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We establish estimates for the sums of absolute values of solutions of a zero-dimensional
polynomial system. By these estimates, inequalities for the counting function of the roots are
derived. In addition, bounds for the roots of perturbed systems are suggested.

1. Introduction and Statements of the Main Results

Let us consider the system:

f
(
x, y
)
= g
(
x, y
)
= 0, (1.1)

where

f
(
x, y
)
=

m1∑

j=0

n1∑

k=0

ajkx
m1−jyn1−k (am1n1 /= 0),

g
(
x, y
)
=

m2∑

j=0

n2∑

k=0

bjkx
m2−jyn2−k (bm2n2 /= 0).

(1.2)

The coefficients ajk, bjk are complex numbers.
The classical Beźout and Bernstein theorems give us bounds for the total number

of solutions of a polynomial system, compared to [1, 2]. But for many applications, it is
very important to know the number of solutions in a given domain. In the present paper
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we establish estimates for sums of absolute values of the roots of (1.1). By these estimates,
bounds for the number of solutions in a given disk are suggested. In addition, we discuss
perturbations of system (1.1). Besides, bounds for the roots of a perturbed system are
suggested.

We use the approach based on the resultant formulations, which has a long history;
the literature devoted to this approach is very rich, compared to [1, 3, 4]. We combine it with
the recent estimates for the eigenvalues of matrices and zeros of polynomials. The problem of
solving polynomial systems and systems of transcedental equations continues to attract the
attention of many specialists despite its long history. It is still one of the burning problems
of algebra, because of the absence of its complete solution, compared to the very interesting
recent investigations [2, 5–8] and references therein. Of course we could not survey the whole
subject here.

A pair of complex numbers (x̃, ỹ) is a solution of (1.1) if f(x̃, ỹ) = g(x̃, ỹ) = 0.
Besides x̃ will be called an X-root coordinate (corresponding to ỹ) and ỹ a Y -root coordinate
(corresponding to x̃). All the considered roots are counted with their multiplicities.

Put

aj
(
y
)
=

n1∑

k=0

ajky
n1−k (

j = 0, . . . , m1
)
, bj

(
y
)
=

n2∑

k=0

bjky
n2−k (

j = 0, . . . , m2
)
. (1.3)

Then

f
(
x, y
)
=

m1∑

j=0

aj
(
y
)
xm1−j ,

g
(
x, y
)
=

m2∑

j=0

bj
(
y
)
xm2−j .

(1.4)

Withm = m1 +m2 introduce them ×m Sylvester matrix

S
(
y
)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0 a1 a2 · · · am1−1 am1 0 0 · · · 0
0 a0 a1 · · · am1−2 am1−1 am1 0 · · · 0
· · · · · · · · · · · · · ·
0 0 0 · · · a0 a1 a2 a3 · · · am1

b0 b1 b2 · · · bm2−1 bm2 0 0 · · · 0
0 b0 b1 · · · bm2−2 bm2−1 bm2 0 · · · 0
· · · · · · · · · · · ·
0 0 0 · · · b0 b1 b2 b3 · · · bm2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (1.5)

with ak = ak(y) and bk = bk(y). Put R(y) = detS(y) and consider the expansion:

R
(
y
)
=

n∑

k=0

Rky
n−k, where n := degR

(
y
)
. (1.6)



International Journal of Mathematics and Mathematical Sciences 3

Furthermore, denote

θ(R) :=

⎡

⎣ 1
2π

∫2π

0

∣
∣
∣
∣
∣
R(eit)
R0

∣
∣
∣
∣
∣

2

dt − 1

⎤

⎦

1/2

. (1.7)

Clearly,

θ(R) ≤ sup
|y|=1

∣
∣
∣
∣
∣
R
(
y
)

R0

∣
∣
∣
∣
∣
, R0 = lim

y→∞
R
(
y
)

yn
, R0 =

1
2π

∫2π

0
e−intR

(
eit
)
dt. (1.8)

Thanks to the Hadamard inequality, we have

∣∣R
(
y
)∣∣2 ≤

(
m1∑

k=0

∣∣ak
(
y
)∣∣2
)m2

(
m2∑

k=0

∣∣bk
(
y
)∣∣2
)m1

. (1.9)

Assume that

Rn /= 0. (1.10)

Theorem 1.1. The Y -root coordinates yk of (1.1) (if, they exist), taken with the multiplicities and
ordered in the decreasing way: |yk| ≥ |yk+1|, satisfy the estimates:

j∑

k=1

∣∣yk
∣∣ < θ(R + 1) + j

(
j = 1, 2, . . . , n

)
. (1.11)

If, in addition, condition (1.10) holds, then

j∑

k=1

1
∣∣ỹk
∣∣ <

R0(θ(R) + 1)
Rn

+ j
(
j = 1, 2, . . . , n

)
, (1.12)

where ỹk are the Y -root coordinates of (1.1) taken with the multiplicities and ordered in the increasing
way: |ỹk| ≤ |ỹk+1|.

This theorem and the next one are proved in the next section. Note that another bound
for
∑j

k=1 |yk| is derived in [9, Theorem 11.9.1]; besides, in the mentioned theorem aj(·) and
bj(·) have the sense different from the one accepted in this paper.

From (1.12) it follows that

min
k
yk >

Rn

R0(θ(R) + 1) + Rn
. (1.13)

So the disc |y| ≤ Rn/(R0(θ(R) + 1) + Rn) is zero free.
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To estimate the X-root coordinates, assume that

inf
|y|≤θ(R)+1

∣
∣a0
(
y
)∣∣ > 0 (1.14)

and put

ψf = sup
|y|=θ(R)+1

1
∣
∣a0
(
y
)∣∣

⎡

⎣
m1∑

j=1

∣
∣aj
(
y
)∣∣2
⎤

⎦

1/2

. (1.15)

Theorem 1.2. Let condition (1.14) holds. Then theX-root coordinates xk(y0) of (1.1) corresponding
to a Y -root coordinate y0 (if they exist), taken with the multiplicities and ordered in the decreasing
way, satisfy the estimates:

j∑

k=1

∣∣xk
(
y0
)∣∣ < ψf + j

(
j = 1, 2, . . . ,min{m1, m2}

)
. (1.16)

In Theorem 1.2 one can replace f by g.
Furthermore, since yk are ordered in the decreasing way, by Theorem 1.1 we get j|yj | <

j + θ(R) and

∣∣yj
∣∣ < rj := 1 +

θ(R)
j

(
j = 1, . . . , n

)
. (1.17)

Thus (1.1) has in the disc {z ∈ C : |z| ≤ rj} no more than n− j Y -root coordinates. If we denote
by νY (r) the number of Y -root coordinates of (1.1) in Ωr := {z ∈ C : |z| ≤ r} for a positive
number r, then we get

Corollary 1.3. Under condition (1.10), the inequality νY (r) ≤ n − j + 1 is valid for any

r ≤ 1 +
θ(R)
j

. (1.18)

Similarly, by Theorem 1.2, we get the inequality:

∣∣xj
(
y0
)∣∣ ≤ 1 +

ψf

j

(
j = 1, 2, . . . ,min{m1, m2}

)
. (1.19)

Denote by νX(y0, r) the number of X-root coordinates of (1.1) in Ωr , corresponding to a Y
coordinate y0.

Corollary 1.4. Under conditions (1.14), for any Y -root coordinate y0, the inequality:

νX
(
y0, r

) ≤ min{m1, m2} − j + 1
(
j = 1, 2, . . . ,min{m1, m2}

)
(1.20)
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is valid, provided

r ≤ 1 +
ψf

j
. (1.21)

In this corollary also one can replace f by g.

2. Proofs of Theorems 1.1 and 1.2

First, we need the following result.

Lemma 2.1. Let P(z) := zn + c1zn−1 + · · · + cn be a polynomial with complex coefficients. Then its
roots zk(P) ordered in the decreasing way satisfy the inequalities:

j∑

k=1

|zk(P)| ≤
[

1
2π

∫2π

0

∣∣∣P
(
eit
)∣∣∣

2
dt − 1

]1/2
+ j

(
j = 1, . . . , n

)
. (2.1)

Proof. As it is proved in [9, Theorem 4.3.1] (see also [10]),

j∑

k=1

|zk(P)| ≤
[

n∑

k=1

|ck|2
]1/2

+ j. (2.2)

But thanks to the Parseval equality, we have

n∑

k=1

|ck|2 + 1 =
1
2π

∫2π

0

∣∣∣P
(
eit
)∣∣∣

2
dt. (2.3)

Hence the required result follows.

Proof of Theorem 1.1. The bound (1.11) follows from the previous lemma with P(y) =
R(y)/R0. To derive bound (1.12) note that

R
(
y
)
= Rny

nW

(
1
y

)
, where W(z) =

1
Rn

n∑

k=0

Rkz
k =

n∑

k=0

dkz
n−k, (2.4)

with dk = Rn−k/Rn. So any zero z(W) ofW(z) is equal to 1/ỹ, where ỹ is a zero of R(y). By
the previous lemma

j∑

k=1

|zk(W)| <
[

1
2π

∫2π

0

∣∣∣W
(
eit
)∣∣∣

2
dt − 1

]1/2
+ j

(
j = 1, . . . , n

)
. (2.5)
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Thus,

j∑

k=1

1
∣
∣ỹk
∣
∣ <

[
1
2π

∫2π

0

∣
∣
∣W
(
eit
)∣∣
∣
2
dt − 1

]1/2
+ j

(
j = 1, . . . , n

)
. (2.6)

But W(z) = znR(1/z)/Rn. Thus, |W(eit)| = (1/Rn)|R(e−it)|. This proves the required result.

Proof of Theorem 1.2. Due to Theorem 1.1, for any fixed Y -root coordinate y0 we have the
inequality:

∣
∣y0
∣
∣ ≤ θ(R) + 1. (2.7)

We seek the zeros of the polynomial:

f
(
x, y0

)
=

m1∑

j=0

aj
(
y0
)
xm1−j . (2.8)

Besides, due to (1.14) and (2.7), a0(y0)/= 0. Put

Q(x) =
f
(
x, y0

)

a0
(
y0
) , θQ :=

1
∣∣a0
(
y0
)∣∣

⎡

⎣
m1∑

j=1

∣∣aj
(
y0
)∣∣2
⎤

⎦

1/2

. (2.9)

Clearly,

Q(x) = xm1 +
1

a0
(
y0
)
m1∑

j=1

aj
(
y0
)
xm1−j . (2.10)

Due to the above mentioned [9, Theorem 4.3.1] we have

j∑

k=1

∣∣xk
(
y0
)∣∣ < θQ + j

(
j = 1, 2, . . . , n

)
. (2.11)

But according to (2.7), θQ ≤ ψf . This proves the theorem.

3. Perturbations of Roots

Together with (1.1), let us consider the coupled system:

f̂
(
x, y
)
= ĝ
(
x, y
)
= 0, (3.1)
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where

f̂
(
x, y
)
=

m1∑

j=0

n1∑

k=0

âjkx
m1−jyn1−k,

ĝ
(
x, y
)
=

m2∑

j=0

n2∑

k=0

b̂jkx
m2−jyn2−k.

(3.2)

Here âjk, b̂jk are complex coefficients. Put

âj
(
y
)
=

n1∑

k=1

âjky
n1−k (

j = 0, . . . , m1
)
,

b̂j
(
y
)
=

n2∑

k=0

b̂jky
n2−k (

j = 0, . . . , m2
)
.

(3.3)

Let Ŝ(y) be the Sylvester matrix defined as above with âj(y) instead of aj(y), and b̂j(y)
instead of bj(y), and put R̂(y) = det Ŝ(y). It is assumed that

deg R̂
(
y
)
= degR

(
y
)
= n. (3.4)

Consider the expansion:

R̂
(
y
)
=

n∑

k=0

R̂ky
n−k. (3.5)

Due to (3.4), R̂0 /= 0. Denote

q
(
R, R̂

)
:=

⎡

⎣ 1
2π

∫2π

0

∣∣∣∣
∣
R(eit)
R0

− R̂
(
eit
)

R̂0

∣∣∣∣
∣

2

dt

⎤

⎦

1/2

,

η(R) =
[
θ2(R) + n − 1

]1/2
.

(3.6)

Clearly,

q
(
R, R̂

)
≤ max

|z|=1

∣∣∣∣∣
R
(
y
)

R0
− R̂
(
y
)

R̂0

∣∣∣∣∣
. (3.7)

Theorem 3.1. Under condition (3.4), for any Y -root coordinate ŷ0 of (3.1), there is a Y -root
coordinate y0 of (1.1), such that

∣∣y0 − ŷ0
∣∣ ≤ μR, (3.8)
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where μR is the unique positive root of the equation:

yn = q
(
R, R̂

)n−1∑

k=0

ηk(R)yn−k−1√
k!

. (3.9)

To prove Theorem 3.1, for a finite integer n, consider the polynomials:

P(λ) =
n∑

k=0

ckλ
n−k, P̂(λ) =

n∑

k=0

ĉkλ
n−k (c0 = ĉ0 = 1), (3.10)

with complex coefficients. Put

q0 =

[
n∑

k=1

|ck − ĉk|2
]1/2

,

η(P) =

[
n∑

k=1

|ck|2 + n − 1

]1/2
.

(3.11)

Lemma 3.2. For any root z(P̂) of P̂(y), there is a root z(P) of P(y), such that |z(P)−z(P̂)| ≤ r(q0),
where r(q0) is the unique positive root of the equation

yn = q0
n−1∑

k=0

ηk(P)yn−k−1√
k!

. (3.12)

This result is due to Theorem 4.9.1 from the book [9] and inequality (9.2) on page 103
of that book.

By the Parseval equality we have

n∑

k=0

|ck|2 = 1
2π

∫2π

0

∣∣∣P
(
eit
)∣∣∣

2
dt,

q20 =
1
2π

∫2π

0

∣∣∣P
(
eit
)
− P̃
(
eit
)∣∣∣

2
dt ≤ max

|z|=1

∣∣∣P
(
y
) − P̃(y)

∣∣∣
2
.

(3.13)

Thus

η2(P) =
1
2π

∫2π

0

∣∣∣P
(
eit
)∣∣∣

2
dt + n − 2 ≤ max

|z|=1

∣∣P
(
y
)∣∣2 + n − 2. (3.14)

The assertion of Theorem 3.1 now follows from in the previous lemma with P(y) =
R(y)/R0 andP̃(y) = R̂(y)/R̂0.
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Further more, denote

pR := q
(
R, R̂

)n−1∑

k=0

ηk(R)√
k!

,

δR :=

{
n
√
pR if pR ≤ 1,

pR if pR > 1.

(3.15)

Due to Lemma 1.6.1 from [11], the inequality μR ≤ δR is valid. Now Theorem 3.1 implies the
following.

Corollary 3.3. Under condition (3.4), for any Y -root coordinate ŷ0 of (3.1), there is a Y -root
coordinate y0 of (1.1), such that |y0 − ŷ0| ≤ δR.

Similarly, one can consider perturbations of the X-root root coordinates.
To evaluate the quantity R(y) − R̂(y) one can use the following result: let A and B two

complex n × n-matrices. Then

|det(A) − det(B)| ≤ N2(A − B)
nn/2

(
1 +

1
2
(N2(A + B) +N2(A − B))

)n
, (3.16)

where N2
2(A) = TraceA∗A is the Hilbert-Schmidt norm and A∗ is the adjoint to A. For the

proof of this inequality see [12]. Taking B = Ŝ(y), A = S(y)we get a bound for |R(z) − R̂(z)|.
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