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Every collection of n (arbitrary-oriented) unit squares admits a translative packing into any square
of side length

√
2.5 · n.

1. Introduction

Let i be a positive integer, let 0 ≤ αi < π/2, and let a rectangular coordinate system in the
plane be given. One of the coordinate system’s axes is called x-axis. Denote by S(αi) a square
in the plane with sides of unit length andwith the angle between the x-axis and a side of S(αi)
equal to αi. Furthermore, by I(s) denote a square with side length s and with sides parallel
to the coordinate axes.

We say that a collection of n unit squares S(α1), . . . , S(αn) admits a packing into a set C
if there are rigid motions σ1, . . . , σn such that the squares σiS(αi) are subsets of C and that
they have mutually disjoint interiors. A packing is translative if only translations are allowed
as the rigid motions.

For example, two unit squares can be packed into I(2), but they cannot be packed
into I(2 − ε) for any ε > 0. Three and four unit squares can be packed into I(2) as well (see
Figure 1(a)). Obviously, two, three, or four squares S(0) can be translatively packed into I(2).
If either α1 /= 0 or α2 /= 0, then two squares S(α1) and S(α2) cannot be translatively packed into
I(2). The reason is that for every α/= 0, the interior of any square S(α) translatively packed into
I(2) covers the center of I(2) (see Figure 1(b)).

The problem of packing of unit squares into squares (with possibility of rigid motions)
is a well-known problem (e.g., see [1–3]). The best packings are known for several values of
n. Furthermore, for many values of n, there are good packings that seem to be optimal.

In this paper, we propose the problem of translative packing of squares. Denote by sn
the smallest number s such that any collection of n unit squares S(α1), . . . , S(αn) admits
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Figure 2

a translative packing into I(s). The problem is to find sn for n = 1, 2, 3, . . .. Obviously, sn >
√
n.

By [4, Theorem 7], we deduce that limn→∞sn/
√
n = 1. We show that

sn ≤
√
2.5 · n. (1.1)

2. Packing into Squares

Example 2.1. We have s1 =
√
2. Each unit square can be translatively packed into I(

√
2), but it

is impossible to translatively pack S(π/4) into I(
√
2 − ε) for any ε > 0.

Example 2.2. We have s2 =
√
5 (see [5]). Here, we only recall that two squares: S(arctan 1/2)

and S(arctan 2) cannot be translatively packed into I(
√
5 − ε) for any ε > 0 (see Figure 2(a)).

Example 2.3. We have s4 = 2
√
2. Four squares S(π/4) admit a translative packing into I(2

√
2)

(see Figure 3, where
√
2/2 ≤ λ ≤ 3

√
2/2). In Figure 3(b) and Figure 4(a), we illustrate the

cases when λ =
√
2 and λ =

√
2/2, respectively. By these three pictures, we conclude that four

squares S(π/4) cannot be translatively packed into I(2
√
2 − ε), for any ε > 0. Consequently,

s4 ≥ 2
√
2. On the other hand, four circles of radius

√
2/2 can be packed into I(2

√
2) (see

Figure 4(b)). Since any square S(αi) can be translatively packed into a circle of radius
√
2/2,

it follows that s4 ≤ 2
√
2.

Lemma 2.4 (see [5]). Every unit square can be translatively packed into any isosceles right triangle
with legs of length

√
5.
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Theorem 2.5. If n ≥ 3, then sn ≤ ((
√
10 +

√
5)/2

√
3) · √n.

Proof. Let S(α1), S(α2), andS(α3) be unit squares and put

λ1 =
1
2

(√
10 +

√
5
)
. (2.1)

Three congruent quadrangles Q1, Q2, andQ3, presented in Figure 2(b), of side lengths
λ1,

√
5,
√
2.5, and λ2 = λ1 −

√
5, are contained in I(λ1). Since the length of the diagonal of

S(αi) is smaller than
√
2.5, by Lemma 2.4 we deduce that S(αi) can be translatively packed

into Qi for i = 1, 2, 3. Consequently, the squares S(α1), S(α2), andS(α3) can be translatively
packed into I(s) and

s3 ≤ λ1 =
√
10 +

√
5

2
√
3

·
√
3. (2.2)

Now assume that 4 ≤ n ≤ 16.
Denote by mn the smallest number s such that n circles of unit radius can be packed

into I(s). The problem of minimizing the side of a square into which n congruent circles can
be packed is a well-known question. The values of mn are known, among others, for n ≤ 16
(see Table 2.2.1 in [6] or [7]). We know that

m4 = 4, m5 < 4.83, m6 < 5.33, m7 < 5.74, m8 < m9 = 6,

m10 < 6.75, m11 < 7.03, m12 < m13 < 7.47, m14 < m15 < m16 = 8.
(2.3)
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Since each unit square is contained in a circle of radius
√
2/2, it follows that n unit

squares can be translatively packed into I(
√
2mn/2). It is easy to verify that

sn ≤
√
2
2

mn <

√
10 +

√
5

2
√
3

· √n, (2.4)

for n = 4, 5, . . . , 16.
Finally, assume that n > 16. We use two lattice arrangements of circles.
There exists an integer m ≥ 4 such that either

m2 < n ≤ m2 +m or m2 +m < n ≤ (m + 1)2. (2.5)

Obviously, m2 circles of radius
√
2/2 can be packed into I(

√
2m) (see Figure 5(a)).

Moreover,m2 +m circles of radius
√
2/2 can be packed into I(

√
2m+

√
2/2) (see Figure 5(b));

it is easy to check that

(√
3m + 2

)
·
√
2
2

<
√
2m +

√
2
2

, (2.6)

provided m ≥ 4.
Ifm2 + 1 ≤ n ≤ m2 +m, then

sn ≤
√
2m +

√
2
2

≤
√
2 ·

√
n − 1 +

√
2
2

<

√
10 +

√
5

2
√
3

· √n. (2.7)

If m2 +m + 1 ≤ n ≤ (m + 1)2, then sn ≤ √
2(m + 1). Since m2 +m + 1 ≤ n, it follows that

m ≤ (1/2)
√
4n − 3 − 1/2. Thus,

sn ≤
√
2
(
1
2

√
4n − 3 +

1
2

)
<

√
10 +

√
5

2
√
3

· √n. (2.8)

By Theorem 2.5, Examples 2.1 and 2.2, we conclude the following result.
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Corollary 2.6. Every collection of n unit squares admits a translative packing into any square of area
2.5n, that is, sn ≤ √

2.5 · n. Furthermore, s2 =
√
5.

For n ≥ 1980, the following upper bound is better than the bound presented in
Theorem 2.5.

Lemma 2.7. Let n be a positive integer, and let k be the greatest integer not over 4
√
n. Then

sn ≤
(
1 +

π

2k

)[√
2(1 + k) +

√
n + 2k2 − 4k + 2

]
. (2.9)

Proof. Assume that S(α1), . . . , S(αn) is a collection of n unit squares. Let k be the greatest
integer not over 4

√
n, let η = π/2k, and put

ζ =
(
1 + η

)[√
2(1 + k) +

√
n + 2k2 − 4k + 2

]
. (2.10)

For each i ∈ {1, . . . , n}, there exists j ∈ {1, 2, . . . , k} such that

(
j − 1

)
η ≤ αi < jη. (2.11)

Put ϕ = αi − (j − 1)η. We have 0 ≤ ϕ < η. Moreover, let λ3 and λ4 denote the lengths of
the segments presented in Figure 6(a). Since

λ3 + λ4 = cosϕ + sinϕ ≤ 1 + ϕ < 1 + η, (2.12)

it follows that S(αi) is contained in a square Pi with side length 1 + η and with the angle
between the x-axis and a side of Pi equal to (j − 1)η. We say that Pi is a j-square.

To prove Lemma 2.7, it suffices to show that P1, . . . , Pn can be translatively packed into
I(ζ). Denote by Aj the total area of the j-squares, for j = 1, . . . , k. Obviously,

k∑
j=1

Aj = n
(
1 + η

)2
. (2.13)

Put

hj =
Aj

ζ − 2
√
2
(
1 + η

) + 2
√
2
(
1 + η

)
, (2.14)

for j = 1, . . . , k. Observe that

k∑
j=1

hj =
A1 + · · · +Ak

ζ − 2
√
2
(
1 + η

) + 2k
√
2
(
1 + η

)
. (2.15)
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Thus,

k∑
j=1

hj =
n
(
1 + η

)2

ζ − 2
√
2
(
1 + η

) + 2k
√
2
(
1 + η

)
. (2.16)

The equation

n
(
1 + η

)2

x − 2
√
2
(
1 + η

) + 2k
√
2
(
1 + η

)
= x (2.17)

is equivalent to

x2 − x · 2
√
2
(
1 + η

)
(k + 1) + (8k − n)

(
1 + η

)2 = 0. (2.18)

It is easy to verify that x = ζ is a solution of this equation. Consequently,

k∑
j=1

hj =
n
(
1 + η

)2

ζ − 2
√
2
(
1 + η

) + 2k
√
2
(
1 + η

)
= ζ. (2.19)

We divide I(ζ) into k rectangles R1, . . . , Rk, where Rj is a rectangle of side lengths ζ

and hj . Since the diagonal of each Pi equals
√
2(1 + η) and

Aj =
[
ζ − 2

√
2
(
1 + η

)][
hj − 2

√
2
(
1 + η

)]
, (2.20)

it follows that all j-squares admit a translative packing into Rj for j = 1, . . . , k (see
Figure 6(b)). Hence, P1, . . . , Pn, and consequently S(α1), . . . , S(αn) can be translatively packed
into I(ζ). This implies that sn ≤ ζ.

Theorem 2.8. Let n be a positive integer. Then

sn ≤ √
n +

(√
2 +

π

2

)
4
√
n +O(1), (2.21)

as n → ∞.

Proof. Let k be the greatest integer not over 4
√
n. Since

√
n + 2k2 − 4k + 2 <

√
n + 2k2 ≤

√
n + 2

√
n <

√
n + 1, (2.22)
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by Lemma 2.7, it follows that, for n > 1,

sn <

(
1 +

π

2 4
√
n − 2

)[√
2
(
1 + 4

√
n
)
+
√
n + 1

]

=
√
n +

(√
2 +

π

2

)
4
√
n +

(√
2 + 1

)(π
2
+ 1

)
+
π + π

√
2

4
√
n − 1

.

(2.23)
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