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A fixed point theorem involving Boyd-Wong-type cyclic contractions in partial metric spaces is
proved. We also provide examples to support the concepts and results presented herein.

1. Introduction and Preliminaries

Partial metric spaces were introduced byMatthews [1] to the study of denotational semantics
of data networks. In particular, he proved a partial metric version of the Banach contraction
principle [2]. Subsequently, many fixed points results in partial metric spaces appeared (see,
e.g., [1, 3–19] for more details).

Throughout this paper, the letters R and N
∗ will denote the sets of all real numbers

and positive integers, respectively. We recall some basic definitions and fixed point results of
partial metric spaces.

Definition 1.1. A partial metric on a nonempty set X is a function p : X × X → [0,∞) such
that for all x, y, z ∈ X

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
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A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X.

If p is a partial metric on X, then the function dp : X ×X → [0,∞) given by

dp

(
x, y
)
= 2p

(
x, y
) − p(x, x) − p

(
y, y
)

(1.1)

is a metric on X.

Example 1.2 (see, e.g., [1, 3, 11, 12]). Consider X = [0,∞) with p(x, y) = max{x, y}. Then,
(X, p) is a partial metric space. It is clear that p is not a (usual) metric. Note that in this case
dp(x, y) = |x − y|.

Example 1.3 (see, e.g., [1]). Let X = {[a, b] : a, b,∈ R, a ≤ b}, and define p([a, b], [c, d]) =
max{b, d} −min{a, c}. Then, (X, p) is a partial metric space.

Example 1.4 (see, e.g., [1, 20]). Let X := [0, 1] ∪ [2, 3], and define p : X ×X → [0,∞) by

p
(
x, y
)
=

{
max

{
x, y
}

if
{
x, y
} ∩ [2, 3]/= ∅,

∣∣x − y
∣∣ if

{
x, y
} ⊂ [0, 1].

(1.2)

Then, (X, p) is a complete partial metric space.

Each partial metric p on X generates a T0 topology τp on X, which has as a base the
family of open p-balls {Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > 0.

Definition 1.5. Let (X, p) be a partial metric space and {xn} a sequence in X. Then,

(i) {xn} converges to a point x ∈ X if and only if p(x, x) = limn→+∞p(x, xn),

(ii) {xn} is called a Cauchy sequence if limn,m→+∞p(xn, xm) exists and is finite.

Definition 1.6. A partial metric space (X, p) is said to be complete if every Cauchy
sequence {xn} in X converges, with respect to τp, to a point x ∈ X, such that p(x, x) =
limn,m→+∞p(xn, xm).

Lemma 1.7 (see, e.g., [3, 11, 12]). Let (X, p) be a partial metric space. Then,

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric
space (X, dp),

(b) (X, p) is complete if and only if the metric space (X, dp) is complete. Furthermore,
limn→+∞dp(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm). (1.3)
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Lemma 1.8 (see, e.g., [3, 11, 12]). Let (X, p) be a partial metric space. Then,

(a) if p(x, y) = 0, then x = y,

(b) if x /=y, then p(x, y) > 0.

Remark 1.9. If x = y, p(x, y)may not be 0.

Lemma 1.10 (see, e.g., [3, 11, 12]). Let xn → z as n → ∞ in a partial metric space (X, p) where
p(z, z) = 0. Then, limn→∞p(xn, y) = p(z, y) for every y ∈ X.

Let Φ be the set of functions φ : [0,∞) → [0,∞) such that

(i) φ is upper semicontinuous (i.e., for any sequence {tn} in [0,∞) such that tn → t as
n → ∞, we have lim supn→∞φ(tn) ≤ φ(t)),

(ii) φ(t) < t for each t > 0.

Recently, Romaguera [21] obtained the following fixed point theorem of Boyd-Wong
type [22].

Theorem 1.11. Let (X, p) be a complete partial metric space, and let T : X → X be a map such that
for all x, y ∈ X

p
(
Tx, Ty

) ≤ φ
(
M
(
x, y
))
, (1.4)

where φ ∈ Φ and

M
(
x, y
)
= max

{
p
(
x, y
)
, p(x, Tx), p

(
y, Ty

)
,
1
2
[
p
(
x, Ty

)
+ p
(
y, Tx

)]
}
. (1.5)

Then, T has a unique fixed point.

In 2003, Kirk et al. [23] introduced the following definition.

Definition 1.12 (see [23]). Let X be a nonempty set, m a positive integer, and T : X → X a
mapping. X =

⋃m
i=1 Ai is said to be a cyclic representation of X with respect to T if

(i) Ai, i = 1, 2, . . . , m are nonempty closed sets,

(ii) T(A1) ⊂ A2, . . . , T(Am−1) ⊂ Am, T(Am) ⊂ A1.

Recently, fixed point theorems involving a cyclic representation of X with respect to a
self-mapping T have appeared in many papers (see, e.g., [24–28]).

Very recently, Abbas et al. [24] extended Theorem 1.11 to a class of cyclic mappings
and proved the following result, but with φ ∈ Φ being a continuous map.

Theorem 1.13. Let (X, p) be a complete partial metric space. Let m be a positive integer,
A1, A2, . . . , Am nonempty closed subsets of (X, dp), and Y =

⋃m
i=1 Ai. Let T : Y → Y be a mapping

such that

(i) Y =
⋃m

i=1 Ai is a cyclic representation of Y with respect to T ,
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(ii) there exists φ : [0,∞) → [0,∞) such that φ is continuous and φ(t) < t for each t > 0,
satisfying

p
(
Tx, Ty

) ≤ φ
(
M
(
x, y
))
, (1.6)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m, where Am+1 = A1 and M(x, y) is defined by
(1.5).

Then, T has a unique fixed point z ∈ ⋂m
i=1 Ai.

In the following example, φ ∈ Φ, but it is not continuous.

Example 1.14. Define φ : [0,∞) → [0,∞) by φ(t) = t/2 for all t ∈ [0, 1) and φ(t) = n(n +
1)/(n + 2) for t ∈ [n, n + 1), n ∈ N

∗. Then, φ is upper semicontinuous on [0,∞) with φ(t) < t
for all t > 0. However, it is not continuous at t = n for all n ∈ N.

Following Example 1.14, the main aim of this paper is to present the analog of
Theorem 1.13 for a weaker hypothesis on φ, that is, with φ ∈ Φ. Our proof is simpler than
that in [24]. Also, some examples are given.

2. Main Results

Our main result is the following.

Theorem 2.1. Let (X, p) be a complete partial metric space. Let m be a positive integer,
A1, A2, . . . , Am nonempty closed subsets of (X, dp), and Y =

⋃m
i=1 Ai. Let T : Y → Y be a mapping

such that

(1) Y =
⋃m

i=1 Ai is a cyclic representation of Y with respect to T ,

(2) there exists φ ∈ Φ such that

p
(
Tx, Ty

) ≤ φ
(
M
(
x, y
))
, (2.1)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . , m, where Am+1 = A1 and M(x, y) is defined by
(1.5).

Then, T has a unique fixed point z ∈ ⋂m
i=1 Ai.

Proof. Let x0 ∈ Y =
⋃m

i=1 Ai. Consider the Picard iteration {xn} given by Txn = xn+1 for n =
0, 1, 2, . . . . If there exists n0 such that xn0+1 = xn0 , then xn0+1 = Txn0 = xn0 and the existence of
the fixed point is proved.

Assume that xn /=xn+1, for each n ≥ 0. Having in mind that Y =
⋃m

i=1 Ai, so for each
n ≥ 0, there exists in ∈ {1, 2, . . . , m} such that xn ∈ Ain and xn+1 = Txn ∈ T(Ain) ⊆ Ain+1. Then,
by (2.1)

p(xn+1, xn+2) = p(Txn, Txn+1) ≤ φ(M(xn, xn+1)), (2.2)
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where

M(xn, xn+1) = max
{
p(xn, xn+1), p(xn, Txn), p(xn+1, Txn+1),

p(xn, Txn+1) + p(xn+1, Txn)
2

}

= max
{
p(xn, xn+1), p(xn+1, xn+2),

p(xn, xn+2) + p(xn+1, xn+1)
2

}

= max
{
p(xn, xn+1), p(xn+1, xn+2),

p(xn, xn+1) + p(xn+1, xn+2)
2

}

= max
{
p(xn, xn+1), p(xn+1, xn+2)

}
.

(2.3)

Therefore,

M(xn, xn+1) = max
{
p(xn, xn+1), p(xn+1, xn+2)

} ∀n ≥ 0. (2.4)

If for some k ∈ N, we have M(xk, xk+1) = p(xk+1, xk+2), so by (2.2)

0 < p(xk+1, xk+2) ≤ φ(p(xk+1, xk+2)) < p(xk+1, xk+2), (2.5)

which is a contradiction. It follows that

M(xn, xn+1) = p(xn, xn+1) ∀n ≥ 0. (2.6)

Thus, from (2.2), we get that

0 < p(xn+1, xn+2) ≤ φ(p(xn+1, xn+2)) < p(xn+1, xn+2). (2.7)

Hence, {p(xn, xn+1)} is a decreasing sequence of positive real numbers. Consequently, there
exists γ ≥ 0 such that limn→∞p(xn, xn+1) = γ . Assume that γ > 0. Letting n → ∞ in the above
inequality, we get using the upper semicontinuity of φ

0 < γ ≤ lim sup
n→∞

φ(p(xn+1, xn+2)) ≤ φ
(
γ
)
< γ, (2.8)

which is a contradiction, so that γ = 0, that is,

lim
n→∞

p(xn, xn+1) = 0. (2.9)

By (1.1), we have dp(x, y) ≤ 2p(x, y) for all x, y ∈ X, and then from (2.9)

lim
n→∞

dp(xn, xn+1) = 0. (2.10)
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Also, by (p2),

lim
n→∞

p(xn, xn) = 0. (2.11)

In the sequel, we will prove that {xn} is a Cauchy sequence in the partial metric space (Y =⋃m
i=1 Ai, p). By Lemma 1.7, it suffices to prove that {xn} is Cauchy sequence in themetric space

(Y, dp). We argue by contradiction. Assume that {xn} is not a Cauchy sequence in (Y, dp).
Then, there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} with
n(k) > m(k) ≥ k such that

dp

(
xn(k), xm(k)

) ≥ ε. (2.12)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) > m(k) and satisfying (2.12). Then,

dp

(
xn(k)−1, xm(k)

)
< ε. (2.13)

We use (2.13) and the triangular inequality

ε ≤ dp

(
xn(k), xm(k)

) ≤ dp

(
xn(k), xn(k)−1

)
+ dp

(
xn(k)−1, xm(k)

)

< ε + dp

(
xn(k), xn(k)−1

)
.

(2.14)

Letting k → ∞ in (2.14) and using (2.10), we find

lim
k→∞

dp

(
xn(k), xm(k)

)
= ε. (2.15)

On the other hand

dp

(
xn(k), xm(k)

) ≤ dp

(
xn(k), xn(k)+1

)
+ dp

(
xn(k)+1, xm(k)+1

)
+ dp

(
xm(k)+1, xm(k)

)
,

dp

(
xn(k)+1, xm(k)+1

) ≤ dp

(
xn(k)+1, xn(k)

)
+ dp

(
xn(k), xm(k)

)
+ dp

(
xm(k), xm(k)+1

)
.

(2.16)

Letting k → +∞ in the two above inequalities and using (2.10) and (2.15),

lim
k→∞

dp

(
xn(k)+1, xm(k)+1

)
= ε. (2.17)

Similarly, we have

lim
k→∞

dp

(
xn(k), xm(k)+1

)
= lim

k→+∞
dp

(
xm(k), xn(k)+1

)
= ε. (2.18)
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Also, by (1.1), (2.11), and (2.15)–(2.18), we may find

lim
k→∞

p
(
xn(k), xm(k)

)
= lim

k→∞
p
(
xn(k), xm(k)+1

)
=

ε

2
,

lim
k→∞

p
(
xn(k)+1, xm(k)+1

)
= lim

k→∞
p
(
xm(k), xn(k)+1

)
=

ε

2
.

(2.19)

On the other hand, for all k, there exists j(k), 0 ≤ j(k) ≤ p, such that n(k)−m(k)+ j(k) ≡ 1(p).
Then, xm(k)−j(k) (for k large enough, m(k) > j(k)) and xn(k) lie in different adjacently labeled
sets Ai and Ai+1 for certain i = 1, . . . , p. Using the contractive condition (2.1), we get

p
(
xn(k)+1, xm(k)−j(k)+1

)
= p
(
Txn(k), Txm(k)−j(k)

)

≤ φ
(
M
(
xn(k), xm(k)−j(k)

)
,

(2.20)

where

M
(
xn(k), xm(k)−j(k)

)
= max

{

p
(
xn(k), xm(k)−j(k)

)
, p
(
xn(k), Txn(k)

)
, p
(
xm(k)−j(k), Txm(k)−j(k)

)
,

p
(
xn(k), Txm(k)−j(k)

)
+ p
(
xm(k)−j(k), Txn(k)

)

2

}

= max

{

p
(
xn(k), xm(k)−j(k)

)
, p
(
xn(k), xn(k)+1

)
, p
(
xm(k)−j(k), xm(k)−j(k)+1

)
,

p
(
xn(k), xm(k)−j(k)+1

)
+ p
(
xm(k)−j(k), xn(k)+1

)

2

}

.

(2.21)

As (2.19), using (2.9), we may get

lim
k→∞

p
(
xn(k), xm(k)−j(k)

)
= lim

k→∞
p
(
xn(k)+1, xm(k)−j(k)+1

)
=

ε

2
, (2.22)

lim
k→∞

p
(
xn(k), xm(k)−j(k)+1

)
= lim

k→∞
p
(
xn(k)+1, xm(k)−j(k)

)
=

ε

2
. (2.23)

By (2.22) and (2.23), we get that

lim
k→∞

M
(
xn(k), xm(k)−j(k)

)
=

ε

2
. (2.24)
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Letting n → ∞ in (2.20), we get using (2.22), (2.24), and the upper semicontinuity of φ

0 <
ε

2
≤ lim sup

k→∞
φ
(
M
(
xn(k), xm(k)−j(k)

)) ≤ φ
(ε
2

)
<

ε

2
, (2.25)

which is a contradiction.
This shows that {xn} is a Cauchy sequence in the complete subspace Y =

⋃m
i=1 Ai

equipped with the metric dp. Thus, there exists u = limn→∞xn ∈ (Y, dp). Notice that the
sequence {xn}n∈N

has an infinite number of terms in each Ai, i = 1, . . . , m, so since (Y, dp) is
complete, from each Ai, i = 1, . . . , m one can extract a subsequence of {xn} that converges to
u. Because Ai, i = 1, . . . , m are closed in (Y, dp), it follows that

u ∈
m⋂

i=1

Ai. (2.26)

Thus,
⋂m

i=1 Ai /= ∅.
For simplicity, set A =

⋂m
i=1 Ai. Clearly, A is also closed in (Y, dp), so it is a complete

subspace of (Y, dp) and then (A, p) is a complete partial metric space. Consider the restriction
of T on A, that is, T/A : A → A. Then, T/A satisfies the assumptions of Theorem 1.11, and
thus T/A has a unique fixed point in Z.

3. Examples

We give some examples illustrating our results.

Example 3.1. Let X = R and p(x, y) = max{|x|, |y|}. It is obvious that (X, p) is a complete
partial metric space.

Set A1 = [−8, 0], A2 = [0, 8], and Y = A1 ∪A2 = [−8, 8]. Define T : T → Y by

Tx =

⎧
⎨

⎩

−x
4

if x ∈ [−1, 1],
0 otherwise.

(3.1)

Notice that T([−8,−1)) = 0 and T([−1, 0]) = [0, 1/4], and hence T(A1) ⊆ A2.
Analogously, T((1, 8]) = 0 and T([0, 1]) = [−1/4, 0], and hence T(A2) ⊆ A1.

Take

φ(t) =

⎧
⎪⎨

⎪⎩

t

3
if t ∈ [0, 1),

n2

n2 + 1
if t ∈ [n, n + 1), n ∈ N

∗.
(3.2)

Clearly, T satisfies condition (2.1). Indeed, we have the following cases.
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Case 1. (x ∈ [−8,−1) and y ∈ (1, 8]). Inequality (2.1) turns into

p
(
Tx, Ty

)
= max{0, 0} = 0 ≤ φ

(
M
(
x, y
))
, (3.3)

which is necessarily true.
Case 2. (x ∈ [−8,−1) and y ∈ [0, 1]). Inequality (2.1) becomes

p
(
Tx, Ty

)
= max

{

0,

∣
∣y
∣
∣

4

}

=
y

4
≤ φ
(
M
(
x, y
))

= φ

(
max

{
p
(
x, y
)
, p(x, Tx), p

(
Ty, y

)
,
1
2
[
p
(
x, Ty

)
+ p
(
Tx, y

)]
})

= φ

(
max

{
|x|, |x|, ∣∣y∣∣, 1

2
[|x| + ∣∣y∣∣]

})

= φ(|x|).

(3.4)

It is clear that 1/2 ≤ φ(t) < 1 for all t > 1. Hence, (3.4) holds.
Case 3. (x ∈ [−1, 0] and y ∈ (1, 8]). Inequality (2.1) turns into

p
(
Tx, Ty

)
= max

{ |x|
4
, 0
}

=
|x|
4

≤ φ
(
M
(
x, y
))

= φ

(
max

{
p
(
x, y
)
, p(x, Tx), p

(
Ty, y

)
,
1
2
[
p
(
x, Ty

)
+ p
(
Tx, y

)]
})

= φ

(
max

{∣∣y
∣∣, |x|, ∣∣y∣∣, 1

2
[|x| + ∣∣y∣∣]

})

= φ
(∣∣y
∣∣) = φ

(
y
)
,

(3.5)

which is true again by the fact that 1/2 ≤ φ(t) < 1 for all t > 1.
Case 4. (x ∈ [−1, 0] and y ∈ [0, 1]). Inequality (2.1) becomes

p
(
Tx, Ty

)
= max

{
|x|
4
,

∣∣y
∣∣

4

}

≤ φ
(
M
(
x, y
))

= φ

(
max

{
p
(
x, y
)
, p(x, Tx), p

(
Ty, y

)
,
1
2
[
p
(
x, Ty

)
+ p
(
Tx, y

)]
})

= φ

(

max

{

max
{|x|, ∣∣y∣∣}, |x|, ∣∣y∣∣, 1

2

[

max
{ |x|

4
,
∣∣y
∣∣
}
+max

{

|x|,
∣∣y
∣∣

4

}]})

.

(3.6)
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Let use examine all possibilities:

p
(
Tx, Ty

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|x|
4

if |x| ≥ ∣∣y∣∣,
∣
∣y
∣
∣

4
if

∣
∣y
∣
∣

4
≤ |x| ≤ ∣∣y∣∣,

∣
∣y
∣
∣

4
if |x| ≤

∣
∣y
∣
∣

4
,

M
(
x, y
) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|x| if |x| ≥ ∣∣y∣∣,
∣
∣y
∣
∣ if

∣
∣y
∣
∣

4
≤ |x| ≤ ∣∣y∣∣,

∣
∣y
∣
∣ if |x| ≤

∣
∣y
∣
∣

4
.

(3.7)

Thus, (2.1) holds for φ(t) = t/3.
The rest of the assumptions of Theorem 2.1 are also satisfied. The function T has 0 as a

unique fixed point.
However, since φ is not a continuous function, we could not apply Theorem 1.13.

Example 3.2. Let X = [0, 1] and p(x, y) = max{x, y} for all x, y ∈ X. Then, (X, p) is a complete
partial metric space. Take A1 = · · · = Ap = X. Define T : X → X by Tx = x/2. Consider
φ : [0,∞) → [0,∞) given by Example 1.14.

For all x, y ∈ X, we have

p
(
Tx, Ty

)
= max

{x
2
,
y

2

}
= φ
(
p
(
x, y
) ≤ φ

(
M
(
x, y
))
. (3.8)

Then all the assumptions of Theorem 2.1 are satisfied. The function T has 0 as a unique fixed
point.

Similarly, Theorem 1.13 is not applicable.
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