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This work is devoted to the existence of positive solutions for a fractional boundary value problem
with fractional integral deviating argument. The proofs of the main results are based on Guo-
Krasnoselskii fixed point theorem and Avery and Peterson fixed point theorem. Two examples are
given to illustrate the obtained results, ending the paper.

1. Introduction

The study of differential equations with deviating arguments has known a rapid develop-
ment and still attracts most attention; it is a vast domain constantly enriched and fruitful.
Differential equations with deviating arguments appear in many areas of sciences and
technology such as in the study of problems related with combustion in rocket motion, in
the theory of automatic control, in economics, and biological systems.

There exists a vast amount of literature devoted to the investigation of boundary
value problems with deviating arguments (see [1–4]); one can cite the paper of Haloi et al.
[5], where the authors studied an abstract initial value problem with deviating arguments
by the help of Sobolevskii and Tanabe theory and fixed point theorems. However, few
papers exist concerning fractional boundary value problems with deviating arguments, see
[3, 4, 6, 7]. We can cite the work of Jankowski [8], where the author studied the positivity
of solutions for fourth-order differential equations with deviating arguments and integral
boundary conditions, by Avery and Peterson theorem.
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Fractional differential equations have been proved to be valuable tools in the
modelling of many phenomena in various fields of engineering, such as rheology, fluid flows,
electrical networks, viscoelasticity, chemical physics, biosciences, signal processing, systems
control theory, electrochemistry, mechanics and diffusion processes; for more details on this
subject we refer the reader to [9–12].

In this work, we study a fractional boundary value problem with fractional deviating
argument (P) :

cD
q

0+u(t) + a(t)f
(
u
(
Iσ0+θ(t)

))
= 0, 0 < t < 1,

u′(0) = u′′(0) = 0, u(0) = αu(1),
(P)

where 2 < q < 3, 0 < σ < 1, cDq

0+ denotes the Caputo fractional derivative, f ∈ C(R,R) is a
given function, θ ∈ C([0, 1], [0, 1]), a ∈ C([0, 1],R). We assume that the deviating argument
θ satisfies the delay property 0 ≤ θ(t) ≤ t for any t ∈ [0, 1]. Let us remark that when we apply
the fractional integral Iσ0+ to the deviating argument θ, then the problem (P) becomes more
delayed in time. The existence of a deviation delay in time is necessary in some situations, to
avoid the unstable combustion in liquid rocket engine and to contribute in the conversion of
the fuel mixture into the product of combustion. No contributions exist, as far as we know,
concerning the positivity of solutions for the fractional differential equation with deviating
argument (P) .

The literature on fractional boundary value problems with deviating argument is very
reduced; we can cite Ntouyas et al. [6] work, where the authors investigated the existence
of positive solutions to fractional differential equations with advanced arguments by Guo-
Krasnoselskii fixed point theorem. Other interesting results on fractional boundary value
problems can be found in [13–21].

The organization of this paper is as follows. In Section 2, we provide some necessary
backgroundmaterials and definitions. In Section 3, we present some lemmas which are useful
to obtain our main results. In Section 4, we discuss the existence of at least one positive
solution of problem (P) by using Guo-Krasnoselskii fixed point theorem on cone; then, under
some sufficient conditions on the nonlinear source term, we apply Avery-Peterson theorem
to prove the existence of at least three positive solutions. At the end of this section, we give
two examples to verify the obtained results.

2. Background Materials and Definitions

In this section, we introduce definitions from fractional calculus theory and preliminary facts
which are used throughout this paper.

Definition 2.1 (see [10]). The integral

Iαa+g(t) =
1

Γ(α)

∫ t

a

g(s)

(t − s)1−α
ds (2.1)

is called Riemann-Liouville fractional integral of g of order α > 0 when the right side exists.
Here Γ is the gamma function.
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Definition 2.2 (see [10]). For a function g given on the interval [a, b], the Caputo fractional
derivative of g of order α is defined by

cDα
a+g(t) =

1
Γ(n − α)

∫ t

a

g(n)(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.3 (see [10]). Letting α, β > 0 and letting n = [α] + 1, then the following relations hold:
cDα

0+ t
β−1 = (Γ(β)/Γ(β − α))tβ−α−1, β > n and cDα

0+t
k = 0, k = 0, 1, 2, . . . , n − 1.

Lemma 2.4 (see [10]). For α > 0, g(t) ∈ C(0, 1), the homogenous fractional differential equation

cDα
a+g(t) = 0 (2.3)

has a solution

g(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1, (2.4)

where ci ∈ R, i = 0, . . . , n, and n = [α] + 1.

Denote by L1([0, 1],R) the Banach space of Lebesgue integrable functions from [0, 1]
into R with the norm ‖y‖L1 =

∫1
0 |y(t)|dt. Define E = C[0, 1], equipped with the norm ‖u‖ =

maxt∈[0,1]|u(t)|.
The following lemmas give some properties of Riemann-Liouville fractional integrals

and Caputo fractional derivative.

Lemma 2.5 (see [10]). Let p, q ≥ 0, f ∈ L1[a, b]. Then I
p

0+I
q

0+f(t) = I
p+q
0+ f(t) = I

q

0+I
p

0+f(t) and
cD

q

0+I
q

0+f(t) = f(t), for all t ∈ [a, b].

Lemma 2.6 (see [10]). Let β > α > 0. Then the formula cDα
0+I

β

0+f(t) = I
β−α
0+ f(t) holds almost

everywhere on t ∈ [a, b], for f ∈ L1[a, b], and it is valid at any point t ∈ [a, b] if f ∈ C[a, b].

Now we present the necessary definitions from the theory of cone in Banach spaces.

Definition 2.7. A nonempty subset P of a Banach space E is called a cone if P is convex, closed
and satisfies the conditions

(i) αx ∈ P for all x ∈ P and any α ∈ R+,

(ii) x,−x ∈ P imply x = 0.

Definition 2.8. Amap F is said to be a nonnegative continuous convex functional on a cone P
of a real Banach space E if F : P → [0,∞[ is continuous and

F
(
tx + (1 − t)y

) ≤ tF(x) + (1 − t)F
(
y
)
, ∀x, y ∈ P, t ∈ [0, 1]. (2.5)
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Similarly F is a nonnegative continuous concave functional on a cone P of a real Banach space
E if

F
(
tx + (1 − t)y

) ≥ tF(x) + (1 − t)F
(
y
)
, ∀x, y ∈ P, t ∈ [0, 1]. (2.6)

Definition 2.9. A mapping is called completely continuous if it is continuous and maps
bounded sets into relatively compact sets.

In the following, we state some fixed point theorems.

Theorem 2.10 (Guo-Krasnoselskii fixed point theorem on cone [22]). Let E be a Banach space,
and let K ⊂ E be a cone. Assume Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let

A : K ∩
(
Ω2 \Ω1

)
−→ K (2.7)

be a completely continuous operator such that

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

ThenA has a fixed point in K ∩ (Ω2 \Ω1).

Theorem 2.11 (Avery and Peterson fixed point theorem [23]). Let P be a cone in a real Banach
space E. Let ϕ and Φ be continuous, nonnegative, and convex functionals on P , let Λ be a continuous
nonnegative, and concave functional on P , and let Ψ be continuous and nonnegative functional on P
satisfyingΨ(ku) ≤ k‖u‖ for 0 ≤ k ≤ 1. Define the sets, P(ϕ, d) = {u ∈ P, ϕ(u) < d}, P(ϕ,Λ, b, d) =
{u ∈ P, b ≤ Λ(u), ϕ(u) ≤ d}, P(ϕ,Φ,Λ, b, c, d) = {u ∈ P, b ≤ Λ(u),Φ(u) ≤ c, ϕ(u) ≤ d},
R(ϕ,Ψ, a, d) = {u ∈ P, a ≤ Ψ(u), ϕ(u) ≤ d}. For M and d positive numbers we have Λ(u) ≤ Ψ(u)
and ‖u‖ ≤ Mϕ(u) for any u ∈ P(ϕ, d). Assume T : P(ϕ, d) → P(ϕ, d) is completely continuous
and there exists positive numbers a, b, and c with a < b such that

(S1) {u ∈ P(ϕ,Φ,Λ, b, c, d),Λ(u) > b}/= ∅ and Λ(Tu) > b for u ∈ P(ϕ,Φ,Λ, b, c, d),

(S2) Λ(Tu) > b for u ∈ P(ϕ,Λ, b, d) with Φ(Tu) > c,

(S3) 0 /∈ R(ϕ,Ψ, a, d) and Ψ(Tu) < a for u ∈ R(ϕ,Ψ, a, d) with Ψ(u) = a.

Then T has at least three positive fixed points u1, u2, u3 ∈ P(ϕ, d) such that ϕ(ui) ≤ d, for
i = 1, 2, 3. b < Λ(u1), a < Ψ(u2), with Λ(u2) < b and Ψ(u3) < a.

3. Some Lemmas

We start by solving an auxiliary problemwhich allows us to get the expression of the solution.
Let us consider the following problem:

cD
q

0+u(t) + y(t) = 0, 0 < t < 1,

u′(0) = u′′(0) = 0, u(0) = αu(1).
(P1)
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Lemma 3.1. Assuming that α/= 1 and y ∈ C([0, 1],R), then the problem (P1) has a unique solution
given by

u(t) =
1

Γ
(
q
)
∫1

0
G(t, s)y(s)ds, (3.1)

where

G(t, s) =

⎧
⎪⎨

⎪⎩

−(t − s)q−1 +
α

α − 1
(1 − s)q−1, 0 ≤ s ≤ t

α

α − 1
(1 − s)q−1, t ≤ s ≤ 1.

(3.2)

Proof. Using Lemmas 2.3 and 2.4, we get

u(t) = −Iq0+y(t) + a + bt + ct2. (3.3)

The boundary conditions u′(0) = u′′(0) = 0 give b = c = 0, and the condition u(0) = αu(1)
implies a = (α/(α − 1))Iq0+y(1). Substituting a, b, and c by their values in (3.3) we get the
desired result.

Some useful estimates of the Green function G are given hereafter.

Lemma 3.2. If α > 1, then for all s, t ∈ [0, 1], the Green function G(t, s) is nonnegative, continuous
and satisfies

(i) maxs,t∈[0,1]G(t, s) = α/(α − 1),

(ii) mins,t∈[0,τ]G(t, s) = (1 − τ)q−1/(α − 1) where 0 < τ < 1.

Proof. The proof is easy; then we omit it.

Lemma 3.3. Assuming that α > 1 and y ∈ C([0, 1],R+), then the unique solution of problem (P1)
satisfies u(t) ≥ 0 on [0, 1]. Moreover we have

min
t∈[0,τ]

u(t) ≥ 1 − τ2

α
‖u‖. (3.4)

Proof. From u′′(t) = −Iq−20+ y(t) and hypothesis on the function y we deduce that u′′ ≤ 0
consequently the function u is concave. Moreover from the condition u(0) = αu(1) we can
say that the values u(0) and u(1) have the same sign. Since u(0) = (α/(α − 1))Iq0+y(1) ≥ 0,
then u(t) ≥ 0 on [0, 1]. Let us analyze the boundary conditions; from u′′ ≤ 0 and the condition
u′(0) = 0 we conclude that u′ is also negative; consequently the function u is decreasing.
From the above discussion we conclude that maxt∈[0,1]u(t) = u(0) and mint∈[0,τ]u(t) = u(τ).
The concavity of u allows to write

u(τ) − u(0)
τ

≥ u(1) − u(τ)
1 − τ

. (3.5)
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Using the condition u(0) = αu(1) it yields

u(τ) − u(0) ≥ u(0)
α

τ

1 − τ
− u(τ)

τ

(1 − τ)
, (3.6)

then

u(τ)
(
1 +

τ

1 − τ

)
≥ u(0)

(
1 +

τ

α(1 − τ)

)
. (3.7)

Since (1/(1 − τ)) > 1, we have

u(τ)
1

1 − τ
≥ u(0)

(
1 +

τ

α(1 − τ)

)
≥ u(0)

(
1 +

τ

α

)
, (3.8)

so,

u(τ) ≥ u(0)(1 − τ)
(α + τ

α

)
. (3.9)

Using the assumption α > 1, we obtain

u(τ) ≥ 1 − τ2

α
u(0), (3.10)

consequently

min
t∈[0,τ]

u(t) ≥ 1 − τ2

α
‖u‖. (3.11)

This achieves the proof.

4. Existence of Positive Solutions

We first state the assumptions that will be used to prove our main results:

(H1) θ ∈ C([0, 1], [0, 1]) and satisfies the delay property 0 ≤ θ(t) ≤ t, for all t ∈ [0, 1],

(H2) a ∈ C([0, 1],R+) and
∫τ
0 a(s)ds/= 0,

(H3) f ∈ C(R+,R+) and α > 1.

Define the operator T : E → E by

Tu(t) =
1

Γ
(
q
)
∫1

0
G(t, s)a(s)f

(
u
(
Iσ0+θ(s)

))
ds. (4.1)
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Definition 4.1. A function u is called positive solution of problem (P) if u(t) ≥ 0, for all t ∈
[0, 1] and it satisfies the boundary conditions in (P).

Let us introduce the following notations A0 = limu→ 0+(f(u)/u), A∞ =
limu→∞(f(u)/u). The caseA0 = 0 andA∞ = ∞ is called superlinear case, and the caseA0 = ∞
and A∞ = 0 is called sublinear case.

Theorem 4.2. Assuming that (H1)–(H3) hold, then the problem (P) has at least one positive solution
in both cases, superlinear as well as sublinear.

Proof. We apply Guo-Krasnoselskii fixed point theorem on cone. Define the cone P = {u ∈
E, unonnegative on [0, 1] andmint∈[0,τ]u(t) ≥ ((1 − τ2)/α)‖u‖}. It is easy to check that P is a

nonempty closed and convex subset of E, so it is a cone. One can check that T(P) ⊂ P . It is
obvious that T is continuous sinceG, a and f are continuous. Let us prove that T is completely
continuous mapping on P .

Claim 1. T(Br) is uniformly bounded, where Br = {u ∈ P, ‖u‖ ≤ r}. Let us remark that
if u ∈ P , then

min
t∈[0,τ]

u
(
Iσ0+θ(t)

) ≥ 1 − τ2

α
‖u‖. (4.2)

In fact from the delay property, the properties of Riemann fractional integrals and 0 < σ < 1,
we have

0 ≤ Iσ0+θ(t) ≤
tσ+1

Γ(σ + 2)
≤ 1. (4.3)

In view of the concavity of u it yields

u
(
Iσ0+θ(t)

) ≥ min
t∈[0,τ]

u(t) ≥ 1 − τ2

α
‖u‖. (4.4)

Therefore

min
t∈[0,τ]

u
(
Iσ0+θ(t)

) ≥ min
t∈[0,τ]

u(t) ≥ 1 − τ2

α
‖u‖ ≥ 1 − τ2

α

∥∥u
(
Iσ0+θ

)∥∥. (4.5)

Since the functions a and f are continuous, then there exists a constant k such that
maxt∈[0,1]|a(t)f(u(Iσ0+θ(t)))| = k for any u ∈ Br . By virtue of Lemma 3.2 we obtain

|Tu(t)| ≤ kα

(α − 1) Γ
(
q
) . (4.6)

Hence T is uniformly bounded.
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Claim 2. T is equicontinuous. We have for any u ∈ Br

∣
∣T ′u(t)

∣
∣ =

∣
∣
∣
∣
∣
q − 1
Γ
(
q
)
∫ t

0
(t − s)q−2a(s)f(u(s), u(Iσθ(s)))ds

∣
∣
∣
∣
∣

≤ k

Γ
(
q − 1

)
∫1

0
(1 − s)q−2ds =

k

Γ
(
q
) .

(4.7)

Therefore

|Tu(t2) − Tu(t1)| =
∣
∣
∣
∣
∣

∫ t2

t1

T ′u(t)dt

∣
∣
∣
∣
∣
≤ k(t2 − t1)

Γ
(
q
) . (4.8)

Thus T is equicontinuous; from Ascoli-Arzela Theorem, we deduce that T is completely
continuous.

Now, we prove the sublinear case. Since A0 = ∞, then for any A > 0 there exists δ > 0,
such that for any u, 0 < u ≤ δ then f(u) ≥ Au. SetΩ1 = {u ∈ E : ‖u‖ < δ}. Letting u ∈ P ∩∂Ω1,
we can see that u(Iσ0+θ) ∈ P ∩ ∂Ω1; then from (4.5) we have

‖Tu‖ = max
t∈[0,1]

|Tu(t)| = α

(α − 1)Γ
(
q
)
∫1

0
a(s)f

(
u
(
Iσ0+θ(s)

))
ds

≥ Aα

(α − 1) Γ
(
q
)
∫1

0
a(s)u

(
Iσ0+θ(s)

)
ds.

(4.9)

With the help of (4.4)we get

‖Tu‖ ≥ A
(
1 − τ2

)‖u‖
Γ
(
q
)

∫1

0
a(s)ds. (4.10)

In view of assumption (H2) we can choose A = Γ(q)/(1 − τ2)
∫1
0 a(s)ds; therefore (4.10)

becomes ‖Tu‖ ≥ ‖u‖.
On the other hand since A∞ = 0, we deduce that for any ε > 0 there exists γ > 0, such

that for any u, u ≥ γ then f(u) ≤ εu. SettingR = max{2δ, ((α−1)/α)γ} andΩ2 = {u ∈ E : ‖u‖ <

R}, thenΩ1 ⊂ Ω2 and for u ∈ P ∩∂Ω2 we have mint∈[0,τ]u(t) ≥ (α/(α−1))‖u‖ = αR/(α−1) ≥ γ ;

consequently u(Iσ0+θ(t)) ≥ γ . Taking Lemma 3.2 and (4.5) into account it yields

Tu(t) ≤ α

(α − 1) Γ
(
q
)
∫1

0
a(s)f

(
u
(
Iσ0+θ(s)

))
ds

≤ αε

(α − 1) Γ
(
q
)
∫1

0
a(s)u

(
Iσ0+θ(s)

)
ds

≤ αε
∥∥u

(
Iσ0+θ

)∥∥

(α − 1) Γ
(
q
)
∫1

0
a(s)ds ≤ αε‖u‖

(α − 1) Γ
(
q
)
∫1

0
a(s)ds.

(4.11)
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Then if we choose ε = (α − 1) Γ(q)/α
∫1
0 a(s)ds, we get ‖Tu‖ ≤ ‖u‖ for all u ∈ P ∩ ∂Ω2. The

second part of Theorem 2.10 implies that T has a fixed point in P ∩ (Ω2 \Ω1); that means that
T has at least a positive solution in P ∩ (Ω2 \Ω1). Arguing as above, we prove the superlinear
case. The proof is complete.

Let us introduce the following functionals. Defining on P , the nonnegative, contin-
uous, and concave functional Λ by Λ(u) = mint∈[0,τ]|u(t)|, then Λ(u) ≤ ‖u‖. Defining the

nonnegative, continuous, and convex functionals ϕ andΦ on P by ϕ(u) = Φ(u) = ‖u‖ and the
nonnegative continuous functional Ψ on P by Ψ(u) = ‖u‖, then Ψ(ku) ≤ k‖u‖ for 0 ≤ k ≤ 1.

Theorem 4.3. Let assumptions (H1)–(H3) hold, and assume that there exist positive constants
a, b, c, d, μ, L such that a < b, μ > (α/(α − 1) Γ(q))

∫1
0 a(s)ds, L < (α(1 − τ)q−1/(α −

1) Γ(q))
∫τ
0 a(s)ds and

(i) f(u) ≤ d/μ for u ∈ [0, d],

(ii) f(u) ≥ b/L for u ∈ [b, b/ξ],

(iii) f(u) ≤ a/μ for u ∈ [0, a].

Then problem (P) has at least three positive solutions u1, u2, u3 ∈ P(ϕ, b) such that ϕ(ui) ≤ d,
for i = 1, 2, 3. b < Λ(u1), a < Ψ(u2), with Λ(u2) < b and Ψ(u3) < a.

Proof. To prove the existence of three positive solutions, we apply Theorem 2.11. Proceeding
analogously as in the proof of Theorem 4.2, we prove that the mapping T is completely
continuous on P(ϕ, d).

Claim 1. T(P(ϕ, d)) ⊂ P(ϕ, d).
Letting u ∈ P(ϕ, d), then ‖u‖ ≤ d; since 0 < θ(t) < t, for all t ∈ [0, 1], then in view of

(4.5) we have u(Iσ0+θ(t)) ≤ ‖u(Iσ0+θ)‖ ≤ ‖u‖ ≤ d. Thus with the help of assumption (i) it yields

ϕ(Tu) = ‖Tu‖ = max
t∈[0,1]

1
Γ
(
q
)
∫1

0
G(t, s)a(s)f

(
u
(
Iσ0+θ(s)

))
ds

≤ α

(α − 1) Γ
(
q
)
∫1

0
a(s)f

(
u
(
Iσ0+θ(s)

))
ds

≤ d

μ

α

(α − 1) Γ
(
q
)
∫1

0
a(s)ds < d,

(4.12)

and hence Tu ∈ P(ϕ, d).
Claim 2. (S1) holds; that is, {u ∈ P(ϕ,Φ,Λ, b, b/ξ, d),Λ(u) > b}/= ∅ and Λ(Tu) > b for

u ∈ P(ϕ,Φ,Λ, b, b/ξ, d). Let x(t) = (b/2)(1 + 1/ξ); since α > 1 and ξ < 1, then

Φ(x) = ϕ(x) = ‖x‖ =
b

2

(
1 +

1
ξ

)
=

b

2ξ
(ξ + 1) <

b

ξ
. (4.13)
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Moreover we have

Λ(x) = min
t∈[0,τ]

x(t) =
b

2

(
1 +

1
ξ

)
> b > ξ‖x‖. (4.14)

Thus x ∈ P(ϕ,Φ,Λ, b, b/ξ, d), so {u ∈ P(ϕ,Φ,Λ, b, b/ξ, d),Λ(u) > b}/= ∅.
Letting u ∈ P(ϕ,Φ,Λ, b, b/ξ, d), then b ≤ u(t) ≤ b/ξ and b ≤ u(Iσ0+θ(t)) ≤ b/ξ; thus by

virtue of Lemma 3.2 and assumption (ii), we obtain

Λ(Tu) = min
t∈[0,τ]

|Tu(t)| ≥ (1 − τ)q−1

(α − 1) Γ
(
q
)
∫ τ

0
a(s)f

(
u
(
Iσ0+θ(s)

))
ds

≥ (1 − τ)q−1b
(α − 1) Γ

(
q
)
L

∫ τ

0
a(s)ds > b.

(4.15)

So condition (S1) is satisfied.
Claim 3. (S2) holds. Letting u ∈ P(ϕ,Λ, b, d) such Φ(Tu) = ‖Tu‖ > b/ξ, then

Λ(Tu) = min
t∈[0,τ]

|Tu(t)| ≥ ξ‖Tu‖ > b. (4.16)

This implies that claim (S2) holds true.
Claim 4. (S3) holds. Letting u ∈ R(ϕ,Ψ, a, d), then 0 < a ≤ ‖u‖ ≤ d, and then 0 /∈

R(ϕ,Ψ, a, d). Let u ∈ R(ϕ,Ψ, a, d)withΨ(u) = ‖u‖ = a; using Lemma 3.2 and assumption (iii)
it yields

Ψ(Tu) = max
t∈[0,1]

1
Γ
(
q
)
∫1

0
G(t, s)a(s)f

(
u
(
Iσ0+θ(s)

))
ds

=
α

(α − 1) Γ
(
q
)
∫1

0
a(s)f

(
u
(
Iσ0+θ(s)

))
ds

≤ a

μ

α

(α − 1) Γ
(
q
)
∫1

0
a(s)ds < a.

(4.17)

Then (S3) is satisfied.
Finally we conclude by Theorem 2.11 that there exist at least three positive solutions

u1, u2, u3 ∈ P(ϕ, d) such that ϕ(ui) ≤ d, for i = 1, 2, 3. b < Λ(u1), a < Ψ(u2), with Λ(u2) < b and
Ψ(u3) < a. The proof of Theorem 4.2 is complete.

Remark 4.4. Contrary to paper [8], we cannot consider problem (P) with 0 ≤ t ≤ θ(t) ≤ 1; in
fact Iσ0+θ(t) can be greater than 1 for 0 < σ < 1.

Now we give two examples to illustrate Theorems 4.2 and 4.3.
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Example 4.5. Let us consider the following fractional boundary value problem with fractional
deviating argument:

cD7/3
0+ u(t) + a(t)f

(
u
(
Iσ0+θ(t)

))
= 0, 0 < t < 1,

u′(0) = u′′(0) = 0, u(0) =
5
2
u(1),

(4.18)

where q = 7/3, σ = 3/5, α = 5/2, f(u) = exp(−u), θ(t) = t(1− t) ≤ t, a(t) =
√
1 + t, τ = 9/10. By

simple calculus we obtain I3/50+ θ(t) = (1/Γ(3/5))(t)3/5((25/24)t − (125/156)t2),
∫9/10
0 a(s)ds =

1. 0793/= 0. It is easy to check that the assumptions (H1)–(H3) hold and that A0 = ∞, A∞ = 0.
Applying Theorem 4.2 we deduce that there exists at least one positive solution.

Example 4.6. Let us consider the fractional boundary value problem with fractional deviating
argument:

cD5/2
0+ u(t) + a(t)f

(
u
(
Iσ0+θ(t)

))
= 0, 0 < t < 1,

u′(0) = u′′(0) = 0, u(0) = 2u(1),
(4.19)

where

q =
5
2
, σ =

1
2
, α = 2, θ(t) = t2 ≤ t, a(t) = 1 + t,

f(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u2

5
, 0 ≤ u ≤ 2,

301
5

u − 598
5

, 2 ≤ u ≤ 3,

61, u ≥ 3.

(4.20)

It is easy to see that I1/20+ θ(t) = (16/15π)t5/2 ≤ 1 and that hypotheses (H1)–(H3) are
satisfied. Let us check the assumptions of Theorem 4.2 for τ = 4/5:

μ >
2

Γ(5/2)

∫1

0
(1 + s)ds =

4√
π

= 2.2568,

L <
α(1 − τ)q−1

(α − 1) Γ
(
q
)
∫ τ

0
a(s)ds = 0.15072.

(4.21)

If we choose μ = 2.5, L = 0.05, a = 2, b = 3, d ≥ 305/2, ξ = 50/3, c = 9/50, then
the assumptions of Theorem 4.2 are satisfied; consequently, there exist at least three positive
solutions u1, u2, u3 ∈ P(ϕ, d) such that ‖ui‖ ≤ d = 153, 3 < mint∈[0,4/5]u1(t), 2 < ‖u2‖, with

mint∈[0,4/5]u2(t) < 3 and ‖u3‖ < 2.
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