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We show that the quantum family of all maps from a finite space to a finite-dimensional compact
quantum semigroup has a canonical quantum semigroup structure.

1. Introduction

According to the Gelfand duality, the category of compact Hausdorff spaces and continuous
maps and the category of commutative unital C∗-algebras and unital ∗-homomorphisms
are dual. In this duality, any compact space X corresponds to C(X), the C∗-algebra of all
continuous complex valued maps on X, and any commutative unital C∗-algebra corresponds
to its maximal ideal space. Thus as the fundamental concept in noncommutative topology, a
noncommutative unital C∗-algebra A is considered as the algebra of continuous functions on
a symbolic compact noncommutative space QA. In this correspondence, ∗-homomorphisms
Φ : A → B interpret as symbolic continuous maps QΦ : QB → QA. Since the
coordinates observable of a quantum mechanical systems are noncommutative, some-times
noncommutative spaces are called quantum spaces.

Woronowicz [1] and Sołtan [2] have defined a quantum space QC of all maps from
QB to QA and showed that C exists under appropriate conditions on A and B. In [3], we
considered the functorial properties of this notion. In this paper, we show that if QA is a
compact finite dimensional (i.e.,A is unital and finitely generated) quantum semigroup, and
if QB is a finite commutative quantum space (i.e., B is a finite dimensional commutative
C∗-algebra), then QC has a canonical quantum semigroup structure. In the other words, we
construct the noncommutative version of semigroup F(X,S) described as follows.

LetX be a finite space and S be a compact semigroup. Then the space F(X,S) of all maps from
X to S is a compact semigroup with compact-open topology and pointwise multiplication.
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In Section 2, we define quantum families of all maps and compact quantum semi-
groups. In Section 3, we state and prove our main result; also we consider a result about
quantum semigroups with counits. At last, in Section 4, we consider some examples.

2. Quantum Families of Maps and Quantum Semigroups

All C∗-algebras in this paper have unit and all C∗-algebra homomorphisms preserve the units.
For any C∗-algebra A, IA and 1A denote the identity homomorphism from A to A, and the
unit of A, respectively. For C∗-algebras A, B, A ⊗ B denotes the spatial tensor product of A
and B. If Φ : A → B and Φ′ : A′ → B′ are ∗-homomorphisms, then Φ ⊗Φ′ : A ⊗A′ → B ⊗ B′

is the ∗-homomorphism defined by Φ ⊗Φ′(a ⊗ a′) = Φ(a) ⊗Φ′(a′) (a ∈ A, a′ ∈ A′).
Let X, Y , and Z be three compact Hausdorff spaces and C(Y,X) be the space of all

continuous maps from Y to X with compact open topology. Consider a continuous map f :
Z → C(Y,X). Then the pair (Z, f) is a continuous family of maps from Y to X indexed by f
with parameters in Z. On the other hand, by topological exponential law we know that f is
characterized by a continuous map ˜f : Y × Z → X defined by ˜f(y, z) = f(z)(y). Thus (Z, ˜f)
can be considered as a family of maps from Y to X. Now, by Gelfand’s duality we can simply
translate this system to noncommutative language.

Definition 2.1 (see [1, 2]). Let A and B be unital C∗-algebras. By a quantum family of maps
from QB to QA, we mean a pair (C,Φ), containing a unital C∗-algebra C and a unital ∗-
homomorphism Φ : A → B ⊗ C.

Now, suppose instead of parameter space Z we use C(Y,X) (note that in general this
space is not locally compact). Then the family

Id : C(Y,X) −→ C(Y,X)
(

˜Id : C(Y,X) × Y −→ X
) (2.1)

of all maps from Y to X has the following universal property.
For every family ˜f : Z × Y → X of maps from Y to X, there is a unique map f : Z →

C(Y,X) such that the following diagram is commutative:

Z × Y

f × IdY

X

XC(Y,X) × Y

f

Id

(2.2)

Thus, we can make the following definition in noncommutative setting.
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Definition 2.2 (see [1, 2]). With the assumptions of Definition 2.1, (C,Φ) is called a quantum
family of all maps from QB to QA if for every unital C∗-algebra D and any unital ∗-
homomorphism Ψ : A → B ⊗ D, there is a unique unital ∗-homomorphism Γ : C → D
such that the following diagram is commutative:

A

A

IB ⊗ Γ

Φ

B ⊗D

B ⊗ C

Ψ

(2.3)

By the universal property of Definition 2.2, it is clear that if (C,Φ) and (C′,Φ′) are
two quantum families of all maps from QB to QA, then there is a ∗-isometric isomorphism
between C and C′.

Proposition 2.3. Let A be a unital finitely generated C∗-algebra and B be a finite dimensional C∗-
algebra. Then the quantum family of all maps from QB to QA exists.

Proof. See [1] or [2].

Definition 2.4 (see [2, 4–6]). A pair (A,Δ) consisting of a unital C∗-algebra A and a unital
∗-homomorphism Δ : A → A ⊗ A is called a compact quantum semigroup if Δ is a
coassociative comultiplication: (Δ ⊗ IA)Δ = (IA ⊗Δ)Δ.

A ∗-homomorphism Δ : A → A ⊗ A induces a binary operation on the dual space
A∗ defined by τσ = (τ ⊗ σ)Δ for τ, σ ∈ A∗. Now, suppose that S is a compact Hausdorff
topological semigroup. Using the canonical identity C(S) ⊗ C(S) ∼= C(S × S), we define
a ∗-homomorphism Δ : C(S) → C(S) ⊗ C(S) by Δ(f)(s, s′) = f(ss′) for f ∈ C(S) and
s, s′ ∈ S. Then Δ is a coassociative comultiplication on C(S) and thus (C(S),Δ) is a compact
quantum semigroup. Conversely, if (A,Δ) is a compact quantum semigroup such that A
is abelian, then the character space of A, with the binary operation induced by Δ, is a
compact Hausdorff topological semigroup [7]. It is well known that a compact semigroup
with cancellation property is a compact group [8, Proposition 3.2]. Analogous cancellation
properties for quantum semigroups are defined as follows.

Definition 2.5. Let (A,Δ) be a compact quantum semigroup.

(i) (see [5]) (A,Δ) has left (resp., right) cancellation property if the linear span of {(b⊗
1)Δ(a) : a, b ∈ A} (resp., {(1 ⊗ b)Δ(a) : a, b ∈ A}) is dense in A ⊗A.

(ii) (see [5]) (A,Δ) has weak left cancellation property if, whenever τ, σ ∈ A∗ are such
that (τa)σ = 0 for all a ∈ A, we must have τ = 0 or σ = 0. Similarly, (A,Δ) has weak
right cancellation property if, whenever τ(σa) = 0 for all a ∈ A, we must have τ = 0
or σ = 0.

(iii) (see [2]) A left (resp., right) counit for (A,Δ), is a character ε on A (a unital ∗-
homomorphism ε : A → C), satisfying (ε ⊗ IA)Δ = IA (resp., (IA ⊗ ε)Δ = IA). A left
and right counit is called (two-sided) counit.

In the above definition the functionals τa and aτ are defined by τa(x) = τ(ax) and
aτ(x) = τ(xa).
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Remark 2.6. In [4], counits are characters on special dense subalgebras of compact quantum
groups. These subalgebras are constructed from finite dimensional unitary representations
of compact quantum groups. In this paper we mainly deal with quantum semigroups and
since it is not natural to define unitary representations for (quantum) semigroups, we use the
above notion for counits.

It is clear that the left (resp., right) cancellation property implies weak left (resp., weak
right) cancellation property. The converse is partially satisfied [5, Theorem 3.2]:

Theorem 2.7. Let (A,Δ) be a compact quantum semigroup. Then (A,Δ) has both left and right
cancellation properties if and only if it has both weak left and weak right cancellation properties.

Definition 2.8 (see [4, 5, 8]). A compact quantum semigroup with both left and right
cancellation properties is called compact quantum group.

Again consider compact semigroup S and its corresponding compact quantum
semigroup (C(S),Δ) defined above. Using Proposition 3.2 of [8], it is easily proved that S
is a compact group if and only if (C(S),Δ) is a compact quantum group.

3. The Results

In this section, we state and prove the main result.

Theorem 3.1. Let (A,Δ) be a compact quantum semigroup with finitely generated A, B be a finite
dimensional commutative C∗-algebra, and (C,Φ) be the quantum family of all maps from QB to QA.
Consider the unique unital ∗-homomorphism Γ : C → C ⊗ C such that the diagram

A
Φ

A⊗A

B ⊗ C

B ⊗ B C ⊗⊗ CB ⊗ C B ⊗⊗ C

B ⊗ C C⊗

IB ⊗ Γ∆

Φ ⊗Φ

IB ⊗ F ⊗ IC

m ⊗ IC⊗C

(3.1)

is commutative, where F : C ⊗ B → B ⊗ C is the flip map, that is, c ⊗ b �→ b ⊗ c (b ∈ B, c ∈ C), and
m : B ⊗ B → B is the multiplication ∗-homomorphism of B, that is,m(b ⊗ b′) = bb′ (b, b′ ∈ B). Then
(C,Γ) is a compact quantum semigroup.

Proof. We must prove that (IC ⊗ Γ)Γ = (Γ ⊗ IC)Γ, and for this, by the universal property of
quantum families of maps, it is enough to prove that

(IB ⊗ IC ⊗ Γ)(IB ⊗ Γ)Φ = (IB ⊗ Γ ⊗ IC)(IB ⊗ Γ)Φ. (3.2)
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Note that by the commutativity of (3.1), we have

(IB ⊗ Γ)Φ = (m ⊗ IC⊗C)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ. (3.3)

Let us begin from the left hand side of (3.2):

(IB ⊗ IC ⊗ Γ)(IB ⊗ Γ)Φ

= (IB ⊗ IC ⊗ Γ)(m ⊗ IC⊗C)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ

= (m ⊗ IC ⊗ Γ)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(IB⊗C⊗B ⊗ Γ)(Φ ⊗Φ)Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(IB⊗C⊗B ⊗ Γ)(Φ ⊗ IB⊗C)(IA ⊗Φ)Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(Φ ⊗ IB⊗C⊗C)(IA ⊗ IB ⊗ Γ)(IA ⊗Φ)Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(Φ ⊗ IB ⊗ Γ)(IA ⊗Φ)Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(Φ ⊗ [(IB ⊗ Γ)Φ])Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(Φ ⊗ [(m ⊗ IC⊗C)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ])Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(IB⊗C ⊗m ⊗ IC⊗C)(IB⊗C⊗B ⊗ F ⊗ IC)(Φ ⊗Φ ⊗Φ)(IA ⊗Δ)Δ.

(3.4)

For the right hand side of (3.2), we have

(IB ⊗ Γ ⊗ IC)(IB ⊗ Γ)Φ

= (IB ⊗ Γ ⊗ IC)(m ⊗ IC⊗C)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ

= (m ⊗ Γ ⊗ IC)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC ⊗ IC)(IB ⊗ IC ⊗ F ⊗ IC)(IB ⊗ Γ ⊗ IB ⊗ IC)(Φ ⊗Φ)Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(IB⊗C ⊗ F ⊗ IC)([(IB ⊗ Γ)Φ] ⊗Φ)Δ

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(IB⊗C ⊗ F ⊗ IC)([(m ⊗ IC⊗C)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ] ⊗Φ)Δ,

(3.5)

and thus if W = (IB ⊗ F ⊗ IC⊗C)(IB⊗C ⊗ F ⊗ IC), then

(IB ⊗ Γ ⊗ IC)(IB ⊗ Γ)Φ

= (m ⊗ IC⊗C⊗C)W(m ⊗ IC⊗C⊗B⊗C)(IB ⊗ F ⊗ IC⊗B⊗C)(Φ ⊗Φ ⊗Φ)(Δ ⊗ IA)Δ.
(3.6)
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Thus, since (IA ⊗Δ)Δ = (Δ ⊗ IA)Δ, to prove (3.2), it is enough to show that

(m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(IB⊗C ⊗m ⊗ IC⊗C)(IB⊗C⊗B ⊗ F ⊗ IC)

= (m ⊗ IC⊗C⊗C)W(m ⊗ IC⊗C⊗B⊗C)(IB ⊗ F ⊗ IC⊗B⊗C).
(3.7)

Let b1, b2, b3 ∈ B and c1, c2, c3 ∈ C. Then for the left hand side of (3.7), we have

(m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(IB⊗C ⊗m ⊗ IC⊗C)(IB⊗C⊗B ⊗ F ⊗ IC)(b1 ⊗ c1 ⊗ b2 ⊗ c2 ⊗ b3 ⊗ c3)

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(IB⊗C ⊗m ⊗ IC⊗C)(b1 ⊗ c1 ⊗ b2 ⊗ b3 ⊗ c2 ⊗ c3)

= (m ⊗ IC⊗C⊗C)(IB ⊗ F ⊗ IC⊗C)(b1 ⊗ c1 ⊗ (b2b3) ⊗ c2 ⊗ c3)

= (m ⊗ IC⊗C⊗C)(b1 ⊗ (b2b3) ⊗ c1 ⊗ c2 ⊗ c3)

= b1(b2b3) ⊗ c1 ⊗ c2 ⊗ c3

= (b1b2b3) ⊗ c1 ⊗ c2 ⊗ c3,

(3.8)

and for the right hand side of (3.7),

(m ⊗ IC⊗C⊗C)W(m ⊗ IC⊗C⊗B⊗C)(IB ⊗ F ⊗ IC⊗B⊗C)(b1 ⊗ c1 ⊗ b2 ⊗ c2 ⊗ b3 ⊗ c3)

= (m ⊗ IC⊗C⊗C)W(m ⊗ IC⊗C⊗B⊗C)(b1 ⊗ b2 ⊗ c1 ⊗ c2 ⊗ b3 ⊗ c3)

= (m ⊗ IC⊗C⊗C)W(b1b2 ⊗ c1 ⊗ c2 ⊗ b3 ⊗ c3)

= (m ⊗ IC⊗C⊗C)(b1b2 ⊗ b3 ⊗ c1 ⊗ c2 ⊗ c3)

= (b1b2b3) ⊗ c1 ⊗ c2 ⊗ c3.

(3.9)

Therefore, (3.7) is satisfied and the proof is complete.

Theorem 3.2. Let (A,Δ) be a compact quantum semigroup with a left counit. Suppose that B, C, Φ,
and Γ are as in Theorem 3.1. Then the compact quantum semigroup (C,Γ) has a left counit.

Proof. Let ε : A → C be a left counit for (A,Δ). Define the unital ∗-algebra homomorphism
ω : A → B ⊗ C = B by ω(a) = 1B ⊗ ε(a) = ε(a)1B (a ∈ A). Then the universal property
of (C,Φ) shows that there is a character ε̂ : C → C such that the following diagram is
commutative:

A

A

Φ
B ⊗ C

ω B ⊗ C

IB ⊗ ꉱɛ (3.10)
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We show that (ε̂ ⊗ IC)Γ = IC, and thus ε̂ is a counit for (C,Γ). By the universal property of
(C,Φ), it is enough to show that

(IB ⊗ [(ε̂ ⊗ IC)Γ])Φ = Φ. (3.11)

We have

(IB ⊗ [(ε̂ ⊗ IC)Γ])Φ = (IB ⊗ ε̂ ⊗ IC)(IB ⊗ Γ)Φ

= (IB ⊗ ε̂ ⊗ IC)(m ⊗ IC⊗C)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ

= (m ⊗ ε̂ ⊗ IC)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ

= (m ⊗ IC)(IB ⊗ ε̂ ⊗ IB ⊗ IC)(Φ ⊗Φ)Δ

= (m ⊗ IC)([(IB ⊗ ε̂)Φ] ⊗Φ)Δ

= (m ⊗ IC)(ω ⊗Φ)Δ

= (m ⊗ IC)(IB ⊗Φ)(ω ⊗ IA)Δ.

(3.12)

Since ε is a left counit for (A,Δ), we have

(ω ⊗ IA)Δ(a) = 1B ⊗ a, (3.13)

for every a ∈ A. This implies that

(m ⊗ IC)(IB ⊗Φ)(ω ⊗ IA)Δ(a) = (m ⊗ IC)(IB ⊗Φ)(1B ⊗ a)

= Φ(a),
(3.14)

for every a in A. This completes the proof.

Analogous of Theorem 3.2 is satisfied for quantum groups that have right and
(two-sided) counits. Some natural questions about the structure of the compact quantum
semigroup (C,Γ) arise.

Question 1. Let (A,Δ) and (C,Γ) be as in Theorem 3.1.

(i) Suppose that (A,Δ) has one of the left or weak left cancellation properties. Does
this hold for (C,Γ)? In particular, suppose the following.

(ii) Suppose that (A,Δ) is a compact quantum group. Is (C,Γ) a compact quantum
group?

(iii) Are the converses of (i) and (ii) satisfied?

We consider some parts of these questions for a simple example in the next section.
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4. Some Examples

In this section, we consider a class of examples. Let A = C
n be the C∗-algebra of functions

on the commutative finite space {1, . . . , n}, and let (C,Φ) be the quantum family of all maps
from QA to QA. A direct computation shows that C is the universal C∗-algebra generated by
n2 elements {cij : 1 ≤ i, j ≤ n} that satisfy the relations

(1) c2ij = cij = c∗ij for every i, j = 1, . . . , n,

(2)
∑n

j=1 cij = 1 for every i = 1, . . . , n, and

(3) cijcik = 0 for every i, k, j = 1, . . . , n.

Also, Φ : A → A ⊗ C is defined by Φ(ek) =
∑n

i=1 ei ⊗ cik, where e1, . . . , en is the standard
basis for A. Suppose that

ξ : {1, . . . , n} × {1, . . . , n} −→ {1, . . . , n} (4.1)

is a semigroup multiplication. Then ξ induces a comultiplication Δ : A → A ⊗A:

Δ(ek) =
n
∑

r,s=1

Δrs
k er ⊗ es, (4.2)

defined by Δrs
k = δkξ(r,s), where δ is the Kronecker delta. We compute the comultiplication

Γ : C → C ⊗ C, induced by Δ as in Theorem 3.1. We have

(Φ ⊗Φ)Δ(ek) = (Φ ⊗Φ)

(

n
∑

r,s=1

Δrs
k er ⊗ es

)

=
n
∑

r,s=1

Δrs
k Φ(er) ⊗Φ(es)

=
n
∑

r,s=1

n
∑

j=1

n
∑

i=1

Δrs
k ej ⊗ cjr ⊗ ei ⊗ cis,

(4.3)

and therefore

(m ⊗ IC⊗C)(IB ⊗ F ⊗ IC)(Φ ⊗Φ)Δ(ek)

= (m ⊗ IC⊗C)

⎛

⎝

n
∑

j=1

n
∑

i=1

n
∑

r,s=1

Δrs
k ej ⊗ ei ⊗ cjr ⊗ cis

⎞

⎠

=
n
∑

l=1

n
∑

r,s=1

Δrs
k el ⊗ clr ⊗ cls

=
n
∑

l=1

el ⊗
(

n
∑

r,s=1

Δrs
k clr ⊗ cls

)

.

(4.4)



International Journal of Mathematics and Mathematical Sciences 9

This equals to (IA ⊗ Γ)Φ(ek) = (IA ⊗ Γ)
∑n

i=1 ei ⊗ cik =
∑n

l=1 el ⊗ Γ(clk). Thus Γ is defined by

Γ(clk) =
n
∑

r,s=1

Δrs
k clr ⊗ cls. (4.5)

We now consider the special case n = 2, in more details. There are only four semigroup
structures (up to isomorphism and anti-isomorphism) on the set {1, 2}:

ξ1 : 11 = 1, 12 = 2, 21 = 2, 22 = 1.
ξ2 : 11 = 1, 12 = 2, 21 = 2, 22 = 2.
ξ3 : 11 = 1, 12 = 1, 21 = 1, 22 = 1.
ξ4 : 11 = 1, 12 = 1, 21 = 2, 22 = 2.

The semigroup structure ξ1 is a group structure and ξ4 has right cancellation property. In
Semigroup Theory, ξ2, ξ3, and ξ4, are called semilattice, null, and left-zero band structures,
respectively. For semigroup ({1, 2}, ξi), let (C2,Δi) and (C,Γi) be the corresponding quantum
semigroups, as above. A simple computation shows that:

Γ1(c11) = c11 ⊗ c11 + c12 ⊗ c12, Γ1(c12) = c11 ⊗ c12 + c12 ⊗ c11,

Γ1(c21) = c21 ⊗ c21 + c22 ⊗ c22, Γ1(c22) = c21 ⊗ c22 + c22 ⊗ c21,

Γ2(c11) = c11 ⊗ c11, Γ2(c12) = c12 ⊗ c12 + c11 ⊗ c12 + c12 ⊗ c11,

Γ2(c21) = c21 ⊗ c21, Γ2(c22) = c22 ⊗ c22 + c21 ⊗ c22 + c22 ⊗ c21,

Γ3(c11) = 1, Γ3(c12) = 0,

Γ3(c21) = 1, Γ3(c22) = 0,

Γ4(c) = c ⊗ 1 (∀c ∈ C).

(4.6)

As we have explained in Section 2, (C2,Δ1) is a compact quantum group and (C2,Δ4) is a
compact quantum semigroupwith right cancellation property. From the above computations,
it is clear that the compact quantum semigroup (C,Γ4) has right cancellation property. Now,
we show that (C,Γ1) is also a compact quantum group: the unital C∗-algebra C is generated
by the two unitary elements x = c11 − c12 and y = c21 − c22 (see the following remark for more
details). A simple computation shows that

Γ1(x) = x ⊗ x, Γ1
(

y
)

= y ⊗ y. (4.7)

This easily implies that (C,Γ1) has left and right cancellation properties, and therefore (C,Γ1)
is a compact quantum group.

Remark 4.1. (1) The algebra A = C
2 is the universal C∗-algebra generated by a unitary self-

adjoint element, say (1,−1). It follows from the proof of Theorem 3.3 of [2], that C becomes
the universal C∗-algebra generated by two unitary self-adjoint elements. A model for C is the
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C∗-algebra of all continuous maps from closed unit interval to 2 × 2 matrix algebra, which
take diagonal matrices at the endpoints of the interval, equivalently

C =
{(

f11 f12
f21 f22

)

: fij ∈ C[0, 1], f12(0) = f12(1) = f21(0) = f21(1) = 0
}

, (4.8)

with unitary self-adjoint generators

x =
(

cos(πt) sin(πt)
sin(πt) − cos(πt)

)

, y =
(− cos(πt) sin(πt)

sin(πt) cos(πt)

)

. (4.9)

In this representation of C, the generators cij ’s become: c11 = (1 + x)/2, c12 = (1 − x)/2,
c21 = (1 + y)/2 and c22 = (1 − y)/2. Also, the homomorphism Φ : C

2 → C
2 ⊗ C = C ⊕ C is

defined by Φ(1,−1) = (x, y). This representation of the C∗-algebra C is one of the elementary
examples of noncommutative spaces; see Section II.2.β of [9].

(2) There is another quantum semigroup structure on quantum families of all maps
from any finite quantum space to itself introduced by Sołtan [2].
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