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We prove some fixed point results for (ψ, φ)-weakly contractive maps in G-metric spaces, we show
that these maps satisfy property P. The results presented in this paper generalize several well-
known comparable results in the literature.

1. Introduction

Metric fixed point theory is an important mathematical discipline because of its applications
in areas such as variational and linear inequalities, optimization, and approximation theory.
Generalizations of metric spaces were proposed by Gähler [1, 2] (called 2 metricspaces). In
2005, Mustafa and Sims [3] introduced a new structure of generalized metric spaces, which
are called G-metric spaces as a generalization of metric space (X, d), to develop and introduce
a new fixed point theory for various mappings in this new structure. Many papers dealing
with fixed point theorems for mappings satisfying different contractive conditions on G-
metric spaces can be found in [4–16]. Let T be a self-map of a complete metric space (X, d)
with a nonempty fixed point set F(T). Then T is said to satisfy property P if F(T) = F(Tn) for
each n ∈ N. However, the converse is false. For example, consider X = [0, 1] and T defined
by Tx = 1 − x. Then T has a unique fixed point at x = 1/2, but every even iterate of T is the
identity map, which has every point of [0, 1] as a fixed point. On the other hand, ifX = [0, π],
Tx = cosx, then every iterate of T has the same fixed point as T (see [17, 18]). Jeong and
Rhoades [17] showed that maps satisfying many contractive conditions have property P .
An interesting fact about maps satisfying property P is that they have no nontrivial periodic
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points. Papers dealing with property P are those in [17–19]. In this paper, we will prove some
general fixed point theorems for (ψ, φ)-weakly contractive maps in G-metric spaces, and then
we show that these maps satisfy property P .

Now we give first in what follows preliminaries and basic definitions which will be
used throughout the paper.

2. Preliminaries

Consistent with Mustafa and Sims [3], the following definitions and results will be needed in
the sequel.

Definition 2.1. LetX be a nonempty set andG :X×X×X → R+ satisfy the following properties:

(G1) G (x, y, z) = 0 if x = y = z = 0 (coincidence),

(G2) 0 < G (x, x, y), for all x, y ∈ X, where x /=y,

(G3) G (x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z/=y,

(G4) G (x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),

(G5) G (x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).

Then, the function G is called the G-metric on X, and the pair (X,G) is called the G-
metric space.

Definition 2.2. A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Proposition 2.3. Every G-metric space (X,G) will define a metric space (X, dG) by dG(x, y) =
G(x, y, y) +G(y, x, x), for all x, y ∈ X.

Definition 2.4. Let (X,G) be a G-metric space, and (xn) be a sequence of points in X. Then,

(i) a point x ∈ X is said to be the limit of the sequence (xn) if

G(xn, xm, x) −→ 0, (as n,m −→ ∞), (2.1)

and we say that the sequence (xn) is G convergent to x (we say xn
(G)→ x),

(ii) A sequence (xn) is said to be G-Cauchy if

G(xn, xm, xl) −→ 0, (as n,m, l −→ ∞), (2.2)

(iii) (X,G) is called a complete G-metric space if every G-Cauchy sequence in X is G
converge in X.

Proposition 2.5. Let (X,G) be a G-metric space, then the following are equivalent:

(1) xn
(G)→ x,

(2) G(xn, xn, x) → 0 (as n → ∞),

(3) G(xn, x, x) → 0 (as n → ∞),

(4) G(xn, xm, x) → 0 (as n → ∞).
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Proposition 2.6. Let (X,G) be a G-metric space, then the following are equivalent:

(1) (xn) is be G-Cauchy in X,

(2) G(xn, xm, xm) → 0 (as n,m → ∞).

Proposition 2.7. Let (X,G) be a G-metric space. Then, for any x, y, z, a ∈ X, it follows that:

(i) If G(x, y, z) = 0, then x = y = z = 0,

(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),
(iii) G(x, x, y) ≤ 2G(y, x, x),

(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z),
(v) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a).

3. Main Results

Throughout the paper,N denotes the set of all natural numbers.

Definition 3.1 (see [20]). A function ψ : [0,∞) → [0,∞) is called altering distance if the
following properties are satisfied:

(1) ψ is continuous and increasing,

(2) ψ(t) = 0 if and only if t = 0.

The altering distance functions alter themetric distance between two points and enable
us to deal with relatively new classes of fixed points problems.

Theorem 3.2. Let (X,G) be a complete G-metric space. Let f be a self-map on X satisfying the
following:

ψ
(
G
(
fx, fy, fz

))

≤ ψ
⎛

⎝max

⎧
⎨

⎩

G
(
x, y, z

)
, G

(
x, fx, fx

)
, G

(
y, fy, fy

)
, G

(
z, fz, fz

)
,

αG
(
fx, fx, y

)
+ (1 − α)(G(fy, fy, z)),

βG
(
x, fx, fx

)
+
(
1 − β)(G(y, fy, fy)),

⎫
⎬

⎭

⎞

⎠

− φ
⎛

⎝max

⎧
⎨

⎩

G
(
x, y, z

)
, G

(
x, fx, fx

)
, G

(
y, fy, fy

)
, G

(
z, fz, fz

)
,

αG
(
fx, fx, y

)
+ (1 − α)(G(fy, fy, z)),

βG
(
x, fx, fx

)
+
(
1 − β)(G(y, fy, fy)),

⎫
⎬

⎭

⎞

⎠,

(3.1)

for all x, y, z ∈ X, where 0 < α, β < 1, ψ is an altering distance function, and φ : [0,∞) → [0,∞)
is a continuous function with φ(t) = 0 if and only if t = 0. Then, f has a unique fixed point (say u),
where f is G continuous at u.

Proof. Fix x0 ∈ X. Then construct a sequence {xn} by xn+1 = fxn = fnx0. We may assume that
xn /=xn+1 for each n ∈N ∪{0}. Since, if there exist n ∈N such that xn = xn+1, then xn is a fixed
point of f .
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From (3.1), substituting x ≡ xn−1, y = z ≡ xn then, for all n ∈N,

ψ(G(xn, xn+1, xn+1))

≤ ψ
⎛

⎝max

⎧
⎨

⎩

G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn+1, xn+1),
αG(xn, xn, xn) + (1 − α)(G(xn+1, xn+1, xn)),
βG(xn−1, xn, xn) +

(
1 − β)(G(xn+1, xn+1, xn))

⎫
⎬

⎭

⎞

⎠

− φ
⎛

⎝max

⎧
⎨

⎩

G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn+1, xn+1),
αG(xn, xn, xn) + (1 − α)(G(xn+1, xn+1, xn)),
βG(xn−1, xn, xn) +

(
1 − β)(G(xn+1, xn+1, xn))

⎫
⎬

⎭

⎞

⎠

≤ ψ
(
max

{
G(xn−1, xn, xn), G(xn, xn+1, xn+1),

βG(xn−1, xn, xn) +
(
1 − β)(G(xn+1, xn+1, xn))

})

− φ
(
max

{
G(xn−1, xn, xn), G(xn, xn+1, xn+1),

βG(xn−1, xn, xn) +
(
1 − β)(G(xn+1, xn+1, xn))

})
.

(3.2)

LetMn = max{G(xn−1, xn, xn), G(xn, xn+1, xn+1)}. Then, (3.2) gives

ψ(G(xn, xn+1, xn+1)) ≤ ψ(Mn) − φ(Mn). (3.3)

We have two cases, either Mn = G(xn, xn+1, xn+1) or Mn = G(xn−1, xn, xn). Suppose that, for
some n ∈N0, Mn = G(xn, xn+1, xn+1). Then, we have

ψ(G(xn, xn+1, xn+1)) ≤ ψ(G(xn, xn+1, xn+1)) − φ(G(xn, xn+1, xn+1)). (3.4)

Therefore, ψ(G(xn, xn+1, xn+1)) = 0. Hence xn = xn+1. This is a contradiction since the xn’s are
distinct.

Thus,Mn = G(xn, xn+1, xn+1), and (3.2) becomes

ψ(G(xn, xn+1, xn+1)) ≤ ψ(G(xn−1, xn, xn)) − φ(G(xn−1, xn, xn))
≤ ψ(G(xn−1, xn, xn)).

(3.5)

But ψ is an increasing function. Thus, from (3.5), we get

G(xn, xn+1, xn+1) ≤ G(xn−1, xn, xn), ∀n ∈N. (3.6)

Therefore, {G(xn, xn+1, xn+1), n ∈ N ∪ {0}} is a positive nonincreasing sequence. Hence there
exists r ≥ 0 such that

lim
n→∞

G(xn, xn+1, xn+1) = r. (3.7)
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Letting n → ∞, and using (3.5) and the continuity of ψ and φ, we get

ψ(r) ≤ ψ(r) − φ(r). (3.8)

Hence, φ(r) = 0, therefore r = 0, which implies that

lim
n→∞

G(xn, xn+1, xn+1) = 0. (3.9)

Consequently, for a given ε > 0, there is an integer n0 such that

G(xn, xn+1, xn+1) <
ε

2
, ∀n > n0. (3.10)

Form,n ∈N withm > n, we claim that

G(xn, xm, xm) <
ε

2
, ∀m > n > n0. (3.11)

To show (3.11), we use induction on m. Inequality (3.11) holds for m = n + 1 from (3.10).
Assume (3.11) holds form = k, that is,

G(xn, xk, xk) <
ε

2
, ∀n > n0. (3.12)

For all n > n0, take m = k + 1. Using (G5) in Definition 2.1 and inequalities (3.10), (3.12), we
get

G(xn, xk+1, xk+1) ≤ G(xn, xn+1, xn+1) +G(xn+1, xk+1, xk+1)

≤ G(xn, xn+1, xn+1) +G(xn, xk, xk) < ε.
(3.13)

By induction onm, we conclude that

G(xn, xm, xm) <
ε

2
, ∀m > n > n0. (3.14)
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We conclude from Proposition 2.6 that {xn} is a G-Cauchy sequence in X. From the

completeness of X, there exists u in X such that xn
(G)→ u. For n ∈N, we have

ψ
(
G
(
fu, fu, xn

))
= ψ

(
G
(
fu, fu, fxn−1

))

≤ ψ
⎛

⎝max

⎧
⎨

⎩

G(u, u, xn−1), G
(
u, fu, fu

)
, G

(
u, fu, fu

)
, G(xn−1, xn, xn),

αG
(
fu, fu, u

)
+ (1 − α)(G(fu, fu, xn−1

))
,

βG
(
u, fu, fu

)
+
(
1 − β)(G(u, fu, fu))

⎫
⎬

⎭

⎞

⎠

− φ
⎛

⎝max

⎧
⎨

⎩

G(u, u, xn−1), G
(
u, fu, fu

)
, G

(
u, fu, fu

)
, G(xn−1, xn, xn),

αG
(
fu, fu, u

)
+ (1 − α)(G(fu, fu, xn−1

))
,

βG
(
u, fu, fu

)
+
(
1 − β)(G(u, fu, fu))

⎫
⎬

⎭

⎞

⎠

≤ ψ
(
max

{
G(u, u, xn−1), G

(
u, fu, fu

)
, G(xn−1, xn, xn),

αG
(
fu, fu, u

)
+ (1 − α)(G(fu, fu, xn−1

))
})

− φ
(
max

{
G(u, u, xn−1), G

(
u, fu, fu

)
, G(xn−1, xn, xn),

αG
(
fu, fu, u

)
+ (1 − α)(G(fu, fu, xn−1

))
})

.

(3.15)

Letting n → ∞, and using the fact that ψ is continuous and G is continuous on its variables,
we get that G(u, fu, fu) = 0. Hence fu = u. So u is a fixed point of f . Now, to show
uniqueness, let v be another fixed point of f with v /=u. Therefore,

ψ(G(u, u, v)) = ψ
(
G
(
fu, fu, fv

))

≤ ψ

⎛

⎝max

⎧
⎨

⎩

G(u, u, v), G
(
u, fu, fu

)
, G

(
u, fu, fu

)
, G

(
v, fv, fv

)
,

αG
(
fu, fu, u

)
+ (1 − α)(G(fu, fu, v)),

βG
(
u, fu, fu

)
+
(
1 − β)(G(v, fv, fv))

⎫
⎬

⎭

⎞

⎠

− φ
⎛

⎝max

⎧
⎨

⎩

G(u, u, v), G
(
u, fu, fu

)
, G

(
u, fu, fu

)
, G

(
v, fv, fv

)
,

αG
(
fu, fu, u

)
+ (1 − α)(G(fu, fu, v)),

βG
(
u, fu, fu

)
+
(
1 − β)(G(v, fv, fv))

⎫
⎬

⎭

⎞

⎠

= ψ(max{G(u, u, v), (1 − α)G(u, u, v)})

− φ(max{G(u, u, v), (1 − α)G(u, u, v)})

= ψ(G(u, u, v)) − φ(G(u, u, v)).
(3.16)

Hence,

ψ(G(u, u, v)) ≤ ψ(G(u, u, v)) − φ(G(u, u, v)). (3.17)

This implies that φ(G(u, u, v)) = 0, then G(u, u, v) = 0 and u = v.
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Now to show that f is G continuous at u, let {xn} be a sequence in X with limit

u (i.e., xn
(G)→ u). Using (3.1), we have

ψ
(
G
(
fxn, u, u

))
= ψ

(
G
(
fxn, fu, fu

))

≤ ψ

⎛

⎝max

⎧
⎨

⎩

G(xn, u, u), G
(
xn, fxn, fxn

)
, G

(
u, fu, fu

)
, G

(
u, fu, fu

)
,

αG
(
fxn, fxn, u

)
+ (1 − α)(G(fu, fu, u)),

βG
(
xn, fxn, fxn

)
+
(
1 − β)(G(u, fu, fu))

⎫
⎬

⎭

⎞

⎠

− φ
⎛

⎝max

⎧
⎨

⎩

G(xn, u, u), G
(
xn, fxn, fxn

)
, G

(
u, fu, fu

)
, G

(
u, fu, fu

)
,

αG
(
fxn, fxn, u

)
+ (1 − α)(G(fu, fu, u)),

βG
(
xn, fxn, fxn

)
+
(
1 − β)(G(u, fu, fu))

⎫
⎬

⎭

⎞

⎠

= ψ
(
max

{
G(xn, u, u), αG

(
fxn, fxn, u

)
, βG

(
xn, fxn, fxn

)})

− φ(max
{
G(xn, u, u), αG

(
fxn, fxn, u

)
, βG

(
xn, fxn, fxn

)})

≤ ψ
(
max

{
G(xn, u, u), αG(xn+1, xn+1, u), βG(xn, xn+1, xn+1)

})

≤ ψ
(
max

{
G(xn, u, u), αG(xn+1, xn+1, u), βG(xn, u, u) + βG(u, xn+1, xn+1)

})

≤ ψ
(
max

{
G(xn, u, u), G(xn+1, xn+1, u), βG(xn, u, u) + βG(u, xn+1, xn+1)

})
.

(3.18)

But ψ is an increasing function, thus from (3.18), we get

G
(
fxn, u, u

) ≤ max
{
G(xn, u, u), G(xn+1, xn+1, u), βG(xn+1, u, u) + βG(u, xn+1, xn+1)

}
. (3.19)

Therefore, limn→∞G(fxn, u, u) = 0.

Corollary 3.3. Let T be a self-map on a complete G-metric space X satisfying the following for all
x, y, z ∈ X :

G
(
fx, fy, fz

) ≤ λmax

⎧
⎨

⎩

G
(
x, y, z

)
, G

(
x, fx, fx

)
, G

(
y, fy, fy

)
, G

(
z, fz, fz

)
,

αG
(
fx, fx, y

)
+ (1 − α)(G(fy, fy, z)),

βG
(
x, fx, fx

)
+
(
1 − β)(G(y, fy, fy))

⎫
⎬

⎭
, (3.20)

where 0 < α, β, λ < 1, ψ is an altering distance function, and φ : [0,∞) → [0,∞) is a continuous
function with φ(t) = 0 if and only if t = 0. Then f has a unique fixed point (say u), and f is G
continuous at u.

Proof. We get the result by taking ψ(t) = t and φ(t) = t − λt, then apply Theorem 3.2.
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Corollary 3.4. Let (X,G) be a complete G-metric space. Let f be a self-map on X satisfying the
following:

G
(
fx, fy, fz

) ≤ λmax

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G
(
x, y, z

)
, G

(
x, fx, fx

)
, G

(
y, fy, fy

)
, G

(
z, fz, fz

)
,

1
2
(
G
(
fx, fx, y

)
+
(
G
(
fy, fy, z

)))
,

1
2
(
G
(
x, fx, fx

)
+G

(
y, fy, fy

))

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (3.21)

for all x, y, z ∈ X where 0 < λ < 1, ψ is an altering distance function and, φ : [0,∞) → [0,∞) is a
continuous function with φ(t) = 0 if and only if t = 0. Then f has a unique fixed point (say u), and f
is G continuous at u.

Proof. We get the result by taking ψ(t) = t and φ(t) = t − λt, α = β = 1/2 in Theorem 3.2.

Corollary 3.5. Let (X,G) be a complete G-metric space. Let f be a self-map on X satisfying the
following:

G
(
fx, fy, fz

) ≤ λmax

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G
(
x, y, z

)
, G

(
x, fx, fx

)
, G

(
y, fy, fy

)
, G

(
z, fz, fz

)
,

1
3
G
(
fx, fx, y

)
+
2
3
G
(
fy, fy, z

)
,

1
3
G
(
fx, fx, x

)
+
2
3
G
(
fy, fy, y

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (3.22)

for all x, y, z ∈ X, where 0 < λ < 1, ψ is an altering distance function, and φ : [0,∞) → [0,∞) is a
continuous function with φ(t) = 0 if and only if t = 0. Then f has a unique fixed point (say u) and f
is G continuous at u.

Proof. We get the result by taking ψ(t) = t and φ(t) = t − λt, α = β = 1/3 in Theorem 3.2.

Theorem 3.6. Under the condition of Theorem 3.2, f has property P .

Proof. From Theorem 3.2, f has a fixed point. Therefore F(fn)/=ϕ for each n ∈ N. Fix n > 1,
and assume that u ∈ F(fn). We claim that u ∈ F(f). To prove the claim, suppose that u/= fu.
Using (3.1), we have

ψ
(
G
(
u, fu, fu

))
= ψ

(
G
(
fnu, fn+1u, fn+1u

))
= ψ

(
G
(
ffn−1u, ffnu, ffnu

))

≤ ψ

⎛

⎝max

⎧
⎨

⎩

G
(
fn−1u, u, u

)
, G

(
u, fu, fu

)
,

αG(u, u, u) + (1 − α)(G(fu, fu, u))
βG

(
fn−1u, u, u

)
+
(
1 − β)(G(u, fu, fu))

⎫
⎬

⎭

⎞

⎠

− φ
⎛

⎝max

⎧
⎨

⎩

G
(
fn−1u, u, u

)
, G

(
u, fu, fu

)
,

αG(u, u, u) + (1 − α)(G(fu, fu, u))
βG

(
fn−1u, u, u

)
+
(
1 − β)(G(u, fu, fu))

⎫
⎬

⎭

⎞

⎠
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= ψ
(
max

{
G
(
fn−1u, u, u

)
, G

(
u, fu, fu

)})

− φ
(
max

{
G
(
fn−1u, u, u

)
, G

(
u, fu, fu

)})
.

(3.23)

LettingM = max{G(fn−1u, u, u), G(u, fu, fu)}, we deduce form (3.23),

ψ
(
G
(
u, fu, fu

)) ≤ ψ(M) − φ(M). (3.24)

IfM = G(u, fu, fu), then

ψ
(
G
(
u, fu, fu

)) ≤ ψ(G(u, fu, fu)) − φ(G(u, fu, fu)), (3.25)

hence, φ(G(u, fu, fu)) = 0. By a property of φ, we deduce that G(u, fu, fu) = 0, therefore,
u = fu. This is a contradiction. On the other hand, ifM = G(fn−1u, u, u), then (3.1) gives that

ψ
(
G
(
fnu, fn+1u, fn+1u

))
= ψ

(
G
(
u, fu, fu

))

≤ ψ
(
G
(
fn−1u, u, u

))
− φ

(
G
(
fn−1u, u, u

))

= ψ
(
G
(
fn−1u, fnu, fnu

))
− φ

(
G
(
fn−1u, fnu, fnu

))

≤ ψ
(
G
(
fn−2u, fn−1u, fn−1u

))

− φ
(
G
(
fn−2u, fn−1u, fn−1u

))
− φ

(
G
(
fn−1u, fnu, fnu

))

≤ · · · ≤ ψ(G(u, fu, fu)) −
n−1∑

k=0

φ
(
G
(
fn−k−1u, fn−ku, fn−ku

))
.

(3.26)

Therefore,

n−1∑

k=0

φ
(
G
(
fn−k−1u, fn−ku, fn−ku

))
= 0, (3.27)

which implies that φ(G(fn−k−1u, fn−ku, fn−ku)) = 0, for all (0 ≤ k ≤ n − 1). Thus,
φ(G(u, fu, fu)) = 0, and by a property of φ, we have u = fu. This is a contradiction.

Therefore, u ∈ F(f), and f has property P .

Let Mα,β

(
x, y, z

)
= max

⎧
⎨

⎩

G
(
x, y, z

)
, G

(
x, fx, fx

)
, G

(
y, fy, fy

)
, G

(
z, fz, fz

)
,

αG
(
fx, fx, y

)
+ (1 − α)(G(fy, fy, z)),

βG
(
x, fx, fx

)
+
(
1 − β)(G(y, fy, fy)),

⎫
⎬

⎭
, (3.28)

where α, β ∈ (0, 1].
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Example 3.7. Let X = [0, 1] and G(x, y, z) = max{|x − y|, |y − z|, |z − x|} be a G-metric on X.
Define f : X → X by f(x) = x/8. We take ψ(t) = t and φ(t) = 7/8t, for t ∈ [0,∞) and
α, β ∈ (0, 1]. So that

ψ
(
Mα,β

(
x, y, z

)) − φ(Mα,β

(
x, y, z

))
=

1
8
Mα,β

(
x, y, z

)
. (3.29)

We have

G
(
fx, fy, fz

)
= max

{∣∣
∣
∣
x

8
− y

8

∣
∣
∣
∣,
∣
∣
∣
∣
y

8
− z

8

∣
∣
∣
∣,
∣
∣
∣
∣
z

8
− x

8

∣
∣
∣
∣

}

=
1
8
max

{∣∣x − y∣∣, ∣∣y − z∣∣, |z − x|}

=
1
8
G
(
x, y, z

)

≤ 1
8
Mα,β

(
x, y, z

)

= ψ
(
Mα,β

(
x, y, z

)) − φ(Mα,β

(
x, y, z

))
.

(3.30)

4. Applications

Denote by Λ the set of functions λ : [0,∞) → [0,∞) satisfying the following hypotheses.

(1) λ is a Lebesgue integral mapping on each compact of [0,∞).

(2) For every ε > 0, we have
∫ t
0 λ(s)ds > 0.

It is an easy matter to see that the mapping ψ : [0,∞) → [0,∞), defined by ψ(t) =
∫ t
0 λ(s)ds,

is an altering distance function. Now, we have the following result.

Theorem 4.1. Let (X,G) be a complete G-metric space. Let f be a self-map on X satisfying the
following:

∫G(fx,fy,fz)

0
λ(s)ds ≤

∫Mα,β(x,y,z)

0
λ(s)ds −

∫Mα,β(x,y,z)

0
μ(s)ds, (4.1)

where λ, μ ∈ Λ and α, β ∈ (0, 1]. Then f has a unique fixed point.

Proof. It follows from Theorem by taking ψ(t) =
∫ t
0 λ(s)ds and φ(t) =

∫ t
0 μ(s)ds.
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