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A generalized identity for some partial differentiable mappings on a bidimensional interval is

obtained, and, by using this result, the author establishes generalizations of Simpson-like type
inequalities for coordinated s-convex mappings in the second sense.

1. Introduction

In recent years, a number of authors have considered error estimate inequalities for some
known and some new quadrature formulas. Sometimes they have considered generalizations
of the Simpson-like type inequality which gives an error bound for the well-known Simpson
rule.

Theorem 1.1. Let f : I C [0,00) — R be a four-time continuous differentiable mapping on [a, b]
and [|[f P oo = sup, | f@ (x)] < 00. Then, the following inequality holds:

‘ [r@ 47 (52) + 5] - 5 [ e

< Il

(1.1)

It is well known that the mapping f is neither four times differentiable nor is the fourth
derivative f®* bounded on (a,b), then we cannot apply the classical Simpson quadrature
formula.
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For recent results on Simpson type inequalities, you may see the papers [1-5].

In [2, 6-8], Dragomir et al. and Park considered among others the class of mappings
which are s-convex on the coordinates.

In the sequel, in this paper let A = [a,b] x [¢, d] be a bidimensional interval in R? with
a<bandc<d.

Definition 1.2. A mapping f : A — R will be called s-convex in the second sense on A if the
following inequality:

fAx+ (1 -Vz,dly+(1-Vw) <XV f(x,y) + (1-1)°f(z,w), (1.2)

holds, for all (x,y), (z,w) € A, A € [0,1] and s € [0, 1].

Modification for convex and s-convex mapping on A, which are also known as
co-ordinated convex, s-convex mapping, and s-r-convex, respectively, were introduced by
Dragomir, Sarikaya [5, 9, 10], and Park [4, 8, 11, 12].

Definition 1.3. A mapping f : A — R will be called coordinated s-convex in the second sense
on A if the partial mappings

fy:labl =R, fy(u)=f(uy),

(1.3)
fxile,d] =R, fu(v) = f(x,0),

are s-convex in the second sense, for all x € [a,b], y € [¢,d], and s € [0,1] [5, 9, 10].
A formal definition for coordinated s-convex mappings may be stated as follow [8].

Definition 1.4. A mapping f : A — R will be called coordinated s-convex in the second sense
on A if the following inequality:

fltx+ (1 -t)z,ly + (1 - V)w)

(1.4)
SEXf(y)+ A=)V f(z,y) + Q1= 1) f(x,w) + (1 -1)°(1-1)°f(z,w),

holds, forallt, A € [0,1], (x,y),(z,w) € A,and s € [0, 1].
In [2], S.S. Dragomir established the following theorem.

Theorem 1.5. Let f : A — R be convex on the coordinates on A. Then, one has the inequalities:

(5 5) < omau=g f:ff(x’y)dydx (15)

[f(a,c)+ f(b,c)+ f(a,d)+ f(b,d)].

<

N

In [13], Hwang et al. gave a refinement of Hadamard’s inequality on the coordinates
and they proved some inequalities for coordinated convex mappings.
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In [1, 6, 14], Alomari and Darus proved inequalities for coordinated s-convex
mappings.

In [15], Latif and Alomari defined coordinated h-convex mappings, established some
inequalities for co-ordinated h-convex mappings and proved inequalities involving product
of convex mappings on the coordinates.

In [3], Ozdemir et al. gave the following theorems:

Theorem 1.6. Let f : A C R* — R be a partial differentiable mapping on A. If 0% f /0tOA is convex
on the coordinates on A, then the following inequality holds:

5l(e55%) 5 (0 55%) 9 ("5 57)
+f<“T+b,c) +f(“T+”,d)] + e f(@e) + flad)+ fb,0) + f(b,d)
+@Tﬁajaﬁ£y@ymwu—% (16)

< (%)zw—a)(d—c)

62

aiox (% ©)

62
maﬁmd4+

62
awxw”4+

62

where

“b-a 6

1 (* flay)+4f((a+b)/2,y) + f(b,y)
d—cj { 6 }dy

A 1 J'b{f(x,c)+4f(x,(c+d)/2)+f(x,d)}dx

a

(1.7)

Cc

Theorem 1.7. Let f : A C R? — R bea partial differentiable mapping on A. If 0 f / 0td\ is bounded,
that is,

yf& +(1-t)b,Ac+ (1 -1)d)
otor ¢ ,Ae
) 1.8
of (ta+ (1 -t)b,Ac+ (1 -N)d)| < (18)
= su - b, ~ .
(X/y)e(a,£X(c,d) Otor

orall (£, ) € [0,1]?, then the following inequality holds:
g meq Y

sl 57) (0 27) o (57 57) o (557) o (579

b {f(@0) + fla,d) + f(b,c) + f(b,d)
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1 b d
Tb-a)d-o f I f (e y)dydx - A'

5\° 2 f
s<ﬁ) (b-a)d-o)f <

(ta + (1-t)b, Ac + (1 - 1)d)

7

oo

(1.9)

where A is defined in Theorem 1.6.

In [3], Ozdemir et al. proved a new equality and, by using this equality, established
some inequalities on coordinated convex mappings.

In this paper the author give a generalized identity for some partial differentiable
mappings on a bidimensional interval and, by using this result, establish a generalizations
of Simpson-like type inequalities for coordinated s-convex mappings in the second sense.

2. Main Results

To prove our main results, we need the following lemma.

Lemma 2.1. Let f : A — R be a partial differentiable mapping on A = [a,b] x [c,d] C R2. If
(62f/6t8)t) € Li(Q), then, for r1,12 > 2 and hy,hy € (0,1) with (1/r1) < hy < (1 = 1/ry) and
(1/12) < hy < ((r2 = 1) /1), the following equality holds:

(r1-2)(r-2)
rnr;

I(f)(l’ll, I’lz, Tl,Tz)ZIEt{ }f(hla + (1 - hl)b, th + (1 - hz)d)

+ { (r1-2) }{f(h1a+ (1-"h1)b,c) +f(h1[1+ (1 —hl)b/d)}

nr;

+ { — }{f(a, hac+ (1= h2)d) + f (b, hac + (1 - hp)d) }

rir

{f(a,c)+ f(a,d) + f(bc) + f(b,d)}

1
+ —_—
rirz

b
) rz(bl— a) f (fGc ) + (=2 f (e hac + (1= ho)d) + f(x,d) }dx

d
s | U@+ =2 fna+ @ =mby) + £(o,9))dy

1 b Ad
MCEDICED) J f flxy)dydx
1
—(b-a)d- c)ﬂopml, r,)q(h, 12, 1)

o’ f
otor

X

(ta+ (1-1)b, ke + (1 - V)d)dtd),
(2.1)
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where
t—l, te[0,h],
p(hi,m,t) = 2 1
- te (hlll]/
r
1
A—-—, A€ [0, hy],
q(hZI r, -)L) = ;:; -1
- ’ Le (hZ/ 1]
r

Proof. By the definitions of p(hy, r1,t) and g(hy, 12, 1), we can write

1 82
= JJ p(hy, 11, t)q(hy, 1o, .)L)—f (ta+ (1 -t)b, Ac + (1 = N)d)dtdr
0 oo\

2

1 1 o f
:J q(ha, 72, \) U Pl ri, ) =2 (ta+ (1= Db, de + (1= )d)dt | d

Mo 1\ &
f qha, 12, 1) U <t—r—l>ata)t(ta+(1—t)b,)uc+(1—i)d)dt

+f (t—”_l) Gl (ta + (1 - )b, Ac + (1 - V)d)dt|dA
" n ) otox e

1
- f g, 12, ) [I1 + T2 ) dA,
0

where

I —fhl<t— 1>a2f (ta+ (1-1)b,Ac + (1 N)d)dt
n= 1) otox s e '

1
_ rn—1 6
112 = J;h <t " )m(t + (1 t)b, Ac+ (]. )L)d)dt

By integration by parts, we have

M1\ &
I :f (t > ta+(1-t)b,Ac+ (1 -MN)d)dt
=) Sapta+ (1=Db,de+ (1-1)d)

-1 b[( ) (ha+ (1 - k)b, Ac + (1 1)d)
f(b e+ (1-0)d)

h1 af
| Lta+a-1brc+ A -1ad)at|,
., ol

(2.2)

(2.3)

(2.4)

(2.5)
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1 2
_ r - 1 0 f
Inp = L] <t - >8t61\ (ta+ (1-1)b, Ac + (1 - N)d)dt

- aib [(%)g—{(a,/\c+ (1-1)d)

(2.6)

~1\d
_ <h1 - “rl 1>a—§(h1a+ (1 - h)b, Ac + (1 - N)d)

1
B Ll %(ta +(1=1)b,Ac+ (1-N)d)dt|.

By using the equalities (2.5) and (2.6) in (2.3), we have

_(_1 n-2\ (' of
= (a_b>{< " ) _[O q(ha, 72, ) 57 (la+ (1= k)b, de + (1 - 1)d)dA
! 0
+ (:—1) JO g(ha, rz,A)a—i(b,Ac +(1-N)d)dA
1\ (* 0
+ <;> fo qg(ha, Tz,l)é(a, Ac+ (1-1)d)dAr (2.7)

1 1 af
_ L q(ha, 2, 1) fo ay(ta+ (1=Hb,de+ (1~ A)d)audt}

(@) (e (7))

where
1 af
Iy = f q(hz,?’z,)t)a—)t(hla + (1 =hy)b,Ac+ (1 -1)d)d)\,
0
1 af
Iy = f q(ha, 12, )L)a(b, Ac+ (1=MN)d)dA,
0 (2.8)

1
0
Iz = f q(ha, r2,)t)—air (a,Ac+ (1-N)d)d},
0

1 1
I = f q(ha, 72, \) f %(ta +(1-8)b, Ac + (1 - \)d)dAdt.
0 0

Note that

1

hy
@) L <)u - rl—z) %(hla +(1=hy)b, Ac + (1 - \)d)dA
= c—d { <h2 - %)f(hla + (1= h1)b, hoc + (1 = hy)d)

. (2.9)
+—f(a+ (1= h)b,d)
2

hy
-| f(ma+@Q-h)bAc+(1- A)d)dA},
0
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1 —
(i) hz(x-rZ 1)%(h1a+(1—h1)b,Ac+(1—)L)d)d)L

2

- cfd{<l>f<hla+ (1=h)b,c)

<h >f(h1a+(1 hi)b, hac + (1 - hy)d)

f (hia+ (1 - h1)b, Ac + (1 - A)d)d)u}

By the equalities (2.9) and (2.10), we have

1
)
I :f q(hz,rz,)u)é(hla+ (1-h)b, e + (1 - V)d)dA
0

hy
- j (A— l>2—§(h1a +(1=h)b, Ac + (1 - A)d)dA

0 L)

1 -—
+f ()L—TZ 1>%(h1a+(1—h1)b,)Lc+(1—)L)d)dA
h2 1'2 a.)L

1
c—d

{lf(hla +(1-h)b,c) + lf(hla +(1-hy)b,d)
2 r

1
—J- f(hia+ (1 -hi)b Ac+ (1- )L)d)d/\}.
0
By the similar way, we get the following;:

1
In = f q(hz,rz,)u)%(b,xc +(1-1d)dr

- {0 e (2

2)f(b, th + (1 - hz)d)

—f fb, e+ (1- )L)d)d/\},
0

1
Iy = q(hz,rz,)u) of (@ de+ (1-D)d)d)

= }d{r—zf(a, C) + gf(a, d) + <

Cc

2 )f(a, hoc + (1 - hy)d)

- fl flade+(1- A)d)d)u},
0

(2.10)

(2.11)

(2.12)

(2.13)
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1 1
o
Ly =f q(hz,rz,)t)f %(ta+(1—t)b,)tc+ (1 - A)d)dAdt
0 0

1

1 1 1 1
= c—d{gfof(t“ (1-1)b,c)dt + T—ZJ‘Of(ta+ (1-1t)b,d)dt

(2.14)

_ 1
+ (rzrz 2) L f(ta+ (1 —t)b, hac + (1 - hy)d)dt

1
—H f(ta+ (1 —-t)b,Ac+ (1- A)d)d/\dt}.
0

By the equalities (2.7) and (2.11)—(2.14) and using the change of the variables x = ta +
(I-t)band y = Ac+(1-1)d for (¢, 1) € [0, 1]2, then multiplying both sides with (b — a)(d - ¢),
we have the required result (2.1), which completes the proof. O

Remark 2.2. Lemma 2.1 is a generalization of the results which proved by Sarikaya, Set,
Ozdemir, and Dragomir [3, 5, 9, 10].

Theorem 2.3. Let f : A — R? be a partial differentiable mapping on A = [a,b] x [c,d] C R2.
If 3*f/0to\ is in Ly(A) and is a coordinated s-convex mapping in the second sense on A, then, for
11,12 > 2and hy, hy € (0,1) with (1/r1) <hy < ((r1—1)/r1), and (1/12) < hy < ((ra = 1) /1) the
following inequality holds:

1
m”(f)(hl,hz, r1,12)|
2 aZf
< ‘1/11(7’, S){ﬂz(?’, S) m(a/ C) + VQ(T, S) m(ar d)‘} (215)
02 02
+v1(r,s){y2(r,s) Ta];(b,c) +vy(r,8) Taj;(b,d) },
where
ui(r,s) = M(ry,s) + N(hy,s),
pa(r,s) = M(rz,s) + N(hy,s), (2.16)
vi(r,s) = M(ry,s) + N(1 - hy,s),
v (r,8) = M(r2,8) = N(1 = hy, s)
for
C242(r =1 4t (s — 1 +2)
M(rs) = (51 1)(s +2)r2 ’ 217)
s+1
N(h,s) = 1 (2h-1)s+2(h-1))

(s+1)(s+2)
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Proof. From Lemma 2.1 and by the coordinated s-convexity in the second sense of 6*f/0td\,
we can write

1
Goaa—g Nk

1
< JT |p(h1, 71, t)q(ha, 72, 1) |

o f
BtoX

(ta+ (1 -t)b, ke + (1 - N)d)|dtd)

< ff |p(h1, 11, t)q(ha, 72, 1) |

x {tA zf (a,c)| +t°(1-N)°
dtor atax
sys| OO ; o°f (218)
HL=D°L | =22 (b, 0) | + (1= (1= )" | == (b, d)‘}dtau
{f |p(h1,r1,t)|tsdt}{f |g(ha, 72, )| A5dA ;g;(a,c)
+L |q(ha, 72, 1) (1 = 1)*dA atax(“ d)'}
1 1
+ {jo|p(h1,r1,t)|(1—t)sdt}{fo|q(h2,r2,A)|Asd/\ G )‘
+f| (ha, 72, 1) | (1 = 1)°dA o L, d)'}
oV atoL
Note that
1
(i) fo |p(hy, 71, ) |£dt = pa (1, s),
1
(i) f (s, 7, | (1 - Ddt = wi(r,5),
0 (2.19)

1
(iii) f |q(ha, 72, 1) | AN = pia (1, 5),
0

1
(iv) fo |g(ha, 72, )| (1 = )°dA = va(r, 5).

By (2.18) and (2.19), we get the inequality (2.15) by the simple calculations. O
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Remark 2.4. In Theorem 2.3,

(i) if we choose hy = hp =1/2, 1 =1, =6,and s = 1in (2.15), then we get
I(f)<1 1 ,6, 6) <E>ZM(b—a)(d—c) (2.20)
22’ 72 ! ’

(ii) if we choose hy = hp =1/2, r1 =1, =2,and s = 1 in (2.15), then we get

2
‘I(f)G ; 2, 2) <é> M(b-a)(d-c), (2.21)
where
Zf 2
am( N * 51 & d)‘ am( I Yy (222)

which implies that Theorem 2.3 is a generalization of Theorem 1.6.

Theorem 2.5. Let f : A — R? be a partial differentiable mapping on A = [a,b] x [c,d] c R2. If
0> f/0td is bounded, that is,

62f et Zf
otor| — |lotor =~ (ta+ (1 -t)b,Ac+ (1-1)d)
) i - (2.23)
=  su ——(ta+(1-t)b,lc+ (1-1)d)| < o0
(x,y)e(a,lgx(c d) otol

forall (t,1) € [0, 1 , then, for r1,rp > 2 and hy, hy € (0,1) with (1/r1) < hy < ((rn —1)/r1) and
(1/r2) <hy < ((r2 - 1)/ 12), the following inequality holds:

1
- m@—o D hrn)

1 2 (2-1m) 1_ » (2-1)
5{2 hi + hi + r12 }{2 hy + b5 + r22

Proof. From Lemma 2.1, using the property of modulus and the boundedness of 6% f/9tds, we
get

T, (2.24)
otox ||

1
(b-a)(d-
azf
otor

|I(f) (hll hZ/ r, 7'2) |
(2.25)

‘ ” |p(h1,71,t)q(h2, 12, 1)) |dtd.L.
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By the simple calculations, we have

NG 1 2-
0 [ Iptr o= 2 -msnt s E270, (2.26)
0 1"1
N 1 2-7 (2.27)
(ll)’[ |q(h2/r2/)t)|dt=§_h2+h§+ ( 22).
0 T2

By using the inequality (2.25) and the equalities (2.26)-(2.27), the assertion (2.24)
holds. O

Remark 2.6. In Theorem 2.5,

1
(i) if we choose hy = hy = 5 and 1 = r; = 6, then we get

0 e)|<(3)

o*f

e LGt (2.28)

(ii) if we choose hy = hy =1/2 and 1 = r; = 2, then we get

(2=

o*f
ataAH (b-a)(d-c), (2.29)

which implies that Theorem 2.5 is a generalization of Theorem 1.7.
The following theorem is a generalization of Theorem 1.6.

Theorem 2.7. Let f : A = [a,b] x [c,d] C R> — R? be a partial differentiable mapping on
A = [a,b] x [c,d]. If |0*f/0toA|9(q > 1) is in L1(A) and is a coordinated s-convex mapping in the
second sense on A, then, for r1,r, > 2 and hy,hy € (0,1) with (1/r1) < hy < ((n —1)/m) and
(1/12) < hy < ((r2 — 1) /1), the following inequality holds:

1
m'l(f) (h1, ha, 11, 12) | < 3PP
’ { |02f/0tdA(a,c)|" + |8/ 3td(a,d)|" + |/ BtdA(b, )| + |02/ BtdA(b, ) | }W
(s+1)2 ’

(2.30)
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where

24 (11— rihy = DPT 4 (rhy - 1P

A (p+1)
2+ (12— oy = P 4 (rahy - 1)P!

+1
r (p+1)

Hs3
(2.31)
V3

Proof. From Lemma 2.1, we can write

1
m”(f)(hl,hz, r1,1)|

1
< [[ ot path )
0

62
Taf;(ta +(1-Hb, e+ (1-1)d)

X

dtd\

(2.32)

1 1/p
< {” lp(h1,71,8)q(ha, 72, 1) |”dtdA}
0

12

——(ta+ (1 -t)b,A\c+ (1 -1)d)
Hence, by the inequality (2.32) and the coordinated s-convexity in the second sense of

q 1/q
3ol dtd\ } .
|0 f /0tdA|, it follows that

1
[CEDICED) |I(f)(h1, ha,71,12)]

1 1/p
< {H |P(h1rr1/t)q(h2,r2,)t)|pdtd)t}
0

) { |02 f/0tdA(a, c)|7 + |02 f/0tdA(a, d)|7 + |02 £/ DtA(D, c)|9 + |32 F / OtDA (b, d)|7 }” i

(s+ 1)2
(2.33)
Note that
1 _ _1\pHl _1\pHl
(i)f lp(hy, 1, Pt = 2E ”}“Wl) + ik~ (2.34)
0 n o (p+1)
1 _ _ p+1 _ p+1
(ii)_[ Jq(nz )P = 22k Z D7+ (ahe T (2.35)
0 rn (p+1)

By the inequality (2.33) and the equalities (2.34) and (2.35), the assertion (2.30) holds.
O
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Remark 2.8. In Theorem 2.7,

(i) if we choose hy = hp =1/2, 11 =1, = 6,and s = 1, then we get

11 2(1+2041) ) P va,

(ii) if we choose hy = hp =1/2, 11 =1, =2,and s = 1, then we get

2/p
11 1 a
|I(f) <§, 512,2)| < {m} (b a)(d C)M (2.37)

(iii) if we choose hy = h, =1/2, 1 =1, =6,5s =1, and g = 1, then we get

|I(f)<1 Ly 6>| < <£>2(b—a)(d—c)M (2.38)
22777 )1 =\ 36 b ‘
where
|62 f/8tdN(a,c)|? + |02 f/dtdN(a,d)|? + |02 f/BtdA(b, c)|* + |92 /Dt (D, d) |
M, = n . (2.39)

Theorem 2.9. Let f : A — R? be a partial differentiable mapping on A = [a,b] x [c,d] Cc R If
|02 f/0tdA|1(q > 1) is in L1 (A) and is a coordinated s-convex mapping in the second sense on A, then,
forri,rp > 2and hy, hy € (0,1) with (1/r1) <hy < ((n—-1)/r) and (1/12) < hy < ((n—-1)/m),
the following inequality holds:

1
m”(f)(hl,hz,ﬁ,rz)l

1-(1/9)
1 (2-r11) (2-1)
g{<§—h1+h§ rlzr1><__h e rgrz)}

. g 52 g (2.40)
{” <”2 ata];(a’ |+ atafx(a d) >
2f Zf 1/q
<"2 atox C) 2| Brox >} ’

where p; and v;(i = 1,2) are as given in Theorem 2.3.
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Proof. From Lemma 2.1, we can write

1
[CEEICED) |1(f) (h1, ho, 11, 1) |
1
< ﬂ [P, 7, 09002, 7, )
o f
EYENY (ta+ (1 -t)b,Ac + (1 = V)d) |dtdAr
1 1=(1/4) (2.41)
< {” |p(h1,r1,t)q(h2,r2,)x)|dtdA}
0
1
x {ff |p(h1, 71, t)q(ho, 72, 1) |
0
2 q 1/q
ata)t ——(ta+ (1 -t)b,Ac+ (1 - N)d) dtd)t} .
By the simple calculations, we have
1 [—
(i)f |p(h1, i, t)|dt = % —hy + k2 + @ 2”), (2.42)
0 Tl
(! 1 2-
() [ latha,ra )l = 5 b+ i 2 043)
0 1"2

Since |0%f/0toA|9 is a coordinated s-convex mapping in the second sense on A =
[a,b] x [c,d], we have that, for t € [0,1],

q

of
L (ta+ (1 -t)b,Ac+ (1-N)d)| dtd)

otor

1
J‘J‘ |P(h1/ ri, t)q(h2/ 12, )L)
0

1
< J:[ |p(hlrrlrt)q(h21r21-/\)|
0

2 q
X {ts)LS of

ataA(a'C) +5(1-1)° f
+(1-1)°\°

atox
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