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The computation of the roots of positive definite matrices arises in nuclear magnetic resonance,
control theory, lattice quantum chromo-dynamics (QCD), and several other areas of applications.
The Cauchy integral theorem which arises in complex analysis can be used for computing f(A), in
particular the roots of A, where A is a square matrix. The Cauchy integral can be approximated by
using the trapezoid rule. In this paper, we aim to give a brief overview of the computation of roots
of positive definite matrices by employing integral representation. Some numerical experiments
are given to illustrate the theoretical results.

1. Introduction

It is well known that contour integrals which form a component of the Cauchy integral theo-
rem have an important role in complex analysis. The trapezoid rule is popular for the appro-
ximation of integrals due to its exponential accuracy if particular conditions are satisfied. It
has been established in [1] that the trapezoid rule can be used to compute contour integrals
to give a powerful algorithm for the computation of matrix functions.

Kellems [1] has studied the case of computing a matrix square root and a matrix expo-
nential function by utilizing the trapezoid rule. In particular, he focused on the matrix expo-
nential eA and its use in the heat equation. Only a few trapezoid rule points were required for
very high accuracy. Davies and Higham [2] have investigated the computation of a matrix-
vector product f(A)bwithout explicitly computing f(A). Their proposed methods were spe-
cific to the logarithm and fractional matrix powers which were based on quadrature and
solution of an ordinary differential equation initial value problem, respectively. Hale et al. in
[3] have presented new methods for the numerical computation of f(A) and f(A)b, where
f(A) is a function such as A1/2 or log(A)with singularities in (−∞, 0] and A is a matrix with
eigenvalues on or near (0,∞). The methods in [3]were based on combining contour integrals
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evaluated using the periodic trapezoid rule with conformal maps involving elliptic func-
tions.

In this paper, we investigate computation of the pth roots of positive definite matrices
by utilizing integral representation. Our approach is based on the work of Kellems [1] who
compute the square root of positive definite matrix using trapezoid rule. The integral identity
will be computed by employing trapezoid rule. We also study some matrix factorization pro-
cedure and their application in computing matrix roots using trapezoid rule. The outline of
this paper is as follows. In Section 2 we introduce some basic definitions and also integral
representation of function of matrices and trapezoid rule. In Section 3 we will obtain some
formulas to compute the integral representation of the matrix pth root. Numerical experi-
ments will be discussed in Section 4, and the conclusions will be presented in Section 5.

2. Approximation of the Matrix pth Roots

The Cauchy integral theorem states that the value of f(a) can be evaluated by an integral rep-
resentation as follows:

f(a) =
1

2πi

∮
Γ

f(z)
(z − a)

dz, (2.1)

where Γ is a contour in C such that Γ enclose a and f(z) is an analytic and inside Γ [1]. The
generalization of this formula in the matrix case can be presented as

f(A) =
1

2πi

∮
Γ
f(z)(zI −A)−1dz (2.2)

and can be defined element by element as follows:

f(A) = fij =⇒ fkj =
1

2πi

∮
Γ
f(z)eTk (zI −A)−1ejdz, (2.3)

where the entries of (zI−A)−1 are analytic on Γ and also f(z) is analytic function in the neigh-
borhood of the spectrum ofA [4]. Cauchy’s integral formula can be simplified by considering
Γ to be a circle of radius r centered at some point zc, defined by z = zc + reiθ. This substitution
gives us the following identity [1]:

f(A) =
1
2π

∫2π

0
f(z)(zI −A)−1reiθdθ. (2.4)

Writing z − zc = reiθ and substituting into (2.4) gives

f(A) =
1
2π

∫2π

0
(z − zc)f(z)(zI −A)−1dθ. (2.5)

A primary pth root of a square matrix A ∈ C
n×n, with a p positive integer, is a solution of the

matrix equation Xp − A = 0 that can be written as a polynomial of A. If A has � distinct
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eigenvalues and none of which is zero, thenA has exactly p� primary pth roots. This result by
(2.2) was obtained where f is any of the p� analytic functions defined on the spectrum of A,
such that f(z)p = z and Γ is a closed contour which encloses the spectrum of A. If A has no
nonpositive real eigenvalues, then there exists only one primary pth root whose eigenvalues
lie in the sector Sp = {z ∈ C \ {0} : | arg(z)| < π/p} [5]. In this paper, we demonstrate the
method for f(A) = A1/p.

In order to calculate the integral (2.2) accurately, we first split the interval of integ-
ration [a, b] intoN smaller uniform subintervals and then apply the trapezoidal rule on each
of them. The composite trapezoidal rule is as follows [6]:

∫b

a

f(x)dx ≈ h

2

⎛
⎝f(x0) + 2

N−1∑
j=1

f
(
xj

)
+ f(xN)

⎞
⎠, (2.6)

where h = (b − a)/N and xj = a + jh, j = 1, . . . ,N − 1. Since f(a) = f(b), (2.6) can be refor-
mulated as

∫b

a

f(x)dx ≈ b − a

N

N−1∑
j=0

f
(
xj

)
. (2.7)

For (2.5), let the integrand be the function g(θ). If we take N equally spaced points on Γ and
consider that f(0) = f(2π), then (2.7) can be written as

f(A) ≈ 1
N

N−1∑
j=0

g
(
θj
)
, (2.8)

which is the general formula for the computation of a matrix function when Γ is a circle [1].
The function f(z) = z1/p is analytic (i.e., fx = −ify) everywhere in C except at z = 0.

Consider a matrix A which has eigenvalues in the unit disk centered at zc. The contour is a
disk of radius r, parameterized as z = zc + reiθ, and from (2.5)we have

A1/p ≈ 1
N

N−1∑
j=0

(
zj − zc

)
z
1/p
j

(
zjI −A

)−1
. (2.9)

An important property of the trapezoidal rule approximation is that it has better accuracy
than the standard matrix pth root algorithms [1].

Now we suppose the Random matrix and use trapezoid rule with zc = 3 and r = 2.
Figure 1 shows us the convergence of this method for matrices of dimension 4, 8, 16, 32, and
64. In each case exponential accuracy was found. Since the eigenvalues are well clustered, a
few points need to be used. For matrices with larger spectral radius or more scattered eigen-
values, the convergence will be slower. This is consistent with the finding in [1] for the case
of square root (p = 2).
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Figure 1: Error in trapezoid rule for computing A1/p as matrix size increases.

3. Employing Matrix Decompositions

Matrix factorizations are utilized to compute the pth root of a matrix using trapezoid rule.
Given a square matrixA, we are interested as to the simplest form of matrix B inC or R under
unitary similarity transformA = QBQ∗ or similarity transformA = XBX−1. Matrix B presents
some information on A because many features and structure of matrices are invariant under
similarity transform. In this part, three factorizations: Schur, Eigenvalue, and Hessenberg are
investigated in relation to the use of the trapezoidal rule.

3.1. Schur Decomposition

One of the most applicable factorization of matrices is Schur decomposition which is presen-
ted in the following theorem [4].

Theorem 3.1 (Schur decomposition theorem). LetA ∈ C
n×n; then there exists a unitaryQ ∈ C

n×n

such that

Q∗AQ = T = D +N, (3.1)

where D = diag(λ1, . . . , λn) and N is strictly upper triangular. Further, Q = diag(q1, . . . , qn) is a
column partitioning of the unitary matrix Q where qi is referred to as Schur vectors, and from AQ =
QT Schur vectors satisfy

Aqk = λkqk +
k−1∑
i=1

nikqi, k = 1, . . . , n. (3.2)
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One of the most famous algorithms to compute matrix roots is Smith’s algorithm pro-
posed in [7]. Generally, this algorithm is presented as follows.

(i) Compute the Schur factorization A = QTQT .

(ii) Matrix T is upper triangular and so we then set Rj,j = T
1/p
j,j .

(iii) Else operate column-by-column on T to produce the upper triangular pth root mat-
rix R.

This algorithm uses (28+(p−1)/3)n3 flops in total. The matrix pth root is given as B =
QRQT . It can be verified that

T = Rp =⇒ QTQT = QRpQT

=⇒ A =
(
QRQT

)
. . .

(
QRQT

)

=⇒ A = Bp.

(3.3)

This can be used to speed up the trapezoid rule method: implement a preliminary factor-
ization of A, operate on the factored matrix, and then combine the factors at the end of the
computation [1]. Using the Schur factorization and the unitary of Q, we then have

zjI −A = zjI −QTQ∗ = Q
(
zjI − T

)
Q∗. (3.4)

Using this in (2.9) gives

A1/p ≈ 1
N

Q

⎛
⎝N−1∑

j=0

(
zj − zc

)
z
1/p
j

(
zjI − T

)−1
⎞
⎠Q∗. (3.5)

3.2. Eigenvalue Decomposition

This factorization is also called spectral decomposition and is presented as follows [4].

Theorem 3.2 (Eigenvalue decomposition theorem). Let A ∈ C
n×n; there exists a nonsingular

X ∈ C
n×n which can diagonalize A

X−1AX = diag(λ1, . . . , λn) (3.6)

if and only if the geometric multiplicities of all eigenvalue λi are equal to their algebraic multiplicities.
Utilizing the property of X, one has

zjI −A = zjI −XDX−1 = X
(
zjI −D

)
X−1. (3.7)
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Replacing this into (2.9) yields

A1/p ≈ 1
N

X

⎛
⎝N−1∑

j=0

(
zj − zc

)
z
1/p
j

(
zjI −D

)−1
⎞
⎠X−1. (3.8)

3.3. Hessenberg Decomposition

This factorization is also called spectral decomposition and is presented as follows [4].

Theorem 3.3 (Hessenberg decomposition theorem). LetA ∈ R
n×n; then there exists a orthogonal

matrix Q ∈ R
n×n such that

QTAQ = H, (3.9)

whereH is a Hessenberg matrix which means that the elements below the subdiagonal are zero.
Applying the Hessenberg factorization and the orthogonality of Q, one can write

zjI −A = zjI −QHQT = Q
(
zjI −H

)
QT. (3.10)

Substituting this into (2.9) will give

A1/p ≈ 1
N

Q

⎛
⎝N−1∑

j=0

(
zj − zc

)
z
1/p
j

(
zjI −H

)−1
⎞
⎠QT. (3.11)

4. Numerical Experiments

In this section we present some numerical experiment to illustrate the theory which is deve-
loped. All the computations have been carried out using MATLAB 7.10(Ra). We assume
positive definite matrices with positive nonzero eigenvalues. These matrices, which are given
in MATLAB gallery, are used to compute roots of matrices. Recall that if X̃ is approximated
value of A1/p by using different methods, then the absolute error and residual errors can be
considered as follows:

e
(
X̃
)
=
∥∥∥X̃p −A

∥∥∥
F
,

Res
(
X̃
)
=

∥∥∥X̃p −A
∥∥∥
F

‖A‖F
,

(4.1)

respectively, where ‖ · ‖F is Frobenius norm.
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Figure 2: Residual error for computing A1/p for Random matrix.

Test 1

For the first experiment, consider 20 × 20 Random matrix in the form

A = randn(N)/sqrt(N) + 3 ∗ eye(N), (4.2)

which has positive eigenvalues. We estimate the pth root of A for different values of p using
trapezoid rule. Furthermore, the Schur, eigenvalue, and Hessenberg factorizations are uti-
lized for speeding up the computations. Moreover, the residual error Res(X̃) and used time
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Figure 3: Time in seconds for computing A1/p for Random matrix.

in proposed method for the computation of matrix pth root, for p = 2, 16, 52, 128, and 2012,
are compared. The results are observed in Tables 1 and 2. It should be mentioned that the
number of the point in trapezoid rule is considered as N = 128. As can be shown in the
result, the Schur factorization has almost exactly the same error as MATLAB’s algorithm.
The Hessenberg factorization gives the best accuracy among the three methods. In fact, the
Hessenberg factorization is quicker than some algorithms inMATLAB. The trapezoid rule for
the computation of the matrix pth root may be more effective than several other algorithms
but this is dependent on the spectrum of A. This is consistent with the finding in [1] for the
case of square root.

Test 2

In this example consider 10×10 Random, Hilbert, and Lehmer matrices. We first fix the value
of p and then use trapezoid rule to compute matrix pth root. The relation between the num-
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Figure 4: Residual error for computing A1/p for Hilbert matrix.

Table 1: Comparison residual error for computing the pth root of Random matrix.

p Schur decomposition Eigenvalue decomposition Hessenberg decomposition

2 4.660633743656308e − 015 5.030320198311745e − 015 1.554377109452457e − 015

16 2.311964104013483e − 014 3.524734357427803e − 014 7.749850409855744e − 015

52 8.706212825269891e − 014 1.121352227197161e − 013 2.904341268646203e − 014

128 2.358332191022634e − 013 2.524139574310145e − 013 7.105511057327197e − 014

2012 3.448827113054843e − 012 3.472268532385117e − 012 1.170919968312386e − 012
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Figure 5: Time in seconds for computing A1/p for Hilbert matrix.

ber of points in trapezoid rule and obtained absolute errors e(X̃) is investigated. In the imple-
mentation, p = 100 is supposed and the number of points is increased as N = 2� , for � =
1, . . . , 10. Comparison between errors for various matrices is illustrated in Table 3. It can be
seen that errors by increasing the number of points in trapezoid rule will be reduced.

Test 3

In the last test Random matrix, Lehmer matrix, and Hilbert matrix are supposed. We have
computed the 5th, 17th, 64th, and 128th root of these matrices using trapezoidal rule and
Smith’s algorithm. Furthermore, in this example the absolute errors are estimated. As shown
in the figures, the accuracy is measured in either the Frobenius norm or the 2-norm for dif-
ferent matrices. The relations between dimension of A and absolute errors and also time in
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Figure 6: Residual error for computing A1/p for Lehmer matrix.

Table 2: Comparison time in seconds for computing the pth root of Random matrix.

p Schur decomposition Eigenvalue decomposition Hessenberg decomposition

2 0.054855 0.028401 0.017409

16 0.161744 0.226524 0.141455

52 0.404749 0.761385 0.663878

128 0.968970 1.914147 1.803490

2012 0.013331 0.025015 0.018379
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Figure 7: Time in seconds for computing A1/p for Lehmer matrix.

Table 3: Comparison absolute error for different numbers of points for different matrices.

No. of points Schur decomposition Eigenvalue decomposition Hessenberg decomposition

2 4.235476891477593 3.617696711330309 9.018271218363070

4 7.642822555078070 2.268548808462573 85.569768110351674

8 6.509731621793472 16.059530670734521 0.951463218971532

16 0.035910610643974 0.342929548483509 0.001435059307873

32 0.000002770887073 0.342929548483509 0.000000210760699

64 0.000000000000375 0.003429295484835 0.000000000000349

128 0.000000000000002 0.003429295484835 0.000000000000002

256 0.000000000000002 0.003429295484835 0.000000000000002

512 0.000000000000004 0.003429295484835 0.000000000000003

1024 0.000000000000001 0.000342929548484 0.000000000000000
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seconds are demonstrated in these figures. Figures 2–7 show the comparison of the residual
errors and timings for these methods.

According to Figure 2 which has four parts, the absolute error in all cases (p = 5, 17, 64,
and 128) in trapezoid rule are smaller than Smith’s method. In addition, in Figure 3 it is
illustrated that except the case of p = 5, the time of computation of the pth root using Smith’s
method is longer than trapezoidal rule. Also, Figures 4 and 5 are given difference between
error and also time in trapezoid rule and Smith’s method for Hilbert matrix. The residual
error for trapezoid rule is large while for Smith’s algorithm is small. For Hilbert matrix except
case (p = 5), in all cases Smith’s method is more time consuming than trapezoid rule. Finally,
Figures 6 and 7 show the computation of the pth root of Lehmer matrix which in the most
cases reveal that trapezoid rule is more expensive in time and also error than Smith’s method
by using N = 128 points. It must be mentioned that by increasing the number of points, con-
siderable accurate solution can be obtained. For example, using 220 points in trapezoid rule
can achieve error of 10−6 in the last experiment.

5. Conclusion

In this paper, we have studied the use of trapezoidal rule in conjunction with the Cauchy inte-
gral theorem to compute the pth roots of matrices. It was found that the technique is feasible
and accurate.
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