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The main is to develop a method to solve an arbitrary fuzzy matrix equation system by using the
embedding approach. Considering the existing solution to n × n fuzzy matrix equation system is
done. To illustrate the proposed model a numerical example is given, and obtained results are
discussed.

1. Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations was first introduced by Zadeh
[1], Dubois, and Prade [2]. We refer the reader to [3] for more information on fuzzy numbers
and fuzzy arithmetic. Fuzzy systems are used to study a variety of problems including fuzzy
metric spaces [4], fuzzy differential equations [5], fuzzy linear systems [6–8], and particle
physics [9, 10].

One of the major applications of fuzzy number arithmetic is treating fuzzy linear sys-
tems [11–20], several problems in various areas such as economics, engineering, and physics
boil down to the solution of a linear system of equations. Friedman et al. [21] introduced a
general model for solving a fuzzy n×n linear systemwhose coefficient matrix is crisp, and the
right-hand side column is an arbitrary fuzzy number vector. They used the parametric form
of fuzzy numbers and replaced the original fuzzy n×n linear system by a crisp 2n× 2n linear
system and studied duality in fuzzy linear systemsAx = Bx + y whereA and B are real n× n
matrix, the unknown vector x is vector consisting of n fuzzy numbers, and the constant y is
vector consisting of n fuzzy numbers, in [22]. In [6–8, 23, 24] the authors presented conjugate
gradient, LU decomposition method for solving general fuzzy linear systems, or symmetric
fuzzy linear systems. Also, Abbasbandy et al. [25] investigated the existence of a minimal
solution of general dual fuzzy linear equation system of the form Ax + f = Bx + c, where A
and B are realm × nmatrices, the unknown vector x is vector consisting of n fuzzy numbers,
and the constants f and c are vectors consisting of m fuzzy numbers.
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In this paper, we give a new method for solving a n × n fuzzy matrix equation system
whose coefficients matrix is crisp, and the right-hand sidematrix is an arbitrary fuzzy number
matrix by using the embedding method given in Cong-Xin and Min [26] and replace the
original n × n fuzzy linear system by two n × n crisp linear systems. It is clear that, in large
systems, solving n × n linear system is better than solving 2n × 2n linear system. Since per-
turbation analysis is very important in numerical methods. Recently, Ezzati [27] presented
the perturbation analysis for n × n fuzzy linear systems. Now, according to the presented
method in this paper, we can investigate perturbation analysis in two crisp matrix equation
systems instead of 2n × 2n linear system as the authors of Ezzati [27] and Wang et al. [28].

2. Preliminaries

Parametric form of an arbitrary fuzzy number is given in [29] as follows. A fuzzy number u in
parametric form is a pair (u, u) of functions u(r), u(r), 0 ≤ r ≤ 1, which satisfy the following
requirements:

(1) u(r) is a bounded left continuous nondecreasing function over [0, 1],

(2) u(r) is a bounded left continuous nonincreasing function over [0, 1], and

(3) u(r) ≤ u(r), 0 ≤ r ≤ 1.

The set of all these fuzzy numbers is denoted by E which is a complete metric space
with Hausdorff distance. A crisp number α is simply represented by u(r) = u(r) = α, 0 ≤ r ≤
1.

For arbitrary fuzzy numbers x = (x(r), x(r)), y = (y(r), y(r)), and real number k, we
may define the addition and the scalar multiplication of fuzzy numbers by using the exten-
sion principle as [29]

(a) x = y if and only if x(r) = y(r) and x(r) = y(r),

(b) x + y = (x(r) + y(r), x(r) + y(r)), and

(c) kx =
{

(kx, kx), k ≥ 0,
(kx, kx), k < 0.

Definition 2.1. The n × n linear system is as follows:

a11x1 + a12x2 + · · · + a1nxn = y1,

a21x1 + a22x2 + · · · + a2nxn = y2,

...

an1x1 + an2x2 + · · · + annxn = yn,

(2.1)

where the given matrix of coefficients A = (aij), 1 ≤ i, j ≤ n is a real n × n matrix, the given
yi ∈ E, 1 ≤ i ≤ n, with the unknowns xj ∈ E, 1 ≤ j ≤ n is called a fuzzy linear system (FLS).
The operations in (2.1) is described in next section.

Here, a numerical method for finding solution [21] of a fuzzy n × n linear system is
given.
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Definition 2.2 (see [21]). A fuzzy number vector (x1, x2, . . . , xn)
t given by

xj =
(
xj(r), xj(r)

)
; 1 ≤ j ≤ n, 0 ≤ r ≤ 1 (2.2)

is called a solution of the fuzzy linear system (2.1) if

n∑
j=1

aijxj =
n∑
j=1

aijxj = y
i
,

n∑
j=1

aijxj =
n∑
j=1

aijxj = yi.

(2.3)

If, for a particular i, aij > 0, for all j, we simply get

n∑
j=1

aijxj = y
i
,

n∑
j=1

aijxj = yi. (2.4)

Finally, we conclude this section by a reviewing on the proposed method for solving
fuzzy linear system [21].

The authors [21]wrote the linear system of (2.1) as follows:

SX = Y, (2.5)

where sij are determined as follows:

aij ≥ 0 =⇒ sij = aij , si+n,j+n = aij ,

aij < 0 =⇒ si,j+n = −aij , si+n,j = −aij ,
(2.6)

and any sij which is not determined by (2.1) is zero and

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...
xn

−x1
...

−xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
1
...
y
n

−y1
...

−yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.7)

The structure of S implies that sij ≥ 0, 1 ≤ i, j ≤ 2n and that

S =
(
B C
C B

)
, (2.8)
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where B contains the positive entries ofA, and C contains the absolute values of the negative
entries of A, that is, A = B − C.

Theorem 2.3 (see [21]). The inverse of nonnegative matrix

S =
(
B C
C B

)
(2.9)

is

S−1 =
(
D E
E D

)
, (2.10)

where

D =
1
2

[
(B + C)−1 + (B − C)−1

]
, E =

1
2

[
(B + C)−1 − (B − C)−1

]
. (2.11)

Corollary 2.4 (see [30]). The solution of (2.5) is obtained by

X = S−1Y. (2.12)

3. Fuzzy Matrix Equation System

A matrix system such as

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

...
xn1 xn2 · · · xnn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

y11 y12 · · · y1n

y21 y22 · · · y2n
...

...
...

...
yn1 yn2 · · · ynn

⎞
⎟⎟⎟⎠, (3.1)

where aij , 1 ≤ i, j ≤ n, are real numbers, the elements yij in the right-hand matrix are fuzzy
numbers, and the unknown elements xij are ones, is called a fuzzy matrix equation system
(FMES).

Using matrix notation, we have

AX = Y. (3.2)

A fuzzy number matrix

X =
(
x1, . . . , xj , . . . , xn

)
(3.3)

is called a solution of the fuzzy matrix system (2.1) if

Axj = yj , 1 ≤ j ≤ n. (3.4)
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In this section, we propose a new method for solving FMES.

Theorem 3.1. Suppose that the inverse of matrixA exists and xj = (xj1, xj2, . . . , xjn)
T is a solution of

this equation. Then xj + xj = (xj
1
+ xj1, xj

2
+ xj2, . . . , xj

n
+ xjn

)T is the solution of the following
systems:

A
(
xj + xj

)
= yj + yj, j = 1, 2, . . . , n, (3.5)

where yj + yj = (yj
1
+ yj1, yj

2
+ yj2, . . . , yj

n
+ yjn

)T , j = 1, 2, . . . , n.

Proof. It is the same as the proof of Theorem 3 in [27].
For solving (3.2), we first solve the following system:

a11

(
xj

1
+ xj1

)
+ · · · + a1n

(
xj

n
+ xjn

)
=
(
yj

1
+ yj1

)
,

a21

(
xj

1
+ xj1

)
+ · · · + a2n

(
xj

n
+ xjn

)
=
(
yj

2
+ yj2

)
,

...

an1

(
xj

1
+ xj1

)
+ · · · + ann

(
xj

n
+ xjn

)
=
(
yj

n
+ yjn

)
,

j = 1, 2, . . . , n.

(3.6)

Using matrix notation, we have

A
(
X +X

)
=
(
Y + Y

)
. (3.7)

Suppose that the solution of (3.7) is as

dj =

⎡
⎢⎢⎢⎣

dj1

dj2
...

djn

⎤
⎥⎥⎥⎦ = xj + xj =

⎡
⎢⎢⎢⎢⎢⎣

xj
1
+ xj1

xj
2
+ xj2
...

xj
n
+ xjn

⎤
⎥⎥⎥⎥⎥⎦
, j = 1, 2, . . . , n. (3.8)

Let matrices B and C have defined as Section 2. Now using matrix notation for (3.7), we get
in parametric form (B −C)(X(r) +X(r)) = (Y (r) +Y (r)). We can write this system as follows:

BX(r) − CX(r) = Y (r),

BX(r) − CX(r) = Y (r).
(3.9)
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By substituting X(r) = D − X(r) and X(r) = D − X(r) in the first and second equation of
above system, respectively, we have

(B + C)X(r) = Y (r) + CD, (3.10)

(B + C)X(r) = Y (r) + CD, (3.11)

therefore, we have

X(r) = (B + C)−1
(
Y (r) + CD

)
,

X(r) = (B + C)−1
(
Y (r) + CD

)
.

(3.12)

Therefore, we can solve fuzzy matrix equation system (3.2) by solving (3.7)–(3.10).

Theorem 3.2. Let in (3.3) j = 1, also g and G are the number of multiplication operations that are
required to calculate

X =
(
x1, x2, . . . , xn,−x1,−x2, . . . ,−xn

)T = S−1Y, (3.13)

(the proposed method in Friedman et al. [21]) and

xj =
(
xj

1
, xj

2
, . . . , xj

n
, xj1, xj2, . . . , xjn

)T
, (3.14)

from (3.7)–(3.10), respectively. Then G ≤ g and g −G = n2.

Proof. According to Section 2, we have

S−1 =
(
D E
E D

)
, (3.15)

where

D =
1
2

[
(B + C)−1 + (B − C)−1

]
, E =

1
2

[
(B + C)−1 − (B − C)−1

]
. (3.16)

Therefore, for determining S−1, we need to compute (B + C)−1 and (B − C)−1. Now, assume
that M is n × n matrix and denote by h(M) the number of multiplication operations that are
required to calculate M−1. It is clear that

h(S) = h(B + C) + h(B − C) = 2h(A), (3.17)

and hence

g = 2h(A) + 4n2. (3.18)
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For computing xj+xj = (xj
1
+xj1, xj

2
+xj2, . . . , xj

n
+xjn

)T from (3.7) and xj = (xj
1
, xj

2
, . . . , xj

n
)T

from (3.10) the number of multiplication operations is h(A) + n2 and h(B + C) + 2n2, respec-
tively. Clearly h(B + C) = h(A), so

G = 2h(A) + 3n2, (3.19)

and hence g −G = n2. This proves theorem.

Remark 3.3. In (3.3) if j = 1, then this paper is similar to [27].

Example 3.4. Consider the 2 × 2 fuzzy matrix equation system as follows:

(
2 −1
1 1

)(
x11 x12

x21 x22

)
=
(
(3r − 3, 3 − 3r) (4r − 4, 6 − 6r)
(2r + 1, 5 − 2r) (3r, 7 − 4r)

)
. (3.20)

By using (3.7) and (3.10), we have

(
x11(r) + x11(r) x12(r) + x12(r)
x21(r) + x21(r) x22(r) + x22(r)

)
=
(
2 3 − r
4 4

)
,

(
x11(r) x12(r)
x21(r) x22(r)

)
=
(

r r
1 + r 2r

)
,

(3.21)

and hence

(
x11(r) x12(r)
x21(r) x22(r)

)
=
(
2 − r 3 − 2r
3 − r 4 − 2r

)
. (3.22)

Obviously, x11, x12, x21 and x22, are fuzzy numbers.

4. Conclusions

In this paper, we propose a general model for solving fuzzy matrix equation system. The
original system with matrix coefficient A is replaced by two n × n crisp matrix equation sys-
tems.
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