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Given a collection of minimal graphs,M1,M2, . . . ,Mn, with isothermal parametrizations in terms
of the Gauss map and height differential, we give sufficient conditions onM1,M2, . . . ,Mn so that a
convex combination of themwill be a minimal graph. We will then provide two examples, taking a
convex combination of Scherk’s doubly periodic surface with the catenoid and Enneper’s surface,
respectively.

1. Introduction

Consider a surfaceM in R
3.

Definition 1.1. The normal curvature at a point p ∈M in the w direction is

k(w) = α′′ · n, (1.1)

where n is the unit normal at p, w is a tangent vector of M at p, and α is an arclength
parametrization of the curve created by the intersection of M with the the plane containing
w and n.

Definition 1.2. A minimal surface is a surfaceM with mean curvature

H =
k1 + k2

2
= 0, (1.2)

at all points p ∈ M, where k1 and k2 are the maximum and minimum normal curvature
values at p.
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The standard tool for representing minimal surfaces is the Weierstrass representation
as the following theorem demonstrates.

Theorem 1.3 (Weierstrass representation). Every regular minimal surface in R
3 has a local

isothermal parametric representation of the following form:

X(z) =
(
Re

∫
ϕ1(z)dz,Re

∫
ϕ2(z)dz,Re

∫
ϕ3(z)dz

)
, (1.3)

where each ϕk is analytic, φ2 = ϕ2
1 + ϕ

2
2 + ϕ

2
3 = 0, and |φ|2 = |ϕ1|2 + |ϕ2|2 + |ϕ3|2 /= 0, and is finite.

A common way to use the Weierstrass representation is in terms of the Gauss map,
G, and height differential, dh. These are analytic functions that provide information about
the geometry of the surface (see [1, 2]). When represented in these terms, the Weierstrass
representation becomes

X(z) = Re
∫(

1
2

(
1
G

−G
)
,
i

2

(
1
G

+G
)
, 1
)
dh. (1.4)

Another way to represent minimal surfaces is in terms of planar harmonic mappings.
Planar harmonic mappings have been studied independently of minimal surfaces and results
about them can be used to establish results about minimal surfaces (see [3]). The following
definitions and theorems will be useful in this discussion.

Definition 1.4. A continuous function f(x, y) = u(x, y) + iv(x, y) defined in a domain D ⊂ C

is a planar harmonic mapping or harmonic function in D if u and v are real harmonic functions
in D.

In this paper, we will only consider harmonic functions defined on the unit disk, D =
{z : |z| < 1}.

Theorem 1.5 (see [4]). If f = u + iv is harmonic in D, then f can be written as f = h + g, where h
and g are analytic.

Definition 1.6. The dilatation of f = h + g is ω(z) = g ′(z)/h′(z).

Theorem 1.7 (see [5]). The harmonic function f = h + g is locally univalent and orientation pre-
serving in D if and only if |w(z)| < 1, for all z ∈ D.

Notice that the first and second coordinates of the Weierstrass representation (1.3) are
the real part of analytic functions and are thus harmonic. The projection of a minimal surface
onto the x1x2-plane can then be viewed as the image of a planar harmonic mapping in the
complex plane. This gives rise to another Weierstrass representation in terms of the planar
harmonic mapping f = h + g. One advantage of this representation is that the univalence of
the harmonic mapping f guarantees that the corresponding minimal surface will be a graph
over the image of f and will thus be embedded. These ideas are summarized in the following
theorem.
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Theorem 1.8 (Weierstrass representation (h, g), see [6]). Let f = h + g be an orientation-
preserving harmonic univalent mapping of a domain D onto some domain Ω with dilatation, ω, that
is, the square of an analytic function in D. Then

X(z) =
(
Re

{
h(z) + g(z)

}
, Im

{
h(z) − g(z)}, 2 Im

{∫z

0

√
g ′(ζ)h′(ζ)dζ

})
(1.5)

gives an isothermal parametrization of a minimal graph whose projection onto the complex plane
is f(D). Conversely, if a minimal graph is parameterized by orientation-preserving isothermal
parameters z = x + iy ∈ D, then the projection onto its base plane defines a harmonic univalent
mapping f(z) = Re{h(z) + g(z)} + i Im{h(z) − g(z)} whose dilatation is the square of an analytic
function.

It can be derived from (1.4) and (1.5) that the Gauss map and height differential are
related to the harmonic mapping f = h + g by

G = −i
√
h′

g ′ =
−i√
ω
, dh = −2i

√
g ′h′dz. (1.6)

2. Harmonic Univalent Functions

We wish to establish conditions on a collection of minimal graphs to guarantee that a convex
combination of them will be a minimal graph. To do this, we will make use of Theorem 1.8
and some established results concerning the univalence of planar harmonic mappings. We
will first need some background information.

Definition 2.1. A domain Ω is convex in the direction eiα if for every a ∈ C the set

Ω ∩
{
a + teiα : t ∈ R

}
(2.1)

is either connected or empty. In particular, a domain is convex in the imaginary direction (CID)
if every line parallel to the imaginary axis has a connected intersection with Ω.

In general, it is difficult to establish the univalence of a planar harmonic mapping. The
shearing technique of Clunie and Sheil-Small however provides one way to do this.

Theorem 2.2 (see [4]). A harmonic function f = h+g locally univalent in D is a univalent mapping
of D onto a domain convex in the eiα direction if and only if ψ = h − e2iαg is a analytic univalent
mapping of D onto a domain convex in the eiα direction.

We will also need the following from Hengartner and Schober [7].

Condition 1. Let ψ be a nonconstant analytic function in D, and there exist sequences z′n, z
′′
n

converging to z = 1, z = −1, respectively, such that

lim
n→∞

Re
{
ψ
(
z′n

)}
= sup

|z|<1
Re

{
ψ(z)

}
,

lim
n→∞

Re
{
ψ
(
z′′n

)}
= inf

|z|<1
Re

{
ψ(z)

}
.

(2.2)
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Theorem 2.3 (see [7]). Suppose that ψ is analytic and nonconstant in D. Then

Re
{(

1 − z2
)
ψ ′(z)

}
≥ 0, z ∈ D (2.3)

if and only if ψ is univalent in D, ψ(D) is convex in the imaginary direction, and Condition 1 holds.

Note that the normalization in (2.2) can be thought of in some sense as if ψ(1) and
ψ(−1) are the right and left extremes in the image domain in the extended complex plane.

3. Convex Combinations of Minimal Graphs

We are now ready to prove our main result.

Theorem 3.1. LetM1, . . . ,Mn : D → R
3 be minimal graphs with isothermal parametrizations φk =

Re(φ1
k
, φ2

k
, φ3

k
) = Re

∫
((1/2)(1/Gk −Gk), (i/2)(1/Gk +Gk), 1)dhk, whereGk is the Gauss map and

dhk is the height differential (k = 1, . . . , n). Let

(1) Gk = G1 for each k,

(2) the projection ofMk on to the x1x2-plane,Ωk, be CID,

(3) Condition 1 holds for each φ1
k , fork = 1, . . . , n.

If (t1φ1
1 + · · · + tnφ1

n)
′
/= 0, thenM = t1M1 + · · · + tnMn is a minimal graph for all 0 ≤ tk ≤ 1, where

t1 + · · · + tn = 1 with G = G1 and dh = t1dh1 + · · · + tndhn.

Remark 3.2. This definition of the convex combinations of minimal graphs is very close to the
definition of the sum of two complete minimal surfaces with finite total curvature given by
Rosenberg and Toubiana in [8].

Proof. By Theorem 1.8, the projection of each minimal graph,Mk, onto the x1x2-plane defines
a univalent harmonic mapping fk = hk + gk with dilatation ωk = g ′

k
/h′

k
. Let

f = h + g = (t1h1 + · · · + tnhn) + (t1g1 + · · · + tngn). (3.1)

We will show that f is a univalent harmonic mapping of D onto a domain convex in the
imaginary direction. Since G1 = Gk, we see from (1.6) that ω1 = ωk for all k = 2, . . . , n. Also,
ω = g ′/h′ equals ω1 because

ω =
t1g

′
1 + · · · + tng ′

n

t1h
′
1 + · · · + tnh′n

=
t1h

′
1ω1 + · · · + tnh′nωn

t1h
′
1 + · · · + tnh′n

= ω1. (3.2)

Hence, f is locally univalent since |ω(z)| = |ω1(z)| < 1 for every z ∈ D. We nowwill show that
h + g is a univalent analytic mapping of D onto a domain convex in the imaginary direction,
so we can apply the shearing theorem. By Theorem 2.2, we know that each hk+gk is univalent
and CID. Also, hk+gk satisfies Condition 1 since Re{hk+gk} = Re{φ1

k}. Applying Theorem 2.3,
we have

Re
{(

1 − z2
)(
h′k(z) + g

′
k(z)

)} ≥ 0 (3.3)
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for every k ∈ {1, 2, . . . , n}. Then

Re
{(

1 − z2
)(
h′(z) + g ′(z)

)}

= Re
{(

1 − z2
)[
t1
(
h′1(z) + g

′
1(z)

)
+ · · · + tn

(
h′n(z) + g

′
n(z)

)]}

= t1 Re
{(

1 − z2
)(
h′1(z) + g

′
1(z)

)}
+ · · · + tn Re

{(
1 − z2

)(
h′n(z) + g

′
n(z)

)} ≥ 0.

(3.4)

Since h′ + g ′ = (t1φ1
1 + · · · + tnφ1

n)
′ /= 0, by applying Theorem 2.3 in the other direction, we have

that h + g is a conformal univalent mapping of D onto a CID domain. Thus, by Theorem 2.2,
f is a harmonic univalent mapping with f(D) being convex in the imaginary direction. We
can now apply the Weierstrass representation from Theorem 1.8 to lift f = h + g to a minimal
graph M̃ = (u, v, F(u, v)). Notice that

u = Re
{
h + g

}
= Re

{(
t1h1 + t1g1

)
+ · · · + (

tnhn + tngn
)}

= t1 Re
{
φ1
1

}
+ · · · + tn Re

{
φ1
n

}
.

(3.5)

Similarly, v = Im{h − g} = t1 Re{φ2
1} + · · · + tn Re{φ2

n}. Finally,

F(u, v) = 2 Im
{∫z

0

√(
t1g

′
1(ζ) + · · · + tng ′

n(ζ)
)(
t1h

′
1(ζ) + · · · + tnh′n(ζ)

)
dζ

}

= 2 Im
{∫z

0

√(
t1ω1(ζ)h′1(ζ) + · · · + tnωn(ζ)h′n(ζ)

)(
t1h

′
1(ζ) + · · · + tnh′n(ζ)

)
dζ

}

= 2 Im
{∫z

0

√
ω1(ζ)

(
t1h

′
1(ζ) + · · · + tnh′n(ζ)

)
dζ

}

= 2 Im
{∫z

0

(
t1

√
g ′
1(ζ)h

′
1(ζ) + · · · + tn

√
g ′
n(ζ)h′n(ζ)

)
dζ

}

= t1 Re
{
φ3
1

}
+ · · · + tn Re

{
φ3
n

}
.

(3.6)

Thus, M̃ = t1M1 + · · · + tnMn =M.

Using this theoremwe can take a convex combination of several classical minimal sur-
faces to produce new minimal graphs.
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Figure 1: Images of concentric circles under f and corresponding minimal surfaces for various values of t
in Example 3.3.

Example 3.3. Consider the Weierstrass data for the catenoid G1 = −1/z and dh1 = z/(1 −
z2)2dz, where z ∈ D. Using (1.6), we get

h1 =
1
4
log

(
1 + z
1 − z

)
+
1
2

z

1 − z2 ,

g1 =
1
4
log

(
1 + z
1 − z

)
− 1
2

z

1 − z2 .
(3.7)

Notice that φ1
1 = h1 + g1 = (1/2) log((1 + z)/(1 − z)) and Re{(1 − z2)((φ1

1)
′)} = 1 ≥ 0. So by

Theorem 2.3, φ1
1(D) is convex in the imaginary direction and φ1

1 satisfies Condition 1. Since
ω1 = −z2, the harmonic map f1 = h1 + g1 lifts to a minimal graph by Theorem 1.8.

Similarly, theWeierstrass dataG2 = −1/z and dh2 = (z/(z4−1))dz, where z ∈ D, results
in a graph of Scherk’s doubly periodic surface with ω2 = −z2, and

h2 =
1
4
log

(
1 + z
1 − z

)
+
i

4
log

(
i + z
i − z

)
,

g2 = −1
4
log

(
1 + z
1 − z

)
+
i

4
log

(
i + z
i − z

)
.

(3.8)
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Figure 2: Images of concentric circles under f and corresponding minimal surfaces for various values of t
in Example 3.4.

Now φ1
2 = h2 + g2 = (i/2) log((i + z)/(i − z)) and

Re
{(

1 − z2
)((

φ1
2

)′)}
= Re

{
1 − z2
1 + z2

}
≥ 0. (3.9)

Again, by Theorem 2.3, φ1
2(D) is convex in the imaginary direction and φ1

2 satisfies
Condition 1.

Since both parametrizations satisfy the hypotheses of Theorem 3.1, the harmonic map
f = t(h1 + g1) + (1 − t)(h2 + g2) will lift to a minimal graph over D with Weierstrass data
G = −1/z and dh = (t)dh1 + (1 − t)dh2 for all 0 ≤ t ≤ 1 (see Figure 1).

Example 3.4. The Weierstrass data G1 = −i/z and dh1 = −iz gives a parametrization of
Enneper’s surface. The functions G2 = −i/z and dh2 = z/(z4 − 1) give a different paramateri-
zation of Scherk’s doubly periodic surface than in Example 3.3. Notice that φ1

1 = z + (1/3)z3

and φ1
2 = −(i/2) log((1+z)/(1−z)). By Theorem 2.3, φ1

1 and φ
1
2 satisfy Condition 1. Thus, both

surfaces satisfy the hypotheses of Theorem 3.1, and the function f = t(h1+g1)+(1− t)(h2+g2)
will lift to a minimal graph for all 0 ≤ t ≤ 1 (see Figure 2).

Using this method, we were able to show that the combinations shown in Figure 3 are
also minimal graphs.
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(a) Enneper-Helicoid (b) Enneper-Scherk’s doubly
periodic

(c) Enneper-Scherk’s singly periodic

(d) Helicoid-Scherk’s doubly peri-
odic

(e) Helicoid-Scherk’s doubly
periodic 2

(f) Helicoid-Scherk’s singly periodic

Figure 3: Various combinations of minimal graphs.

Remark 3.5. In the examples of this paper we have only taken convex combinations using two
minimal graphs. It is possible, however, to take a convex combination of any finite number
of minimal graphs using Theorem 3.1.

Area for Further Investigation

The condition that two minimal graphs share the same Gauss map does not seem to be
necessary. It would be interesting to find an example of two minimal graphs with different
Gauss maps such that a convex combination of them is a minimal graph.
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