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This paper presents the result on existence, uniqueness of mild solutions to neutral stochastic
partial functional integrodifferential equations under the Carathéodory-type conditions on the
coefficients. The results are obtained by using the method of successive approximation. An
example is provided to illustrate the results of this work.

1. Introduction

In this paper, our objective is to study the existence of mild solution for the following neutral
stochastic partial functional integrodifferential equation in a real separable Hilbert space:

d[u(t) −H(t, ut)] = A[u(t) −H(t, ut)]dt +

[∫ t

0
B(t − s)[u(s) −H(s, us)]ds + F(t, ut)

]
dt

+G(t, ut)dw(t), for t ∈ [0, T],

u0(·) = ϕ ∈ Cb
F0
([−r, 0];H), r > 0,

(1.1)

where ut(θ) = u(t+ θ) for θ ∈ [−r, 0]. The mappingsH : R+ ×Cr → H, F : R+ ×Cr → H, and
G : R+ × Cr → L(K,H) are Borel measurable.
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Neutral stochastic partial functional differential equations have atracted great interest
due to their applications in characterizing many problems in physics, biology, mechanics and
so on.

Qualitative properties such as existence, uniqueness, and stability for various sto-
chastic differential and integrodifferential systems have been extensively studied by many
researchers; see, for instance, [1–6] and the references therein. The problem of the existence
and uniqueness of solution for neutral stochastic partial functional differential equations in
the case where the coefficients do not satisfy the global Lipschitz condition was investigated
by Taniguchi [7], Turo [8], Cao et al. [9], and recently by Jiang and Shen [10].

Stimulated by the above works, we consider the existence and uniqueness of mild
solutions to (1.1) under some carathéodory-type conditions to the Hilbert space with the
Lipschitz condition in [11] and the non-Lipschitz condition in [12] being regarded as special
cases.

Our main results concerning (1.1) rely essentially on techniques using strongly con-
tinuous family of operators {R(t), t ≥ 0}, defined on the Hilbert space H and called the re-
solvent (precise definition will be given below).

The contents of the paper are as follows. In Section 2, we summarize several important
working tools on the Wiener process and deterministic integrodifferential equations that will
be used to develop our results. In Section 3, we study the existence of mild solutions for the
neutral system (1.1) using the theory of resolvent operators and by means of successive ap-
proximation (the Picard iteration). In Section 4, we provide an example to illustrate our main
approach.

2. Wiener Process and Deterministic Integrodifferential Equations

2.1. Wiener Process

Throughout this paper, let (Ω,F, {Ft}t≥0,P) be a complete probability space with a normal
filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right-continuous
while F0 contains all P-null sets). Moreover, let H and K be two real separable Hilbert spaces;
we denote by 〈·, ·〉

H
, 〈·, ·〉

K
their inner products and by ‖ · ‖

H
, ‖ · ‖

K
their vectors norms,

respectively. We denote by L(H,K) the space of all bounded linear operator from H into K,
equipped with the usual operator norm ‖·‖. In this paper, we always use the same symbol ‖·‖
to denote norms of operators regardless of the spaces potentially involvedwhen no confusion
possibly arises. Let r > 0 and Cr = C([−r, 0];H) denote the family of all continuous H-valued
functions ξ from [−r, 0] to H with norm ‖ξ‖C = supt∈[−r,0]‖ξ(t)‖H

. Let Cb
F0
([−r, 0];H) be the

family of all almost surely bounded, F0-measurable, C([−r, 0];H)-valued random variables.
Let {w(t) : t ≥ 0} denote a K-valued Wiener process defined on the probability space

(Ω,F, {Ft}t≥0,P)with covariance operatorQ; that is, E〈w(t), x〉
K
〈w(s), y〉

K
= (t∧s)〈Qx, y〉

K
,

for all x, y ∈ K, where Q is a positive, self-adjoint, trace class operator on K. In particu-
lar, we denotew(t) a K-valued Q-Wiener process with respect to {Ft}t≥0. To define stochastic
integrals with respect to the Q-Wiener process w(t), we introduce the subspace K0 =
Q1/2

K of K endowed with the inner product 〈u, v〉
K0

= 〈Q−1/2u,Q−1/2v〉
K
as a Hilbert space.

We assume that there exists a complete orthonormal system {ei} in K, a bounded sequence
of nonnegative real numbers λi such that Qei = λiei, i = 1, 2, . . ., and a sequence {βi(t)}i>1 of
independent standard Brownian motions such that

w(t) =
+∞∑
i=1

√
λiβi(t)ei, t ≥ 0, (2.1)
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andFt = Fw
t , whereFw

t is the σ-algebra generated by {w(s) : 0 ≤ s ≤ t}. LetL0
2 = L2(K0,H) be

the space of all Hilbert-Schmidt operators from K0 to H. It turns out to be a separable Hilbert
space equipped with the norm ‖v‖L0

2
= tr((vQ1/2)(vQ1/2)∗) for any v ∈ L0

2. Obviously, for

any bounded operator v ∈ L0
2, this norm reduces to ‖v‖2L0

2
= tr(vQv∗).

2.2. Partial Integrodifferential Equations

In this section, we recall some fundamental results needed to establish our results. Regarding
the theory of resolvent operators, we refer the reader to [13, 14]. Throughout the paper,
X is a Banach space A and B(t) are closed linear operators on X. Y represents the Banach
space D(A) equipped with the graph norm defined by

∣∣y∣∣Y :=
∣∣Ay
∣∣ + ∣∣y∣∣ for y ∈ Y. (2.2)

The notations C([0,+∞);Y ), B(Y,X) stand for the space of all continuous functions from
[0,+∞) into Y , the set of all bounded linear operators from Y into X, respectively. We con-
sider the following Cauchy problem:

v′(t) = Av(t) +
∫ t

0
B(t − s)v(s)ds, for t ≥ 0,

v(0) = v0 ∈ X.

(2.3)

Definition 2.1 (see [13]). A resolvent operator for (2.3) is a bounded linear operator-valued
function R(t) ∈ L(X) for t ≥ 0, having the following properties.

(i) R(0) = I and |R(t)| ≤ Neβt for some constants N and β.

(ii) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.

(iii) R(t) ∈ L(Y ) for t ≥ 0. For x ∈ Y , R(·)x ∈ C1([0,+∞);X) ∩ C([0,+∞);Y ) and

R′(t)x = AR(t)x +
∫ t

0
B(t − s)R(s)x ds

= R(t)Ax +
∫ t

0
R(t − s)B(s)x ds, for t ≥ 0.

(2.4)

In what follows we suppose the following assumptions.

(H1) A is the infinitesimal generator of a strongly continuous semigroup on X.

(H2) For all t ≥ 0, B(t) is closed linear operator from D(A) to X and B(t) ∈ B(Y,X).
For any y ∈ Y , the map t → B(t)y is bounded and differentiable, and the deriv-
ative t → B′(t)y is bounded uniformly continuous on R

+.

The resolvent operator plays an important role to study the existence of solutions and
to give a variation of constants formula for nonlinear systems. We need to know when the
linear system 2.1 has a resolvent operator. For more details on resolvent operators, we refer
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to [13, 14]. The following theorem gives a satisfactory answer to this problem, and it will be
used in this work to develop our main results.

Theorem 2.2 (see [13]). Assume that (H1)-(H2) hold. Then there exists a unique resolvent operator
of the Cauchy problem (2.3).

In the following, we give some results for the existence of solutions for the following
integrodifferential equation:

v′(t) = Av(t) +
∫ t

0
B(t − s)v(s)ds + q(t), for t ≥ 0

v(0) = v0 ∈ X,

(2.5)

where q : [0,+∞[→ X is a continuous function.

Definition 2.3 (see [13]). A continuous function v : [0,+∞) → X is said to be a strict solution
of (2.5) if

(i) v ∈ C1([0,+∞);X) ∩ C([0,+∞);Y ),

(ii) v satisfies (2.5), for t ≥ 0.

Remark 2.4. From this definition, we deduce that v(t) ∈ D(A), the function B(t − s)v(s) is
integrable, for all t ≥ 0, and s ∈ [0, t].

Theorem 2.5 (see [13]). Assume that (H1)-(H2) hold. If v is a strict solution of (2.5), then

v(t) = R(t)v0 +
∫ t

0
R(t − s)q(s)ds, for t ≥ 0. (2.6)

Accordingly, we make the following definition.

Definition 2.6 (see [13]). For v0 ∈ X, a function v : [0,+∞) → X is called a mild solution of
(2.5) if v satisfies (2.6).

The next theorem provides sufficient conditions for the regularity of solutions of (2.5).

Theorem 2.7 (see [13]). Let q ∈ C1([0,+∞);X) and v be defined by (2.6). If v0 ∈ D(A), then v is
a strict solution of (2.5).

3. Existence of Mild Solutions of (1.1)

Definition 3.1. A process {u(t), t ∈ [0, T]}, 0 ≤ T < +∞, is called a mild solution of (1.1) if

(i) u(t) is Ft-adapted, t ≥ 0 with
∫T
0 ‖u‖2

H
dt < +∞ a.s.;
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(ii) u(t) ∈ H has continuous paths on t ∈ [0, T] a.s., and, for each t ∈ [0, T], u(t) satisfies
the integral equation

u(t) −H(t, ut) = R(t)
[
ϕ(0) −H

(
0, ϕ
)]

+
∫ t

0
R(t − s)F(s, us)ds

+
∫ t

0
R(t − s)G(s, us)dw(s),

(3.1)

for any u0(·) = ϕ ∈ Cb
F0
([−r, 0];H).

In the rest of this paper we replace X by H in (H1) and (H2).
To guarantee the existence and uniqueness of a mild solution to (1.1), the following

much weaker conditions, instead of the non-Lipschitz condition, are used.

(H3) (a) There exists a function L(t, y) : R+ × R+ → R+ such that L(t, y) is locally
integrable in t ≥ 0 and is continuous monotone nondecreasing and concave
in y for any fixed t ∈ [0, T]. Moreover, for any fixed t ∈ [0, T] and ζ ∈ H, the
following inequality is satisfied:

‖F(t, ζ)‖2
H
+ ‖G(t, ζ)‖2L0

2
≤ L
(
t, ‖ζ‖2C

)
, t ∈ [0, T]. (3.2)

(b) For any constant K∗ > 0, the differential equation

dx

dt
= K∗L(t, x), t ∈ [0, T], (3.3)

has a global solution for any initial value x0.

(H4) (a) There exists a function λ(t, y) : R+ × R+ → R+ such that λ(t, y) is locally in-
tegrable in t ≥ 0 for any fixed y ≥ 0 and is continuousmonotone nondecreasing
and concave in y for any fixed t ∈ [0, T]. G(t, 0) = 0 for any fixed t ∈ [0, T].
Moreover, for any fixed t ∈ [0, T] and ζ, η ∈ H, the following inequality is
satisfied:

∥∥F(t, ζ) − F(t, η)
∥∥2

H
+
∥∥G(t, ζ) −G(t, η)

∥∥2
L0

2
≤ λ
(
t,
∥∥ζ − η

∥∥2
C

)
, t ∈ [0, T]. (3.4)

(b) For any constant K > 0, if a nonnegative function z(t) satisfies that

z(t) ≤ K

∫ t

0
λ(s, z(s))ds, t ∈ [0, T], (3.5)

then z(t) = 0 holds for any t ∈ [0, T].

(H5) The mapping H(t, x) satisfies that there exists a positive K such that, for any ζ, η ∈
H and t ≥ 0,

∥∥H(t, ζ) −H
(
t, η
)∥∥

H
≤ K
∥∥ζ − η

∥∥
C. (3.6)
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Remark 3.2. Let λ(t, u) = β(t)λ(u), t ∈ [0, T], where β(t) ≥ 0 is locally integrable and λ(u) is
a concave nondecreasing function from R+ to R+ such that λ(0) = 0, λ(u) > 0 for u >

0 and
∫
0+(1/λ(u))du = ∞. Then, by the comparison theorem of differential equations we

know that assumption (H4-(b)) holds.
Now let us give some concrete examples of the function λ(·). Let ξ > 0 and let δ ∈

(0, 1) be sufficient small. Define

λ1(u) = ξu, u ≥ 0,

λ2(u) =

⎧⎪⎨
⎪⎩
u log

(
u−1), 0 ≤ u ≤ δ,

δ log
(
δ−1) + λ

′
2(δ−)(u − δ), u > δ,

(3.7)

where λ
′
2 denotes the derivative of function λ2. They are all concave nondecreasing functions

satisfying
∫
0+(1/λi(u))du = ∞ (i = 1, 2).

In the following, we establish the existence and uniqueness theorem of the mild solu-
tion.

Theorem 3.3. If (H1)–(H5) hold, then there exists a unique mild solution to (1.1), provided that

K < 1. (3.8)

Proof. To obtain the existence of the solution to (1.1), we consider the Picard iteration which
is defined by

u0(t) = R(t)ϕ(0), t ∈ [0, T],

u0(t) = ϕ(t), t ∈ [−r, 0],
(3.9)

and un for n ≥ 1 is defined by

un(t) = ϕ(t) for t ∈ [−r, 0], (3.10)

un(t) −H
(
t, un

t

)
= R(t)

[
ϕ(0) −H

(
0, ϕ
)]

+
∫ t

0
R(t − s)F

(
s, un−1

s

)
ds

+
∫ t

0
R(t − s)G

(
s, un−1

s

)
dw(s), t ∈ [0, T].

(3.11)

The proof is divided into the following three steps.



International Journal of Mathematics and Mathematical Sciences 7

Step 1. We claim that the sequence {un(t), n ≥ 0} is bounded. From (3.11), for 0 ≤ t ≤ T ,

E sup
0≤s≤t

‖un(s) −H(s, un
s (s))‖2H ≤ 3E sup

0≤s≤t

∥∥R(t)[ϕ(0) −H(0, ϕ)]
∥∥2

H

+ 3E sup
0≤s≤t

∥∥∥∥∥
∫ t

0
R(t − s)F(s, un−1

s )ds

∥∥∥∥∥
2

H

+ 3E sup
0≤s≤t

∥∥∥∥∥
∫ t

0
R(t − s)G(s, un−1

s )dw(s)

∥∥∥∥∥
2

H

=: 3(I1 + I2 + I3).

(3.12)

By (H5),

I1 ≤ M(1 +K)2E
∥∥ϕ∥∥2C, (3.13)

where M = sup0≤t≤T |R(t)|2.
Note that

E

(
sup
0≤s≤t

∥∥∥un−1
s

∥∥∥2
C

)
≤ E

(
sup
0≤s≤t

∥∥∥un−1(s)
∥∥∥2

H

)
+ E
∥∥ϕ∥∥2C. (3.14)

By (H3) and the Jensen inequality, we obtain

I2 ≤ MT

∫ t

0
L

(
τ, E

(
sup
0≤l≤τ

∥∥∥un−1(l)
∥∥∥2

H

+
∥∥ϕ∥∥2C

))
dτ. (3.15)

By (H3), Liu and Hu [15, Theorem 1.2.5, page 14], and the Jensen inequality, there exists a
positive constant C1 such that

I3 ≤ C1

∫ t

0
EG

(
τ,
∥∥∥un−1(τ)

∥∥∥2
H

)
dτ

≤ C1

∫ t

0
EL

(
τ,
∥∥∥un−1(τ)

∥∥∥2
H

)
dτ

≤ C1

∫ t

0
L

(
τ, E
∥∥∥un−1(τ)

∥∥∥2
H

)
dτ.

(3.16)

Since L is continuous monotone nondecreasing in y, we obtain

I3 ≤ C1

∫ t

0
L

(
τ, E

(
sup
0≤l≤τ

∥∥∥un−1(l)
∥∥∥2

H

+
∥∥ϕ∥∥2C

))
dτ. (3.17)
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Recall that, for a, b ∈ X, ε ∈ (0, 1), ‖a − b‖2X ≤ 1/(1 − ε)‖a‖2X + (1/ε)‖b‖2X . Hence, substituting
(3.13)−(3.16) into (3.12) yields

E

(
sup
0≤s≤t

‖un(s)‖2
H
+
∥∥ϕ∥∥2C

)

≤ 1
1 −K

E sup
0≤s≤t

‖un(s) −H(s, un
s )‖2H +

1
K
E sup

0≤s≤t
‖H(s, un

s )‖2H + E
∥∥ϕ∥∥2C

≤ 3M(1 +K)2

1 −K
E
∥∥ϕ∥∥2C + E

∥∥ϕ∥∥2C +KE

(
sup
0≤s≤t

‖un(s)‖2
H
+
∥∥ϕ∥∥2C

)

+
3(MT + C1)

1 −K

∫ t

0
L

(
τ, E

(
sup
0≤l≤τ

∥∥∥un−1(l)
∥∥∥2

H

+
∥∥ϕ∥∥2C

))
dτ

≤ 3M(1 +K)2

(1 −K)2
E
∥∥ϕ∥∥2C +

1
1 −K

E
∥∥ϕ∥∥2C

+
3(MT + C1)

(1 −K)2

∫ t

0
L

(
τ, E

(
sup
0≤l≤τ

∥∥∥un−1(l)
∥∥∥2

H

+
∥∥ϕ∥∥2C

))
dτ.

(3.18)

Assumption (H3-(b)) indicates that there is a solution xt that satisfies

xt = C2E
∥∥ϕ∥∥2C + C3

∫ t

0
L(r, xr)dr, (3.19)

where C2 = 3M(1 +K)2/(1 −K)2 + 1/(1 −K), C3 = 3(MT + C1)/(1 −K)2.
Since E‖ϕ‖2C < ∞, from (3.17), we have E(sup0≤s≤t‖un

s‖2C) ≤ xt ≤ xT < ∞, which shows
the boundedness of the {un(t), n ≥ 0}.

Step 2. We claim that {un(t), n ≥ 0} is a Cauchy sequence. For all n,m ≥ 0 and t ∈ [0, T], from
(3.11), (H4), and Step 1, we have

E sup
0≤s≤t

∥∥∥un+1(s) −H(s, un+1
s (s)) − um+1(s) +H(s, um+1

s (s))
∥∥∥2

H

≤ 2E sup
0≤s≤t

∥∥∥∥
∫s

0
R(t − s)[F(s, un+1

τ ) − F(s, um+1
τ )]dτ

∥∥∥∥
2

H

+ 2E sup
0≤s≤t

∥∥∥∥∥
∫ t

0
R(t − s)[G(τ, un

s ) −G(τ, um
s )]dw(s)

∥∥∥∥∥
2

H

≤ 2(M + C4)
∫ s

0
L

(
τ, E

(
sup
0≤l≤τ

‖un(l) − um(l)‖2
H

))
dτ,

(3.20)
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where C4 is a generic constant used by Liu and Hu [15, Theorem 1.2.6, page 14]. Therefore,

E sup
0≤s≤t

∥∥∥u2+1(s) − um+1(s)
∥∥∥2

H

≤ 1
1 −K

E sup
0≤s≤t

∥∥∥un+1(s) −H
(
s, un+1

s (s)
)
− um+1(s) +H

(
s, um+1

s (s)
)∥∥∥2

H

+
1
K
E sup

0≤s≤t

∥∥∥H(s, un+1
s

)
−H
(
s, um+1

s

)∥∥∥2
H

≤ 2M(1 + C4)
1 −K

∫ s

0
L

(
τ, E

(
sup
0≤l≤τ

‖un(l) − um(l)‖2
H

))
dτ +KE

(
sup
0≤s≤t

∥∥∥un+1(s) − um+1(s)
∥∥∥2

H

)
.

(3.21)

Let

z(t) = lim
n,m→+∞

sup

(
Esup
0≤s≤t

‖un(s) − um(s)‖2
H

)
. (3.22)

By assumption (H4-(b)) and the Fatou lemma, we have

z(t) ≤ C5

∫ t

0
λ(s, z(s))ds, (3.23)

where C5 = 2M(1 + C4)/(1 − K)2. By assumption (H4-(b)) we obtain z(t) = 0. This shows
that {un(t), n ≥ 0} is Cauchy.

Step 3. We claim the existence and uniqueness of the solution to (1.1). The Borel-Cantelli
lemma shows that, as n → ∞, un(t) → u(t) holds uniformly for 0 ≤ t ≤ T . Hence, tak-
ing limits on both sides of (3.11), we obtain that u(t) is a solution to (1.1). This shows the
existence. The uniqueness of the solution could be obtained by the same procedure as Step 2.
The proof is complete.

Remark 3.4. If λ(t, u) = K1u for some constant K1, then condition (H4) implies a global
Lipschitz condition.

4. Application

We conclude this work with an example of the form

∂

∂t

[
x(t, ξ) −

∫0

−r
h(t, x(t + θ, ξ))dθ

]
=

∂2

∂ξ2

[
x(t, ξ) −

∫0

−r
h(t, x(t + θ, ξ))dθ

]

+
∫ t

0
b(t − s)

∂2

∂ξ2

[
x(s, ξ) −

∫0

−r
h(t, x(t + θ, ξ))dθ

]
ds
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+
∫0

−r
f(t, x(t + θ, ξ))dθ + g(t, x(t + θ, ξ))dw(t), for t ≥ 0, ξ ∈ [0, π],

x(t, 0) −
∫0

−r
h(t, x(t + θ, 0))dθ = 0, for t ≥ 0,

x(t, π) −
∫0

−r
h(t, x(t + θ, π))dθ = 0, for t ≥ 0,

x(θ, ξ) = x0(θ, ξ), for θ ∈ [−r, 0], ξ ∈ [0, π],

(4.1)

where w(t) denotes an R-valued Brownian motion, h, f, g : R
+×R → R are continuous func-

tions, b : R
+ → R is continuous, and x0 : [−r, 0] × [0, π] → R is a given continuous function

such that x0(·) ∈ L2([0, π]) is F0-measurable and satisfies E‖x0‖2 < ∞.
Let H = L2([0, π]) with the norm ‖ · ‖ and en :=

√
2/π sin(nx), (n = 1, 2, 3, . . .) denote

the completed orthonormal basis in H. Let w(t) :=
∑∞

n=1

√
λnβn(t)en(λn > 0), where βn(t) are

one-dimensional standard Brownian motion mutually independent on a usual complete pro-
bability space (Ω,F, {Ft}t≥0,P).

Define A : H → H by A = ∂2/∂z2, with domain D(A) = H2([0, π]) ∩H1
0([0, π]).

Then Ah = −∑∞
n=1 n

2〈h, en〉en, h ∈ D(A), where en, n = 1, 2, 3, . . ., is also the ortho-
normal set of eigenvectors of A. It is wellknown that A is the infinitesimal generator of a
strongly continuous semigroup on H; thus, (H1) is true.

Let B : D(A) ⊂ H → H be the operator defined by B(t)(z) = b(t)Az for t ≥ 0 and
z ∈ D(A).

We suppose that

(i) there exists a positive constant Lh, 0 <
√
πLhr < 1, such that

|h(t, ζ1) − h(t, ζ2)| ≤ Lh|ζ1 − ζ2|, for t ≥ 0, ζ1, ζ2 ∈ R; (4.2)

(ii) there exists a constant Lf , 0 <
√
πLfr < 1, such that

∣∣f(t, ζ1) − f(t, ζ2)
∣∣2 ≤ Lfλ

(
t, ‖ζ1 − ζ2‖2C

)
, for t ≥ 0, ζ1, ζ2 ∈ R; (4.3)

(iii) for t ≥ 0 and ζ1, ζ2 ∈ R, |g(t, ζ1) − g(t, ζ2)|2 ≤ λ(t, ‖ζ1 − ζ2‖2C).

Let C = C([−r, 0];H) and define the operators H,F,G : R
+ × C → H by

H
(
t, φ
)
(ξ) =

∫0

−r
h
(
t, φ(θ)(ξ)

)
dθ, for ξ ∈ [0, π], φ ∈ C,

F
(
t, φ
)
(ξ) =

∫0

−r
f
(
t, φ(θ)(ξ)

)
dθ, for ξ ∈ [0, π], φ ∈ C,

G
(
t, φ
)
(ξ) = g

(
t, φ(θ)(ξ)

)
.

(4.4)
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If we put

u(t) = x(t, ξ), for t ≥ 0, ξ ∈ [0, π],

ϕ(θ)(ξ) = x0(θ, ξ), for θ ∈ [−r, 0], ξ ∈ [0, π].
(4.5)

then (4.1) takes the following abstract form:

d[u(t) −H(t, ut)]

= A[u(t) −H(t, ut)]dt +

[∫ t

0
B(t − s)[u(s) −H(s, us)]ds + F(t, ut)

]
dt

+G(t, ut)dw(t), for t ∈ [0, T]

u0 = ϕ.

(4.6)

Moreover, if b is bounded and C1 function such that b′ is bounded and uniformly continuous,
then (H1) and (H2) are satisfied, and hence, by Theorem 2.2, (2.3) has a resolvent operator
(R(t))t≥0 on H. Thus, all the assumptions of Theorem 3.3 are fulfilled. Therefore, the existence
of a unique mild solution of (4.1) follows.
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