Research Article

Norm for Sums of Two Basic Elementary Operators

A. Bachir, ${ }^{1,2,3}$ F. Lombarkia, ${ }^{\mathbf{1 , 2 , 3}}$ and A. Segres ${ }^{\mathbf{1 , 2 , 3}}$

${ }^{1}$ Department of Mathematics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
${ }^{2}$ Department of Mathematics, Faculty of Science, University of Batna, 05000 Batna, Algeria
${ }^{3}$ Department of Mathematics, Mascara University, Algeria
Correspondence should be addressed to A. Bachir, bachir_ahmed@hotmail.com
Received 27 July 2012; Revised 8 November 2012; Accepted 25 November 2012
Academic Editor: Yuri Latushkin
Copyright © 2012 A. Bachir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We give necessary and sufficient conditions under which the norm of basic elementary operators attains its optimal value in terms of the numerical range.

1. Introduction

Let E be a normed space over $\mathbb{K}(\mathbb{R}$ or $\mathbb{C}), S_{E}$ its unit sphere, and E^{*} its dual topological space. Let D be the normalized duality mapping form E to E^{*} given by

$$
\begin{equation*}
D(x)=\left\{\varphi \in E^{*}: \varphi(x)=\|x\|^{2},\|\varphi\|=\|x\|\right\}, \quad \forall x \in E . \tag{1.1}
\end{equation*}
$$

Let $B(E)$ be the normed space of all bounded linear operators acting on E. For any operator $A \in B(E)$ and $x \in E$,

$$
\begin{align*}
W_{x}(A) & =\{\varphi(A x): \varphi \in D(x)\}, \\
W(A) & =\cup\left\{W_{x}(A): x \in S_{E}\right\} \tag{1.2}
\end{align*}
$$

is called the spatial numerical range of A, which may be defined as

$$
\begin{equation*}
W(A)=\left\{\varphi(A x): x \in S_{E} ; \varphi \in D(x)\right\} . \tag{1.3}
\end{equation*}
$$

This definition was extended to arbitrary elements of a normed algebra \mathcal{A} by Bonsall [1-3] who defined the numerical range of $a \in \mathcal{A}$ as

$$
\begin{equation*}
V(a)=W\left(A_{a}\right) \tag{1.4}
\end{equation*}
$$

where A_{a} is the left regular representation of A in $B(\mathcal{A})$, that is, $A_{a}=a b$ for all $b \in \mathcal{A}$. V(a) is known as the algebra numerical range of $a \in \mathcal{A}$, and, according to the above definitions, $V(a)$ is defined by

$$
\begin{equation*}
V(a)=\left\{\varphi(a b): b \in S_{A} ; \varphi \in D(b)\right\} . \tag{1.5}
\end{equation*}
$$

For an operator $A \in B(E)$, Bachir and Segres [4] have extended the usual definitions of numerical range from one operator to two operators in different ways as follows.

The spatial numerical range $W(A)_{B}$ of $A \in B(E)$ relative to B is

$$
\begin{equation*}
W(A)_{B}=\left\{\varphi(A x): x \in S_{E} ; \varphi \in D(B x)\right\} . \tag{1.6}
\end{equation*}
$$

The spatial numerical range $G(A)_{B}$ of $A \in B(E)$ relative to B is

$$
\begin{equation*}
G(A)_{B}=\{\varphi(A x): x \in E ;\|B x\|=1, \varphi \in D(B x)\} . \tag{1.7}
\end{equation*}
$$

The maximal spatial numerical range of $A \in B(E)$ relative to B is

$$
\begin{equation*}
M(A)_{B}=\left\{\varphi(A x): x \in S_{E} ;\|B x\|=\|B\|, \varphi \in D(B x)\right\} . \tag{1.8}
\end{equation*}
$$

For $A, B \in B(E)$, let $S_{E}(B)=\left\{\left(x_{n}\right)_{n}: x_{n} \in S_{E},\left\|B x_{n}\right\| \rightarrow\|B\|\right\}$, then the set

$$
\begin{equation*}
\mathcal{M}(A)_{B}=\left\{\lim \varphi_{n}\left(A x_{n}\right):\left(x_{n}\right)_{n} \in S_{E}(B), \varphi_{n} \in D\left(B x_{n}\right)\right\} \tag{1.9}
\end{equation*}
$$

is called the generalized maximal numerical range of A relative to B. It is known that $\mathcal{M}(A)_{B}$ is a nonempty closed subset of \mathbb{K} and $M(A)_{B} \subseteq \mathcal{M}(A)_{B} \subseteq \overline{W(A)_{B}}$. The definition of $\mathcal{M}(A)_{B}$ can be rewritten, with respect to the semi-inner product $[\cdot, \cdot]$ as

$$
\begin{equation*}
\mathcal{M}(A)_{B}=\left\{\lim \left[A x_{n}, B x_{n}\right]:\left(x_{n}\right)_{n} \in S_{E}(B)\right\} \tag{1.10}
\end{equation*}
$$

with respect to an inner product (\cdot, \cdot) as

$$
\begin{equation*}
\mathcal{M}(A)_{B}=\left\{\lim \left(A x_{n}, B x_{n}\right):\left(x_{n}\right)_{n} \in S_{E}(B)\right\} . \tag{1.11}
\end{equation*}
$$

We shall be concerned to estimate the norm of the elementary operator $M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}$, where $A_{1}, A_{2}, B_{1}, B_{2}$ are bounded linear operators on a normed space E and $M_{A_{1}, B_{1}}$ is the basic elementary operator defined on $B(E)$ by

$$
\begin{equation*}
M_{A_{1}, B_{1}}(X)=A_{1} X B_{1} . \tag{1.12}
\end{equation*}
$$

We also give necessary and sufficient conditions on the operators $A_{1}, A_{2}, B_{1}, B_{2}$ under which $M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}$ attaints its optimal value $\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\|$.

2. Equality of Norms

Our next aim is to give necessary and sufficient conditions on the set $\left\{A_{1}, A_{2}, B_{1}, B_{2}\right\}$ of operators for which the norm of $M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}$ equals $\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\|$.

Lemma 2.1. For any of the operators $A, B, C \in B(E)$ and all $\alpha, \beta \in \mathbb{K}$, one has

$$
\begin{gather*}
\mathcal{M}(\alpha A+\beta B)_{B}=\alpha \mathcal{M}(A)_{B}+\beta\|B\|^{2} \tag{2.1}\\
\mathcal{M}(\alpha A+\beta C)_{B} \subseteq \alpha \mathcal{M}(A)_{B}+\beta \mathcal{M}(C)_{B}
\end{gather*}
$$

Proof. The proof is elementary.
Theorem 2.2. Let $A_{1}, A_{2}, B_{1}, B_{2}$ be operators in $B(E)$.

$$
\begin{align*}
& \text { If }\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}\right)_{A_{2}} \cup \mathcal{M}\left(A_{2}\right)_{A_{1}} \text { and }\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \cup \mathcal{M}\left(B_{2}\right)_{B_{1},} \text { then } \\
& \left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\| . \tag{2.2}
\end{align*}
$$

Proof. The proof will be done in four steps; we choose one and the others will be proved similarly. Suppose that $\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}\right)_{A_{2}}$ and $\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}}$, then there exist $\left(x_{n}\right)_{n} \in S_{E}\left(A_{2}\right), \varphi_{n} \in D\left(A_{2} x_{n}\right)$ such that $\left\|A_{1}\right\|\left\|A_{2}\right\|=\lim _{n} \varphi_{n}\left(A_{1} x_{n}\right)$ and there exist $\left(y_{n}\right)_{n} \in$ $S_{E}\left(B_{2}\right), \psi_{n} \in D\left(B_{2} y_{n}\right)$ such that $\left\|B_{1}\right\|\left\|B_{2}\right\|=\lim _{n} \psi_{n}\left(B_{1} y_{n}\right)$. Define the operators $X_{n} \in B(E)$ as follows:

$$
\begin{equation*}
X_{n}\left(y_{n}\right)=\left(\psi_{n} \otimes x_{n}\right)\left(y_{n}\right)=\psi_{n}\left(y_{n}\right) x_{n}, \quad \forall n \tag{2.3}
\end{equation*}
$$

Then $\left\|X_{n}\right\| \leq\left\|B_{2}\right\|$, for all $n \geq 1$, and

$$
\begin{align*}
\left\|\left(M_{A_{1}+B_{1}}+M_{A_{2}+B_{2}}\right) X_{n}\left(y_{n}\right)\right\| & =\left\|\left(A_{1} X_{n} B_{1}+A_{2} X_{n} B_{2}\right) y_{n}\right\| \\
& =\left\|A_{1} X_{n}\left(B_{1} y_{n}\right)+A_{2} X_{n}\left(B_{2} y_{n}\right)\right\| \\
& =\frac{\left\|\varphi_{n}\right\|}{\left\|\varphi_{n}\right\|}\left\|A_{1} \psi_{n}\left(B_{1} y_{n}\right) x_{n}+A_{2} \psi_{n}\left(B_{2} y_{n}\right) x_{n}\right\| \tag{2.4}\\
& \geq \frac{1}{\left\|\varphi_{n}\right\|}\left\|\varphi_{n}\left(\psi_{n}\left(B_{1} y_{n}\right) A_{1} x_{n}+\psi_{n}\left(B_{2} y_{n}\right) A_{2} x_{n}\right)\right\| \\
& =\frac{1}{\left\|\varphi_{n}\right\|}\left\|\varphi_{n}\left(B_{1} y_{n}\right) \varphi_{n}\left(A_{1} x_{n}\right)+\right\| B_{2} y_{n}\left\|^{2}\right\| A_{2} x_{n}\left\|^{2}\right\| . \\
\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\| & \geq \frac{\left\|\left(M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right) X_{n}\left(y_{n}\right)\right\|}{\left\|X_{n}\right\|}, \quad \forall n \geq 1 . \tag{2.5}
\end{align*}
$$

Hence

$$
\begin{equation*}
\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\| \geq \frac{\left\|\psi_{n}\left(B_{1} y_{n}\right) \varphi_{n}\left(A_{1} x_{n}\right)+\right\| B_{2} y_{n}\left\|^{2}\right\| A_{2} x_{n}\left\|^{2}\right\|}{\left\|A_{2}\right\|\left\|B_{2}\right\|}, \quad \forall n \geq 1 . \tag{2.6}
\end{equation*}
$$

Letting $n \rightarrow \infty$,

$$
\begin{equation*}
\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\| \geq\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\| . \tag{2.7}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\| \leq\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\|, \tag{2.8}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\| . \tag{2.9}
\end{equation*}
$$

Corollary 2.3. Let E be a normed space and $A, B \in B(E)$. Then, the following assertions hold:
(1) if $\|A\|\|B\| \in \mathcal{M}(A)_{B}$, then $\|A+B\|=\|A\|+\|B\|$;
(2) if $\|A\| \in \mathcal{M}(I)_{A}$ and $\|B\| \in \mathcal{M}(I)_{B}$, then $\left\|M_{A, B}+I\right\|=1+\|A\|\|B\|$.

Remark 2.4. In the previous corollary, if we set $B=I$, then we obtain an important equation called the Daugavet equation:

$$
\begin{equation*}
\|A+I\|=1+\|A\| . \tag{2.10}
\end{equation*}
$$

It is well known that every compact operator on $C[0,1][5]$ or on $L_{1}[0,1][6]$ satisfies (2.10).
A Banach space E is said to have the Daugavet property if every rank-one operator on E satisfies (2.10). So that from our Corollary 2.3 if $1 \in \mathcal{M}(I)_{A}$ or $1 \in \mathcal{M}(A)_{I}$ for every rank-one operator A, then E has the Daugavet property.

The reverse implication in the previous theorem is not true, in general, as shown in the following example which is a modification of that given by the authors Bachir and Segres [4, Example 3.17].

Example 2.5. Let c_{0} be the classical space of sequences $\left(x_{n}\right)_{n} \subset \mathbb{C}: x_{n} \rightarrow 0$, equipped with the norm $\left\|\left(x_{n}\right)_{n}\right\|=\max _{n}\left|x_{n}\right|$ and let L be an infinite-dimensional Banach space. Taking the Banach space $E=L \oplus c_{0}$ equipped with the norm, for $x=\left(x_{1}+x_{2}\right) \in E,\|x\|=\left\|x_{1}+x_{2}\right\|=$ $\max \left\{\left\|x_{1}\right\|,\left\|T x_{1}\right\|+\left\|x_{2}\right\|\right\}$, where T is any norm-one operator from L to c_{0} which does not attain its norm (by Josefson-Nissenzweig's theorem [7]), we can find a sequence $\left(\varphi_{n}\right)_{n} \subset S_{E^{*}}$ such that φ_{n} converges weakly to 0 . Therefore we get the desired operator $T: L \rightarrow c_{0}$ defined by

$$
\begin{equation*}
(T x)_{n}=\frac{n}{n+1} \varphi_{n}(x) . \tag{2.11}
\end{equation*}
$$

Let $A_{1}, A_{2}, B_{1}, B_{2}$ be operators defined on E as follows:

$$
\begin{gather*}
A_{1}\left(x_{1}+x_{2}\right)=0+T x_{1} \\
A_{2} x=A_{2}\left(x_{1}+x_{2}\right)=x_{1}+0 \\
B_{1}\left(x_{1}+x_{2}\right)=x_{1}-x_{2} \tag{2.12}\\
B_{2}=I, \quad \forall x=\left(x_{1}+x_{2}\right) \in L \times c_{0},
\end{gather*}
$$

where I is the identity operator on E. It easy to check that A_{1}, A_{2}, B_{1} are linear bounded operators and $\left\|A_{1}\right\|=\left\|A_{2}\right\|=\left\|B_{1}\right\|=\left\|B_{2}\right\|=1$. If we choose $X_{0}=I$ and $x_{0}=x_{1}+0$ such that $1=\left\|T x_{1}\right\| \geq\left\|x_{1}\right\|$, then $\left\|X_{0}\right\|=\left\|x_{0}\right\|=1$ and

$$
\begin{align*}
\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\| & \geq\left\|\left(M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right) X_{0}\left(x_{0}\right)\right\| \\
& =\left\|\left(A_{1} X_{0} B_{1}+A_{2} X_{0} B_{2}\right)\left(x_{0}\right)\right\| \\
& =\left\|0+T x_{1}+x_{1}+0\right\| \tag{2.13}\\
& =\max \left\{\left\|x_{1}\right\|, 2\left\|T x_{1}\right\|\right\} \\
& =2
\end{align*}
$$

and from

$$
\begin{equation*}
\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\| \leq\left\|A_{1}\right\|\left\|A_{2}\right\|+\left\|B_{1}\right\|\left\|B_{2}\right\|=2 \tag{2.14}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\|=2=\left\|A_{1}\right\|\left\|A_{2}\right\|+\left\|B_{1}\right\|\left\|B_{2}\right\| . \tag{2.15}
\end{equation*}
$$

It is clear from the definitions of $\mathcal{M}\left(A_{1}\right)_{A_{2}}$ and $W\left(A_{1}\right)_{A_{2}}$ that

$$
\begin{equation*}
\mathcal{M}\left(A_{1}\right)_{A_{2}} \subseteq \overline{W\left(A_{1}\right)_{A_{2}}} \tag{2.16}
\end{equation*}
$$

(for details, see [4]).
The next result shows that the reverse is true under certain conditions, before that we recall the definition of Birkhoff-James orthogonality in normed spaces.

Definition 2.6. Let E be a normed space and $x, y \in E$. We say that x is orthogonal to y in the sense of Birkhoff-James $([8,9])$, in short $x \perp_{B-J} y$, iff

$$
\begin{equation*}
\forall \lambda \in \mathbb{K}:\|x+\lambda y\| \geq\|x\| \tag{2.17}
\end{equation*}
$$

If F, G are linear subspaces of E, we say that F is orthogonal to G in the sense of \perp_{B-J}, written as $F \perp_{B-J} G$ iff $x \perp_{B-J} y$ for all $x \in F$ and all $y \in G$.

If $T \in B(E)$, we will denote by $\operatorname{Ran}(T)$ and T^{\dagger} the range and the dual adjoint, respectively, of the operator T.

Theorem 2.7. Let $A_{1}, A_{2}, B_{1}, B_{2}$ be operators in $B(E)$.

$$
\begin{align*}
& \text { If }\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\|, \\
& \operatorname{Ran}\left(A_{2}^{\dagger}\right) \perp_{B-J} \operatorname{Ran}\left(A_{1}^{\dagger}-\frac{\left\|A_{1}\right\|}{\left\|A_{2}\right\|} A_{2}^{\dagger}\right), \quad \operatorname{Ran}\left(B_{2}\right) \perp_{B-J} \operatorname{Ran}\left(B_{1}-\frac{\left\|B_{1}\right\|}{\left\|B_{2}\right\|} B_{2}\right), \tag{2.18}
\end{align*}
$$

then

$$
\begin{equation*}
\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}^{\dagger}\right)_{A_{2}^{+\prime}} \quad\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \tag{2.19}
\end{equation*}
$$

Moreover, if

$$
\begin{equation*}
\operatorname{Ran}\left(A_{1}^{\dagger}\right) \perp_{B-J} \operatorname{Ran}\left(A_{2}^{\dagger}-\frac{\left\|A_{2}\right\|}{\left\|A_{1}\right\|} A_{1}^{\dagger}\right), \quad \operatorname{Ran}\left(B_{1}\right) \perp_{B-J} \operatorname{Ran}\left(B_{2}-\frac{\left\|B_{2}\right\|}{\left\|B_{1}\right\|} B_{1}\right) \tag{2.20}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}^{\dagger}\right)_{A_{2}^{\dagger}} \cap \mathcal{M}\left(A_{2}^{\dagger}\right)_{A_{1}^{\dagger \prime}} \quad\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \cap \mathcal{M}\left(B_{2}\right)_{B_{1}} \tag{2.21}
\end{equation*}
$$

Proof. If $\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\|$, then we can find two normalized sequences $\left(X_{n}\right)_{n} \subseteq B(E)$ and $\left(x_{n}\right)_{n} \subseteq E$ such that

$$
\begin{equation*}
\lim _{n}\left\|A_{1} X_{n} B_{1} x_{n}+A_{2} X_{n} B_{2} x_{n}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\| . \tag{2.22}
\end{equation*}
$$

We have for all $n \geq 1$

$$
\begin{align*}
& \left\|A_{1} X_{n} B_{1} x_{n}\right\| \leq\left\|A_{1}\right\|\left\|B_{1} x_{n}\right\| \leq\left\|A_{1}\right\|\left\|B_{1}\right\| \tag{2.23}\\
& \left\|A_{2} X_{n} B_{2} x_{n}\right\| \leq\left\|A_{2}\right\|\left\|B_{2} x_{n}\right\| \leq\left\|A_{2}\right\|\left\|B_{2}\right\|
\end{align*}
$$

so we can deduce from the above inequalities and (2.10) that $\lim _{n}\left\|B_{1} x_{n}\right\|=\left\|B_{1}\right\|$ and $\lim _{n}\left\|B_{2} x_{n}\right\|=\left\|B_{2}\right\|$. From the assumptions $\operatorname{Ran}\left(B_{2}\right) \perp_{B-J} \operatorname{Ran}\left(B_{1}-\left(\left\|B_{1}\right\| /\left\|B_{2}\right\|\right) B_{2}\right)$ we get

$$
\begin{equation*}
\overline{\operatorname{Ran}\left(B_{1}-\frac{\left\|B_{1}\right\|}{\left\|B_{2}\right\|} B_{2}\right)} \cap \overline{\operatorname{Ran}\left(B_{2}\right)}=\{0\} \tag{2.24}
\end{equation*}
$$

Set $x_{n}=\left(B_{1}-\left(\left\|B_{1}\right\| /\left\|B_{2}\right\|\right) B_{2}\right) x_{n}$ and $y_{n}=B_{2} x_{n}$ for all n and define the function ϕ_{n} on the closed subspace F spanned by $\left\{x_{n}, y_{n}\right\}$ for all n as

$$
\begin{equation*}
\phi_{n}\left(a x_{n}+b y_{n}\right)=b\left\|y_{n}\right\|^{2}=b\left\|B_{2} x_{n}\right\|, \quad \forall a, b \in \mathbb{K} \tag{2.25}
\end{equation*}
$$

It is clear that ϕ_{n} is linear for all n and

$$
\begin{equation*}
\left|\phi_{n}\left(a X_{n}+b y_{n}\right)\right|=|b|\left\|B_{2} x_{n}\right\|^{2}=\left\|a X_{n}+b y_{n}\right\|\left\|B_{2} x_{n}\right\| \frac{\left\|b y_{n}\right\|}{\left\|a X_{n}+b y_{n}\right\|} \tag{2.26}
\end{equation*}
$$

From the assumptions $\operatorname{Ran}\left(B_{2}\right) \perp_{B-J} \operatorname{Ran}\left(B_{1}-\left(\left\|B_{1}\right\| /\left\|B_{2}\right\|\right) B_{2}\right)$ it follows that

$$
\begin{equation*}
\left|\phi\left(a X_{n}+b y_{n}\right)\right| \leq\left\|B_{2} x_{n}\right\|\left\|a X_{n}+b y_{n}\right\|, \quad \forall a, b \in \mathbb{K}, \forall n \tag{2.27}
\end{equation*}
$$

This means that ϕ_{n} is continuous for each n on the subspace F with $\left\|\phi_{n}\right\|=\left\|B_{2} x_{n}\right\|$ (by (2.27) and $\left.\phi_{n}\left(y_{n}\right)=\left\|y_{n}\right\|\left\|B_{2} x_{n}\right\|\right)$. Then by Hahn-Banach theorem there is $\widetilde{\phi_{n}} \in E^{*}$ with $\left.\widetilde{\phi_{n}}\right|_{F}=\phi_{n}$ and $\left\|\phi_{n}\right\|=\left\|\widetilde{\phi_{n}}\right\|$, for each n. So

$$
\begin{equation*}
\widetilde{\phi_{n}}\left(x_{n}\right)=\widetilde{\phi_{n}}\left(\left(B_{1}-\frac{\left\|B_{1}\right\|}{\left\|B_{2}\right\|} B_{2}\right) x_{n}\right)=0 \tag{2.28}
\end{equation*}
$$

hence

$$
\begin{align*}
& \lim _{n} \widetilde{\phi_{n}}\left(x_{n}\right)=\widetilde{\phi_{n}}\left(\left(B_{1}-\frac{\left\|B_{1}\right\|}{\left\|B_{2}\right\|} B_{2}\right) x_{n}\right)=0 \tag{2.29}\\
& \widetilde{\phi_{n}}\left(B_{2} x_{n}\right)=\left\|B_{2} x_{n}\right\|^{2}, \quad\left\|\widetilde{\phi_{n}}\right\|=\left\|B_{2} x_{n}\right\| .
\end{align*}
$$

Thus, $0 \in \mathcal{M}\left(B_{1}-\left(\left\|B_{1}\right\| /\left\|B_{2}\right\|\right) B_{2}\right)_{B_{2}}$ and by Lemma 2.1

$$
\begin{equation*}
0 \in\left(\mathcal{M}\left(B_{1}\right)_{B_{2}}-\frac{\left\|B_{1}\right\|}{\left\|B_{2}\right\|}\left\|B_{2}\right\|^{2}\right)=\mathcal{M}\left(B_{1}\right)_{B_{2}}-\left\|B_{1}\right\|\left\|B_{2}\right\| \tag{2.30}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \tag{2.31}
\end{equation*}
$$

From $\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\|$ we can find a normalized sequences $\left(X_{n}\right)_{n} \subseteq B(E)$ such that

$$
\begin{equation*}
\lim _{n}\left\|A_{1} X_{n} B_{1}+A_{2} X_{n} B_{2}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\| \tag{2.32}
\end{equation*}
$$

Since $\left\|A_{1} X_{n} B_{1}+A_{2} X_{n} B_{2}\right\|=\left\|B_{1}^{\dagger} X_{n}^{\dagger} A_{1}^{\dagger}+B_{2}^{\dagger} X_{n}^{\dagger} A_{2}^{\dagger}\right\|$, for each n, then we can find a normalized $\phi_{n_{k}} \in E^{\dagger}$ such that

$$
\begin{equation*}
\lim _{k, n}\left\|B_{1}^{\dagger} X_{n}^{\dagger} A_{1}^{\dagger} \phi_{n_{k}}+B_{2}^{\dagger} X_{n}^{\dagger} A_{2}^{\dagger} \phi_{n_{k}}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\| . \tag{2.33}
\end{equation*}
$$

We argue similarly and get

$$
\begin{equation*}
\lim _{k, n}\left\|A_{1}^{\dagger} \phi_{n_{k}}\right\|=\left\|A_{1}^{\dagger}\right\|, \quad \lim _{k, n}\left\|A_{2}^{\dagger} \phi_{n_{k}}\right\|=\left\|A_{2}^{\dagger}\right\| . \tag{2.34}
\end{equation*}
$$

Following the same steps as in the previous case we obtain $\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}^{\dagger}\right)_{A_{2}^{+}}$.
Moreover, if we have $\operatorname{Ran}\left(A_{1}^{\dagger}\right) \perp_{B-J} \operatorname{Ran}\left(A_{2}^{\dagger}-\left(\left\|A_{2}\right\| /\left\|A_{1}\right\|\right) A_{1}^{\dagger}\right)$ and $\operatorname{Ran}\left(B_{1}\right) \perp_{B-J}$ $\operatorname{Ran}\left(B_{2}-\left(\left\|B_{2}\right\| /\left\|B_{1}\right\|\right) B_{1}\right)$, it suffices to reverse, in the proof of the previous case, the role of A_{1}^{\dagger} into A_{2}^{\dagger} and B_{1} into B_{2}.

For the completeness of the previous theorem we need to prove the following result which is very interesting.

We recall that Phelps [10] has proved that, for a Banach space $E, \cup\{D(x): x \in E\}$ is dense in E^{*}; this property is called subreflexivity of the space E. Using this fact, Bonsall and Duncan [2] has proved that for any operator $T \in B(E)$ we have $\overline{W(T)}=\overline{W\left(T^{\dagger}\right)}$. The following result generalizes the Bollobas result in the case $\mathcal{M}(A)_{B}$, where $A, B \in B(E)$.

Proposition 2.8. Let E be a Banach space with smooth dual and let $A, B \in B(E)$ such that B is a surjective operator. Then $\mathcal{M}\left(A^{\dagger}\right)_{B^{\dagger}} \subseteq \mathcal{M}(A)_{B}$.

Proof. Let $a \in \mathcal{M}\left(A^{\dagger}\right)_{B^{\dagger}}$, then there are $\psi_{n} \in D\left(B^{\dagger} \varphi_{n}\right),\left(\varphi_{n}\right)_{n} \in S_{E^{*}}\left(B^{\dagger}\right)$ such that $a=$ $\lim _{n} \psi_{n}\left(A^{\dagger} \varphi_{n}\right)$.

By the subreflexivity of E there exist sequences $\left(\varphi_{n_{k}}\right)_{n_{k}} \subseteq E^{*}$ and $\left(x_{n_{k}}\right) \subseteq E$ such that $\varphi_{n_{k}} \in D\left(x_{n_{k}}\right)$ and $\left\|\varphi_{n_{k}}-\right\| B x_{n_{k}}\left\|\varphi_{n}\right\|$ to 0 . It follows that the sequence ($\widehat{x}_{n_{k}}$) $\subseteq E^{* *}$ has an $E^{* *}$-weak convergent subsequence $\left(\widehat{x}_{n_{m}}\right)_{n_{m}}$, that is,

$$
\begin{equation*}
\widehat{x}_{n_{m}}(f) \longrightarrow \Psi(f), \quad \forall f \in E^{*}, \Psi \in E^{* *} \tag{2.35}
\end{equation*}
$$

On the one hand, we have

$$
\begin{equation*}
\left\|B x_{n_{m}}\right\|^{2}=\left[B^{\dagger}\left(\varphi_{n_{m}}-\left\|B x_{n_{m}}\right\| \varphi_{n}\right)\right]\left(x_{n_{m}}\right)+\left\|B x_{n_{m}}\right\|\left(B^{\dagger} \varphi_{n}\right)\left(x_{n_{m}}\right) \tag{2.36}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|B x_{n_{m}}\right\|^{2} \leq\left\|B^{\dagger}\left(\varphi_{n_{m}}-\left\|B x_{n_{m}}\right\| \varphi_{n}\right)\right\|+\left\|B x_{n_{m}}\right\|\left\|B^{\dagger} \varphi_{n}\right\| . \tag{2.37}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\|B x_{n_{m}}\right\|\left|\left\|B x_{n_{m}}\right\|-\left\|B^{\dagger} \varphi_{n}\right\|\right| \leq\left\|B^{\dagger}\right\|\left\|\varphi_{n_{m}}-\right\| B x_{n_{m}}\left\|\varphi_{n}\right\| . \tag{2.38}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
\left|\widehat{x}_{n_{m}}\left(B^{\dagger} \varphi_{n}\right)-\left\|B^{\dagger} \varphi_{n}\right\|\right| \leq & \left|\widehat{x}_{n_{m}}\left(B^{\dagger} \varphi_{n}\right)-\widehat{x}_{n_{m}}\left(\frac{B^{\dagger} \varphi_{n_{m}}}{\left\|B x_{n_{m}}\right\|}\right)\right| \\
& +\left|\frac{1}{\left\|B x_{n_{m}}\right\|} \widehat{x}_{n_{m}}\left(B^{\dagger} \varphi_{n_{m}}\right)-\left\|B^{\dagger} \varphi_{n}\right\|\right| \tag{2.39}\\
= & \left|\hat{x}\left(B^{\dagger} \varphi_{n}-\frac{1}{\left\|B x_{n_{m}}\right\|} B^{\dagger} \varphi_{n_{m}}\right)\right|+\mid\left\|B x_{n_{m}}-\right\| B^{\dagger}\left\|\varphi_{n}\right\| \| \\
& \longrightarrow 0 \quad \text { as } m \longrightarrow \infty .
\end{align*}
$$

So $\lim _{m} \widehat{x}_{n_{m}}\left(B^{\dagger} \varphi_{n}\right)=\left\|B^{\dagger} \varphi_{n}\right\|$ and $\left\|B^{\dagger} \varphi_{n}\right\| \Psi_{n} \in D\left(B^{\dagger} \varphi_{n}\right)$. Then by smoothness of the space E^{*} we get $\left\|B^{\dagger} \varphi_{n}\right\| \Psi_{n}=\Psi_{n}$, for all n. Next,

$$
\begin{align*}
\left|\widehat{x}_{n_{m}}\left(A^{\dagger} \varphi_{n_{m}}\right)-\frac{\left\|B x_{n_{m}}\right\|}{\left\|B^{\dagger} \varphi_{n}\right\|} \varphi_{n}\left(A^{\dagger} \varphi_{n}\right)\right| \leq & \left|\widehat{x}_{n_{m}}\left(A^{\dagger} \varphi_{n_{m}}\right)-\widehat{x}_{n_{m}}\left(\left\|B x_{n_{m}}\right\| A^{\dagger} \varphi_{n}\right)\right| \\
& +\left\|B x_{n_{m}}\right\|\left|\widehat{x}_{n_{m}}\left(A^{\dagger} \varphi_{n}\right)-\frac{1}{\left\|B^{\dagger} \varphi_{n}\right\|} \psi_{n}\left(A^{\dagger} \varphi_{n}\right)\right| \tag{2.40}\\
= & \left|\widehat{x}_{n_{m}}\left(A^{\dagger} \varphi_{n_{m}}-A^{\dagger} \varphi_{n}\right)\right| \\
& +\left\|B x_{n_{m}}\right\| \widehat{x}_{n_{m}}\left(A^{\dagger} \varphi_{n}\right)-\psi_{n}\left(A^{\dagger} \varphi_{n}\right) \mid \\
& \longrightarrow 0 \quad \text { as } m \longrightarrow \infty .
\end{align*}
$$

Then $\lim _{m} \widehat{x}_{n_{m}}\left(A^{\dagger} \varphi_{n_{m}}\right)=\psi_{n}\left(A^{\dagger} \varphi_{n}\right)$ or $\lim _{m} \varphi_{n_{m}}\left(A x_{n_{m}}=\psi\left(A^{\dagger} \varphi_{n}\right)\right.$ and therefore

$$
\begin{equation*}
\lim _{n}\left[\lim _{m} \varphi_{n_{m}}\left(A x_{n_{m}}\right)\right]=\lim _{n} \psi_{n}\left(A^{\dagger} \varphi_{n}\right)=a \tag{2.41}
\end{equation*}
$$

which means that $a \in \mathcal{M}(A)_{B}$.
Corollary 2.9. Let E be a Banach space with smooth dual and $A_{1}, A_{2}, B_{1}, B_{2} \in B(E)$.

$$
\text { If }\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\| \text { and } \operatorname{Ran}\left(A_{2}^{\dagger}\right) \perp_{B-J} \operatorname{Ran}\left(A_{1}^{\dagger}-\left(\left\|A_{1}\right\| /\right.\right.
$$

$\left.\left\|A_{2}\right\|\right) A_{2}^{\dagger}$) with A_{2} being surjective, and $\operatorname{Ran}\left(B_{2}\right) \perp_{B-J} \operatorname{Ran}\left(B_{1}-\left(\left\|B_{1}\right\| /\left\|B_{2}\right\|\right) B_{2}\right)$, then

$$
\begin{equation*}
\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}\right)_{A_{2}}, \quad\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \tag{2.42}
\end{equation*}
$$

Moreover, if $\operatorname{Ran}\left(A_{1}^{\dagger}\right) \perp_{B-J} \operatorname{Ran}\left(A_{2}^{\dagger}-\left(\left\|A_{2}\right\| /\left\|A_{1}\right\|\right) A_{1}^{\dagger}\right), A_{2}$ is surjective, and $\operatorname{Ran}\left(B_{1}\right) \perp_{B-J}$ $\operatorname{Ran}\left(B_{2}-\left(\left\|B_{2}\right\| /\left\|B_{1}\right\|\right) B_{1}\right)$, then

$$
\begin{equation*}
\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}\right)_{A_{2}} \cap \mathcal{M}\left(A_{2}\right)_{A_{1}}, \quad\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \cap \mathcal{M}\left(B_{2}\right)_{B_{1}} \tag{2.43}
\end{equation*}
$$

Corollary 2.10. Let E be a Banach space with smooth dual and $A_{1}, A_{2}, B_{1}, B_{2} \in B(E)$ such that A_{1}, A_{2} are surjective operators. If $\operatorname{Ran}\left(A_{i}^{\dagger}\right) \perp_{B-J} \operatorname{Ran}\left(A_{j}^{\dagger}-\left(\left\|A_{j}\right\| /\left\|A_{i}\right\|\right) A_{i}^{\dagger}\right)$ and $\operatorname{Ran}\left(B_{i}\right) \perp_{B-J}$ $\operatorname{Ran}\left(B_{j}-\left(\left\|B_{j}\right\| /\left\|B_{i}\right\|\right) B_{i}\right),(i, j=1,2$ such that $i \neq j)$ then the following assertions are equivalent:
(1) $\left\|M_{A_{1}, B_{1}}+M_{A_{2}, B_{2}}\right\|=\left\|A_{1}\right\|\left\|B_{1}\right\|+\left\|A_{2}\right\|\left\|B_{2}\right\| ;$
(2) $\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}\right)_{A_{2}} \cap \mathcal{M}\left(A_{2}\right)_{A_{1}}$ and $\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \cap \mathcal{M}\left(B_{2}\right)_{B_{1}}$.

As a particular case, we obtain the following.
Corollary 2.11. Let E be a Banach space with smooth dual and A, B are surjective operators in $B(H)$. If

$$
\begin{equation*}
\operatorname{Ran}\left(B^{\dagger}\right) \perp_{B-J} \operatorname{Ran}\left(A^{\dagger}-\frac{\|A\|}{\|B\|} B^{\dagger}\right), \quad \operatorname{Ran}(A) \perp_{B-J} \operatorname{Ran}\left(B-\frac{\|B\|}{\|A\|} A\right) \tag{2.44}
\end{equation*}
$$

then the following assertions are equivalent:
(1) $\|A\|\|B\| \in \mathcal{M}(A)_{B} \cap \mathcal{M}(B)_{A}$;
(2) $\left\|M_{A, B}+M_{B, A}\right\|=2\|A\|\|B\|$.

3. Hilbert Space Case

Let $E=\mathscr{H}$ be a complex Hilbert space and $A \in B(\mathscr{H})$. The maximal numerical range of A [11] denoted by $W_{0}(A)$ is defined by

$$
\begin{equation*}
\left\{\lambda \in \mathbb{C}: \exists\left(x_{n}\right),\left\|x_{n}\right\|=1, \text { such that } \lim \left\langle A x_{n}, x_{n}\right\rangle=\lambda \text { and } \lim \left\|A x_{n}\right\|=\|A\|\right\} \tag{3.1}
\end{equation*}
$$

and its normalized maximal range, denoted by $W_{N}(A)$, is given by

$$
W_{N}(A)= \begin{cases}W_{0}\left(\frac{A}{\|A\|}\right) & \text { if } A \neq 0 \tag{3.2}\\ 0 & \text { if } A=0\end{cases}
$$

The set $W_{0}(A)$ is nonempty, closed, convex, and contained in the closure of the numerical range of A.

In this section we prove that if $E=\mathscr{H}$, the conditions

$$
\begin{equation*}
\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}\right)_{A_{2}} \cap \mathcal{M}\left(A_{2}\right)_{A_{1}}, \quad\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \cap \mathcal{M}\left(B_{2}\right)_{B_{1}} \tag{3.3}
\end{equation*}
$$

would imply that

$$
\begin{gather*}
\left\|A_{2}^{*} A_{1}\right\|=\left\|A_{1}\right\|\left\|A_{2}\right\|, \quad\left\|B_{2} B_{1}^{*}\right\|=\left\|B_{1}\right\|\left\|B_{2}\right\| \tag{3.4}\\
W_{N}\left(A_{2}^{*} A_{1}\right) \cap W_{N}\left(B_{2} B_{1}^{*}\right) \neq \emptyset
\end{gather*}
$$

Proposition 3.1. Let \mathscr{H} be a complex Hilbert space, $A_{1}, A_{2}, B_{1}, B_{2} \in B(\mathscr{H})$.
If $\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}\right)_{A_{2}} \cap \mathcal{M}\left(A_{2}\right)_{A_{1}}$ and $\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}} \cap \mathcal{M}\left(B_{2}\right)_{B_{1}}$, then $\left\|A_{2}^{*} A_{1}\right\|=$ $\left\|A_{1}\right\|\left\|A_{2}\right\|$ and $\left\|B_{2} B_{1}^{*}\right\|=\left\|B_{1}\right\|\left\|B_{2}\right\|$ and $W_{N}\left(A_{2}^{*} A_{1}\right) \cap W_{N}\left(B_{2} B_{1}^{*}\right) \neq \emptyset$.

Proof. If $A_{1}=0$ or $A_{2}=0$ and $B_{1}=0$ or $B_{2}=0$, the result is obvious.
The proof will be done in four steps, we choose one and the others will be proved similarly. Suppose that $A_{1} \neq 0$ and $A_{2} \neq 0$, if $\left\|A_{1}\right\|\left\|A_{2}\right\| \in \mathcal{M}\left(A_{1}\right)_{A_{2}}$, then there exists a sequence $\left(x_{n}\right)_{n} \in S_{\mathscr{H}}\left(A_{2}\right)$ such that

$$
\begin{equation*}
\left\|A_{1}\right\|\left\|A_{2}\right\|=\lim \left\langle A_{1} x_{n}, A_{2} x_{n}\right\rangle \tag{3.5}
\end{equation*}
$$

We have $\left|\left\langle A_{2}^{*} A_{1} x_{n}, x_{n}\right\rangle\right| \leq\left\|A_{2}^{*} A_{1}\right\| \leq\left\|A_{1}\right\|\left\|A_{2}\right\|$; this yields

$$
\begin{equation*}
\lim \left\|A_{2}^{*} A_{1} x_{n}\right\|=\left\|A_{2}^{*} A_{1}\right\|=\left\|A_{1}\right\|\left\|A_{2}\right\| \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) we get

$$
\begin{equation*}
\left\|A_{2}^{*} A_{1}\right\|=\left\|A_{1}\right\|\left\|A_{2}\right\|, \quad 1 \in W_{0}\left(\frac{A_{2}^{*} A_{1}}{\left\|A_{2}^{*} A_{1}\right\|}\right) \tag{3.7}
\end{equation*}
$$

Suppose now that $B_{1} \neq 0$ and $B_{2} \neq 0$, if $\left\|B_{1}\right\|\left\|B_{2}\right\| \in \mathcal{M}\left(B_{1}\right)_{B_{2}}$, then there exists a sequence $\left(y_{n}\right)_{n} \in S_{\Perp}\left(B_{2}\right)$ such that

$$
\begin{equation*}
\left\|B_{1}\right\|\left\|B_{2}\right\|=\lim \left\langle B_{1} y_{n}, B_{2} y_{n}\right\rangle \tag{3.8}
\end{equation*}
$$

Since $\lim _{n}\left\|B_{1} y_{n}\right\|=\left\|B_{1}\right\|$, then $\lim _{n}\left(B_{1}^{*} B_{1} y_{n}-\left\|B_{1}\right\|^{2} y_{n}\right)=0$.
Suppose that $w_{n}=B_{1} y_{n} /\left\|B_{1}\right\|$, then $y_{n}=B_{1}^{*} w_{n} /\left\|B_{1}\right\|+z_{n}$ such that $\lim _{n} z_{n}=0$.
Hence

$$
\begin{align*}
\left\langle B_{2} y_{n}, B_{1} y_{n}\right\rangle & =\left\langle B_{2}\left(\frac{B_{1}^{*} w_{n}}{\left\|B_{1}\right\|}\right),\left\|B_{1}\right\| w_{n}\right\rangle \tag{3.9}\\
& =\left\langle B_{2} B_{1}^{*} w_{n}, w_{n}\right\rangle+\left\langle B_{2} z_{n},\left\|B_{1}\right\| w_{n}\right\rangle
\end{align*}
$$

From this, we derive that

$$
\begin{equation*}
\lim \left\|B_{2} B_{1}^{*} w_{n}\right\|=\left\|B_{2} B_{1}^{*}\right\|=\left\|B_{1}\right\|\left\|B_{2}\right\| \tag{3.10}
\end{equation*}
$$

From (3.8) and (3.10) we have

$$
\begin{equation*}
\left\|B_{2} B_{1}^{*}\right\|=\left\|B_{1}\right\|\left\|B_{2}\right\|, \quad 1 \in W_{0}\left(\frac{B_{2} B_{1}^{*}}{\left\|B_{2} B_{1}^{*}\right\|}\right) \tag{3.11}
\end{equation*}
$$

From (3.7) and (3.11) we get $\left\|A_{2}^{*} A_{1}\right\|=\left\|A_{1}\right\|\left\|A_{2}\right\|$ and $\left\|B_{2} B_{1}^{*}\right\|=\left\|B_{1}\right\|\left\|B_{2}\right\|$ and $W_{N}\left(A_{2}^{*} A_{1}\right) \cap$ $W_{N}\left(B_{2} B_{1}^{*}\right) \neq \emptyset$.

Remark 3.2. We remark that in the case $E=\mathscr{H}$ we obtain an implication given by Boumazgour [12].

Acknowledgments

The authors would like to sincerely thank the anonymous referees for their valuable comments which improved the paper. This research was supported by a grant from King Khalid University (no. KKU_ S130_ 33).

References

[1] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, vol. 2 of London Mathematical Society Lecture Note Series, Cambridge University Press, London, UK, 1971.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges. II, vol. 2, Cambridge University Press, New York, NY, USA, 1973.
[3] F. F. Bonsall, "The numerical range of an element of a normed algebra," Glasgow Mathematical Journal, vol. 10, pp. 68-72, 1969.
[4] A. Bachir and A. Segres, "Numerical range and orthogonality in normed spaces," Filomat, vol. 23, no. 1, pp. 21-41, 2009.
[5] I. K. Daugavet, "A property of completely continuous operators in the space C," Uspekhi Matematicheskikh Nauk, vol. 18, no. 5, pp. 157-158, 1963 (Russian).
[6] G. Ja. Lozanovskiǐ, "On almost integral operators in KB-spaces," Vestnik Leningrad University. Mathematics, vol. 21, no. 7, pp. 35-44, 1966.
[7] J. Diestel, Sequences and Series in Banach Spaces, vol. 92 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1984.
[8] G. Birkhoff, "Orthogonality in linear metric spaces," Duke Mathematical Journal, vol. 1, no. 2, pp. 169172, 1935.
[9] R. C. James, "Orthogonality and linear functionals in normed linear spaces," Transactions of the American Mathematical Society, vol. 61, pp. 265-292, 1947.
[10] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, vol. 1364 of Lecture Notes in Mathematics, Springer, Berlin, Germnay, 2nd edition, 1993.
[11] J. G. Stampfli, "The norm of a derivation," Pacific Journal of Mathematics, vol. 33, pp. 737-747, 1970.
[12] M. Boumazgour, "Norm inequalities for sums of two basic elementary operators," Journal of Mathematical Analysis and Applications, vol. 342, no. 1, pp. 386-393, 2008.

