−1(y))Ri, thus,
the relation between the Jacobian matrix of f and the B-differential of g is JBf(x) = g ′(R(x)).

The matrix equation (3.2) is equivalent to the n2 equations

∂fi
∂xj

=
n
∑

l=1

ulclji, (3.4)

for all i, j ∈ {1, 2, . . . , n}. Using (3.4) and the associativity of the algebra, we can obtain

n
∑

i=1

ciks
∂fi
∂xj

=
n
∑

i=1

cijs
∂fi
∂xk

, (3.5)

appearing in [29, p. 646].

Remark 3.2. It should be noted that in the context of algebras equations (3.5) play the same
role as the Cauchy-Riemann equations in the case of one complex variable and thus serve as
a criterion for analyticity, see [27, 28, 31–33].
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Suppose we consider a basisA = {α1, . . . , αn} of A, where αi =
∑n

j=1 sjiej for i = 1, . . . , n,
sji ∈ K, it can be proved that JAf = S−1(Jf)S, where S = (sij). If we denote by Si the image of
αi under the first fundamental representation of A associated to A, we have for i = 1, . . . , n,
that Si = S−1(

∑n
j=1 sjiRj)S.

Remark 3.3. For the differentiation of algebras the usual properties of differentiation of
functions from R

n to R
m remain true. Furthermore, the usual rules of differentiation

of functions of one variable are satisfied in the case of algebras, therefore polynomial
functions, rational functions, and those expressed by means of convergent power series as
the exponential, trigonometric, and other usual functions are differentiable in algebras.

The following theorem gives conditions that ensure the existence of an algebra A in
which f is A-differentiable.

Theorem 3.4. Let f : Ω ⊂ K
n → K

n be a C1 map defined in the open set Ω. f is A-differentiable for
an algebra A if and only if the set of matrices

{

Jf(x) : x ∈ Ω
}

(3.6)

is a subset of an algebra B which is linearly equivalent to an algebra T which is a finite tensor product
of normal algebras in M(n,K). Moreover, A is a K-linear space K

n and has a base B such that the
image of the first fundamental representation of A associated to B is R(A) = T.

Proof. Let A = {α1, . . . , αn} be a base for T as given in Corollary 2.11. Then B =
{Bα1B

−1, . . . , BαnB
−1} is a base for B, where B is a matrix such that B = BTB−1. Because

Jf(x) ∈ B for every x ∈ Ω, we have Jf(x) =
∑n

i=1 ui(x)βi, where ui : Ω → K are functions
and βi = BαiB

−1.
Now consider the base G = {γ1 . . . , γn} of K

n defined by γi =
∑n

j=1 bjiej , where B = (bij)
and {e1, . . . , en} is the standard base of K

n. Then, we have that JGf = B−1(Jf)B. Thus,

JGf(x) = B−1
(

n
∑

i=1

ui(x)βi

)

B = B−1
(

n
∑

i=1

ui(x)
(

Bα1B
−1
)

)

B

=
n
∑

i=1

ui(x)αi,

(3.7)

in other words JGf(x) ∈ T, which means that if we define a product between the elements
of G using the structure constants of the products of the elements of A, we have that K

n is
an algebra A such that its first fundamental representation associated to G is that given by
R(γi) = αi for i = 1, . . . , n. Therefore f is A-differentiable.

4. Reduction to a Variable in the Algebra

Sometimes f = (f1, . . . , fn) : Ω ⊂ K
n → K

n can be expressed as a function of a variable
ζ =

∑n
i=1 xiei of an algebra A whose image under the first fundamental representation is the

tensor product of normal algebras (as in the previous sections). In this section we show some
necessary conditions for this to be true and also allow for the expression of f in terms of ζ.
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Proposition 4.1. With the same hypothesis as Theorem 3.4, there exists a basis D = {δ1, . . . , δn} of
invertible elements of the algebra A such that the following diagram commutes

Ω ⊂ K
n f−→ K

n

A ↓ ↓ A

Ω′ ⊂ A
g̃−→ A,

(4.1)

whereA is the matrix associated to the change of basis E → D, where E = {e1, . . . , en} is the canonical
basis of K

n.

Proof. By a change of basis one has the following commutative diagram

Ω ⊂ K
n f−→ K

n

B ↓ ↓ B

Ω′′ ⊂ A
g−→ A,

(4.2)

where B is the matrix associated to the change of basis from E to B, which was used in the
previous theorem, and g = B ◦ f ◦ B−1. Now consider a base D = {δ1, . . . , δn} of regular
elements of A, where without loss of generality δ1 = e. Then if A is the matrix associated to
the change of basis from E toD, let g̃ = A◦f ◦A−1. Note that the domain of g̃ isΩ′ = A(Ω).

Theorem 4.2. Let f : Ω ⊂ K
n → K

n be a A-differentiable map over an algebra A with first
fundamental representation R(A), then g̃ = A ◦ f ◦A−1 can be expressed in a variable ζ =

∑n
j=1 yjδj ,

for some regular basis D = {δ1, . . . , δn}. Moreover there is a partial differential operator ∂/∂ζ such
that g̃ ′(ζ) = (∂g̃/∂ζ)(ζ).

Proof. By Proposition 4.1 there is a basis D = {δ1, . . . , δn} of regular elements of the algebra
A, with δ1 = e, without loss of generality we may assume that ||δj || = 1. Introducing the
variable ζ in the base D as ζ =

∑n
i=1 yiδi =

∑n
i=1 xiei, we then have f(x1, . . . , xn) = g̃(ζ), with

g̃ = A ◦ f ◦A−1, where A is the matrix associated to the change of basis E to D.
Denote by ζk the k-conjugate of ζ related to D, which is defined for k = 2, . . . , n by

ζk = y1δ1 − ykδk +
n
∑

j=2
j /= k

yjδj

= − ykδk +
n
∑

j=1
j /= k

yjδj = ζ − 2ykδk.

(4.3)

Then we have

yke =
ζ − ζk
2

δ−1
k , for k = 2, . . . , n, (4.4)
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and since

y1δ1 = ζ −
n
∑

j=2

yjδj = ζ −
n
∑

j=2

ζ − ζj

2
, (4.5)

then,

y1e =
1
2

⎛

⎝(3 − n)ζ +
n
∑

j=2

ζj

⎞

⎠δ−1
1 . (4.6)

Furthermore one can define the differential operators

∂

∂ζ
=

1
n

n
∑

j=1

δ−1
j

∂

∂yj
, (4.7)

∂

∂ζk
=

1
2

{

δ−1
1

∂

∂y1
− δ−1

k

∂

∂yk

}

, for k = 2, . . . , n, (4.8)

which satisfy

∂ζ

∂ζ
= 1

∂ζk
∂ζ

=
n − 2
n

for k = 2, . . . , n,

∂ζk

∂ζk
= 1

∂ζ

∂ζk
=

∂ζj

∂ζk
= 0 for k = 2, . . . , n, k /= j.

(4.9)

If f is A-differentiable, g̃ is also A-differentiable, hence

g̃ ′(ζ) =
dg̃

dt
(ζ + tδk)|t=0 =

dg̃

dt

(

ζ + tδj
)|t=0, ∀j, k, (4.10)

and since

dg̃

dt
(ζ + tδk)|t=0 = δ−1

k

∂g̃

∂yk
(ζ), (4.11)

then for k = 2, . . . , n

∂g̃

∂ζk
(ζ) =

1
2

n
∑

i=1

{

δ−1
1

∂gi
∂y1

(ζ) − δ−1
k

∂gi
∂yk

(ζ)
}

δi = 0, (4.12)

so the right hand expression of g̃(ζ) =
∑n

i=1 gi(ζ)δi does not depend on the conjugated
variables. In this way we obtain an expression g̃(ζ) depending only on ζ, and not on ζk for
k = 2, . . . , n.
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Moreover, by (4.7), (4.10), and (4.11) one has that

g̃ ′(ζ) =
∂g̃

∂y1
(ζ) =

∂g̃

∂ζ
(ζ). (4.13)

In the following example we show how we can reduce the variables of a map by
substituting for variables in an algebra.

Example 4.3. Let f(x1, x2, x3) = (x2
1, 2x1x2, x

2
2 + 2x1x3). Then

Jf =

⎛

⎝

2x1 0 0
2x2 2x1 0
2x3 2x2 2x1

⎞

⎠, (4.14)

the Jf is in normal form, hence f is A-differentiable. If

N =

⎛

⎝

0 0 0
1 0 0
0 1 0

⎞

⎠ (4.15)

and I is the identity, the multiplication in the associated algebra R(A) is given by
multiplication of matrices I, N, and N2 representing, respectively, R(e1), R(e2), andR(e3),
where E = {e1, e2, e3} is the canonical basis of R

3. It is easy to see that e2 and e3 do not have
inverse in the algebra A. Consider the basis of regular elements

D = {δ1 = e1, δ2 = e1 + e2, δ3 = e1 + e3}, (4.16)

we see that the matrix associated to the change of basis from E to D is

A =

⎛

⎝

1 −1 −1
0 1 0
0 0 1

⎞

⎠, (4.17)

so f is transformed to g̃ = A ◦ f ◦A−1,

g̃
(

y1δ1 + y2δ2 + y3δ3
)

=
(

y2
1 − 2y2

2 − 2y2y3 − y2
3

)

δ1

+ 2y2
(

y1 + y2 + y3
)

δ2

+
(

y2
2 + 2y3

(

y1 + y2 + y3
)

)

δ3.

(4.18)

Thus

ζ = y1δ1 + y2δ2 + y3δ3 (4.19)
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is the variable in the algebra A. Now consider the conjugates

ζ2 = y1δ1 − y2δ2 + y3δ3, ζ3 = y1δ1 + y2δ2 − y3δ3. (4.20)

Then

y1e =
1
2

(

ζ2 + ζ3
)

δ−1
1 ,

y2e =
1
2

(

ζ − ζ2
)

δ−1
2 ,

y3e =
1
2

(

ζ − ζ3
)

δ−1
3 ,

(4.21)

so by substituting this in g̃ and simplifying we obtain

g̃(ζ) = ζ2, (4.22)

the function in the variable of the algebra.

5. Solving Systems of Ordinary Differential Equations by
Reduction to One Variable on an Algebra

By following [18, 19], we obtain, as direct corollaries of Theorem 3.4, Proposition 4.1, and
Theorem 4.2, the following results.

Corollary 5.1. Let

f : Ω ⊂ R
n −→ R

n,

g̃ : Ω′ ⊂ A −→ A,
(5.1)

be as in Theorem 4.2. Then there exists Φ : Ω′ ⊂ A → A which is A-differentiable onΩ′ \ S, where S
is a singular set, such that

g̃(ζ) = −Φ(ζ)
Φ′(ζ)

,

f(x) = −[Jφ(x)]−1φ(x),
(5.2)

with φ(x) = (Φ ◦A)(x).

Proof. We need to show that there exists Φ : Ω′ ⊂ A → A such that

g̃(ζ) = −Φ(ζ)
Φ′(ζ)

. (5.3)
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Noticing that

log(Φ(ζ))′ =
Φ′(ζ)
Φ(ζ)

= − 1
g̃(ζ)

, (5.4)

and by Remark 3.3, it follows that

Φ(ζ) = exp

[

−
∫ ζ dz

g̃(z)

]

, (5.5)

for ζ ∈ Ω′ \ S, where

S =
{

ζ ∈ Ω′ : g̃(ζ) /∈ A
∗}, (5.6)

with A
∗ being the regular elements of A.

Remark 5.2. Note that S can be many things. For instance if g̃(ζ) = cζwith c /∈ A
∗, then S = A.

On the other hand, if g̃(ζ) is the polynomial function g(ζ) = cnζ
n+· · ·+c1ζ+c0 with cn singular,

then g̃(ζ)may be regular for all ζ ∈ A, (see [26, p. 418]), in which case S = ∅.

Remark 5.3. As a special case one notices that if A = C then 1/g̃ will be a complex analytic
function on Ω′ \ S hence S consists of isolated points (the isolated singularities of 1/g̃). This
has been studied in [18, 19].

Remark 5.4. In case that S /=Ω′, thenΩ′ \ S is an open dense set inΩ′. This is true since the set
A

∗ is an open dense set in A hence for a continuous g̃ one has that g̃−1(A∗) is an open dense
subset of Ω′.

Remark 5.5. By the previous remark, in case that S /=Ω′, then Φ(ζ) exists for ζ ∈ Ω′ \ S even
though it might be a multivalued function defined on each component of ζ ∈ Ω′ \ S.

Remark 5.6. Further characterization and properties of S will be studied elsewhere. In what
follows we assume that S /=Ω′.

Let x = (x1, x2, . . . , xn) ∈ R
n \ {0}, then consider the projection onto Sn−1

∏

(x) =
x

‖x‖ ∈ Sn−1. (5.7)

Corollary 5.7. Let f : Ω ⊂ R
n → R

n be A-differentiable in an algebra with first fundamental
representation R(A). Then the solutions to the differential equation,

dx

dt
= f(x), (5.8)
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correspond to the level curves of the function

˜h1(x) = Π
(

φ(x)
)

, (5.9)

moreover the real-valued function,

˜h2(x) = log
∥

∥φ(x)
∥

∥, (5.10)

is a linear function of t along the solutions x(t) of (5.8).

Proof. By Theorem 3.4, Proposition 4.1, and Theorem 4.2, the solutions x(t) of (5.8) are in
correspondence with the solutions ζ(t) of

dζ

dt
= g̃(ζ). (5.11)

On the other hand, Corollary 5.1 shows that

Φ(ζ(t)) = Φ(ζ(t0)) exp[−t − t0], (5.12)

the result follows immediately by applying Π(·) and log ‖ · ‖ to (5.12).

Corollary 5.8. In particular, to visualize the trajectory that passes through the point x0 ∈ Ω\A−1(S)
at time t0 ∈ R, one needs only to plot the level curve {x ∈ Ω : ˜h1(x) = ˜h1(x0)}. Moreover one can
find explicitly the point x(t1), for t1 ∈ R, as the intersection of the level curve ˜h1(x) = ˜h1(x0) and the
hypersurface ˜h2(x) = ˜h2(x0) − t1 + t0.

Example 5.9. Consider the function

f
(

x, y
)

=
(

u
(

x, y
)

, v
(

x, y
))

, (5.13)

where

u
(

x, y
)

=
1
6

(

2 + 6x +
−22 + 20x + 7y

4 + 5x2 + 8x
(−1 + y

)

+ y
(−4 + 5y

)

+
5
(

2 + 4x + 5y
)

4 + 5x2 + 8x
(

1 + y
)

+ y
(

4 + 5y
)

)

,

v
(

x, y
)

=
1
6

(

−4 + 6y − 5
(−4 + 5x + 4y

)

4 + 5x2 + 8x
(−1 + y

)

+ y
(−4 + 5y

)

+
4 − 7x − 20y

4 + 5x2 + 8x
(

1 + y
)

+ y
(

4 + 5y
)

)

.

(5.14)
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Let

A =
(

1 2
2 1

)

, (5.15)

and notice that

A · Jf
(

A−1(x, y
)

)

·A−1 =
(

a
(

x, y
)

b
(

x, y
)

−b(x, y) a
(

x, y
)

)

, (5.16)

with

a
(

x, y
)

= 1 − 2

x2 +
(−2 + y

)2
+

x
(−6 + 4x + 3y

)

(

x2 +
(−2 + y

)2
)2

+
x
(

4x − 3
(

2 + y
))

(

x2 +
(

2 + y
)2

)2
− 2

x2 +
(

2 + y
)2

,

b
(

x, y
)

=
4y

(

x4 +
(−4 + y2

)2 + 2x2
(

4 + y2
)

)2

×
[

48 − 96x − 24x2 − 16x3 − 9x4 + 2x5 + 2(−3 + 2x)
(

4 + x2
)

y2 + (3 + 2x)y4
]

.

(5.17)

Hence A · Jf(A−1(x, y)) · A−1 belongs to the normal algebra C, so the previous results are
available.

Thus

g̃
(

x, y
)

=
(

A ◦ f ◦A−1
)

(

x, y
)

=
(

u1
(

x, y
)

, v1
(

x, y
))

, (5.18)

with

u1
(

x, y
)

= −1 + x +
6 − 4x − 3y

2
(

x2 +
(−2 + y

)2
) +

6 − 4x + 3y

2
(

x2 +
(

2 + y
)2

) ,

v1
(

x, y
)

=
x
(−12 + 12x + x3)y + 2

(−2 + x2)y3 + y5

x4 +
(−4 + y2

)2 + 2x2
(

4 + y2
)

(5.19)

is just a (complex) analytic function, since

Jg̃
(

x, y
)

= A · Jf
(

A−1(x, y
)

)

·A−1 ∈ R(C), (5.20)
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so by letting z = x + iy, we have

g̃(z) = u1

(

z + z

2
,
z − z

2i

)

+ iv1

(

z + z

2
,
z − z

2i

)

=
2 − z2 + z3

4 + z2
. (5.21)

By Corollary 5.1 one has

Φ(z) = exp
[

−
∫z dζ

g̃(ζ)

]

, (5.22)

so that

Φ(z) =
(

z − 1 − i

z − 1 + i

)i

(z + 1)−1 =
e2 arctan(1−z)

z + 1
. (5.23)

Note that in R
2 one has Π(x, y) = exp[iArg(x, y)] hence the level curves of Π(·) are in

correspondence with the level curves of Arg(·). So

h(z) = Arg(Φ(z)) = − arctan
( y

1 + x

)

+
1
2
log

(

1 − 4y
2 + (−2 + x)x + y

(

2 + y
)

) (5.24)

is a constant of motion h associated to g̃(z) and the one associated to f(x, y) is

˜h
(

x, y
)

= (h ◦A)
(

x, y
)

= − arctan
(

2x + y

1 + x + 2y

)

+
1
2
log

(

1 − 4
(

2x + y
)

2 + 5x2 + y
(−2 + 5y

)

+ x
(

2 + 8y
)

)

.

(5.25)

So by Corollary 5.8 the trajectories associated to

(

x′(t), y′(t)
)

= f
(

x(t), y(t)
)

, (5.26)

are the level curves of ˜h(x, y). These are presented in Figure 1.
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Table 1: Coordinates of the intersection of the level curves ˜h(x, y) = −1.68195 and ˜h2(x, y) = 2.26841 − t for
t = 0, 1, 2, 3, 4.

Time (t) xt = (x(t), y(t))
0 (0.863, −0.783)
1 (0.4808, −0.0710)
2 (0.2002, 0.2548)

3 (0.0678, 0.4654)

4 (91.1109, −52.307)

Figure 1:Visualization of the trajectories of (5.26). In this casewe have plotted level bands of ˜h(x, y), so that
the trajectories are in fact the boundaries between the colored bands. We have also plotted, in white, the
trajectory that passes through a singular point corresponding to a pole of the (complex) analytic function
g̃(z). To exemplify the parametrization, we have plotted in black the points corresponding to t = 0, 1, 2, 3
(see Table 1).

In order to parametrize the solution we need to calculate ˜h2(x, y) which turns out to
be

˜h2
(

x, y
)

= − arctan
(−1 + x + 2y

1 − 2x − y

)

+ arctan
(

1 − x − 2y
1 + 2x + y

)

− 1
2
log

(

(2x + y)2 +
(

1 + x + 2y
)2

)

.

(5.27)

According to Corollary 5.8 we proceeded to calculate the intersection the level curves
˜h(x, y) = −1.68195 and ˜h2(x, y) = 2.26841 − t for t = 0, 1, 2, 3, 4. The results are shown in
Table 1 and as black dots in Figure 1.
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and Continuous Dynamical Systems A, vol. 17, no. 2, pp. 309–329, 2007.
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