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We prove existence and multiplicity of positive solutions for semipositone problems involving
p-Laplacian in a bounded smooth domain of R

N under the cases of sublinear and superlinear
nonlinearities term.

1. Introduction

In this paper, we shall study the following semipositone problem involving the p-Laplacian:

−div
(
|∇u|p−2∇u

)
= λf(u) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N is a smooth bounded domain, λ is a positive parameter, and f : [0,+∞) → R

is a continuous function satisfying the condition

(F0) f(0) = −a < 0.

Such problems are usually referred in the literature as semipositone problems.We refer
the reader to [1], where Castro and Shivaji initially called them nonpositone problems, in
contrast with the terminology positone problems, coined by Keller and Cohen in [2], when
the nonlinearity f was positive and monotone.

Under the case of p ≡ 2, a novel variational approach is presented by Costa et al. [3] to
the question of existence and multiplicity of positive solutions to problem (1.1), where they
consider both the sublinear and superlinear cases. The aim of this paper is to extend their
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results to the case of p-Laplacian. The main difficulty is in verifying (PS)c-condition because
of the operator −Δp is not self-adjoint linear.

We define the discontinuous nonlinearity g(s) by

g(s) =

{
0, if s ≤ 0,
f(s), if s > 0.

(1.2)

We shall consider the modified problem

−div
(
|∇u|p−2∇u

)
= λg(u) in Ω,

u = 0 on ∂Ω.

(1.3)

We note that the set of positive solutions of (1.1) and (1.3) do coincide.
Our main results concerning problems (1.1) and (1.3) are the following:

Theorem 1.1. Assume (F0) and the following assumptions:

(F1) lims→+∞(f(s)/sp−1) = 0 (the sublinear case);

(F2) F(δ) > 0 for some δ > 0, where F(u) =
∫u
0 f(s) ds.

Then, there exist 0 < λ0 ≤ λ∗ such that (1.3) has no nontrivial nonnegative solution for 0 < λ < λ0,
and has at least two nontrivial nonnegative solutions uλ, vλ for all λ > λ∗. Moreover, whenΩ is a ball
BR = BR(0), these two solutions are non-increasing, radially symmetric and, if N ≥ 2, at least one of
them is positive, hence a solution of (1.1).

Theorem 1.2. Assume (F0), (F2) and the following assumptions:

(F3) lims→+∞(f(s)/sp−1) = +∞, lims→+∞(f(s)/sp
∗−2) = 0 (the sublinear, subcritical case);

(F4) θF(s) ≤ f(s)s for all s ≥ K and some θ > p (the AR-condition).

Then, (1.3) has at least one nonnegative solution vλ for all λ > 0. If Ω = BR then vλ is nonincreasing,
radially symmetric and one of the two alternatives occurs.

(i) There exists λ∗ > 0 such that, for all 0 < λ < λ∗, vλ is a positive solution of (1.1) having
negative normal derivative on ∂BR.

(ii) For some sequence μn → 0, problem (1.1) with λ ≡ μn has a positive solution wμn with
zero normal derivative on ∂BR.

2. Preliminaries

We start by recalling some basic results on variational methods for locally Lipschitz func-
tionals. Let (X, ‖ · ‖) be a real Banach space and X∗ is its topological dual. A function
f : X → R is called locally Lipschitz if each point u ∈ X possesses a neighborhood Ωu
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such that |f(u1) − f(u2)| ≤ L‖u1 − u2‖ for all u1, u2 ∈ Ωu, for a constant L > 0 depending on
Ωu. The generalized directional derivative of f at the point u ∈ X in the direction v ∈ X is

f0(u, v) = lim sup
w→u,t→ 0+

1
t

(
f(w + tv) − f(w)

)
. (2.1)

The generalized gradient of f at u ∈ X is defined by

∂f(u) =
{
u∗ ∈ X∗ :

〈
u∗, ϕ

〉 ≤ f0(u;ϕ) ∀ϕ ∈ X
}
, (2.2)

which is a nonempty, convex, and w∗-compact subset of X, where 〈·, ·〉 is the duality pairing
between X∗ and X. We say that u ∈ X is a critical point of f if 0 ∈ ∂f(u). For further details,
we refer the reader to Chang [4].

We list some fundamental properties of the generalized directional derivative and
gradient that will be possibly used throughout the paper.

Proposition 2.1 (see [4, 5]). (1) Let j : X → R be a continuously differentiable function. Then
∂j(u) = {j ′(u)}, j0(u; z) coincides with 〈j ′(u), z〉X , and (f + j)0(u, z) = f0(u; z) + 〈j ′(u), z〉X for
all u, z ∈ X.

(2) ∂(λf)(u) = λ∂(u) for all λ ∈ R.
(3) If f is a convex functional, then ∂f(u) coincides with the usual subdifferential of f in the

sense of convex analysis.
(4) If f has a local minimum (or a local maximum) at u0 ∈ X, then 0 ∈ ∂f(u0).
(5) ‖ξ‖X∗ ≤ L for all ξ ∈ ∂f(u).
(6) f0(u, h) = max{〈ξ, h〉 : ξ ∈ ∂f(u)} for all h ∈ X.
(7) The function

m(u) = min
w∈∂f(u)

‖w‖X∗ , (2.3)

exists and is lower semicontinuous; that is, limu→u0 infm(u) ≥ m(u0).

In the following we need the nonsmooth version of the Palais-Smale condition.

Definition 2.2. One says ϕ that nonsmooth satisfies the (PS)c-condition if any sequence {un} ⊂
X such that ϕ(un) → c and m(un) → 0.

In what follows we write the (PS)c-condition as simply as the PS-condition if it holds
for every level c ∈ R for the Palais-Smale condition at level c.

We note that property (4) above says that a local minimum (or local maximum) of ϕ is
a critical point of ϕ. Finally, we point out that many of the results of the classical critical point
theory have been extended by Chang [4] to this setting of locally Lipschitz functionals. For
example, one has the following celebrated theorem.

Theorem 2.3 (nonsmooth mountain pass theorem; see [4, 5]). If X is a reflexive Banach space,
ϕ : X → R is a locally Lipschitz function which satisfies the nonsmooth (PS)c-condition, and for
some r > 0 and e1 ∈ X with ‖e1‖ > r, max{ϕ(0), ϕ(e1)} ≤ inf{ϕ(u) : ‖u‖ = r}. Then ϕ has
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a nontrivial critical u ∈ X such that the critical value c = ϕ(u) is characterized by the following
minimax principle:

c = inf
γ∈Γ

max
t∈[0,1]

ϕ
(
γ(t)
)
, (2.4)

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e1}.

We would like to point out that we can obtain the same results for problem (1.3)
through approximation of the discontinuous nonlinearity by a sequence of continuous
functions. Variational methods were then applied to the corresponding sequence of problems
and limits were taken. For the rest of this paper, we write X = W

1,p
0 (Ω) with the norm by

‖u‖ = (
∫
Ω |∇u|p dx)1/p and denote by c and ci the generic positive constants for simplicity.

3. Proof of the Main Results

Now, having listed some basic results on critical point theory for the Lipschitz functionals, let
us consider the functional

ϕλ(u) =
1
p

∫
Ω
|∇u| dx − λ

∫
Ω
G(u) dx, (3.1)

where G(u) =
∫u
0 g(s) ds and g(s) were defined in (1.2). Clearly G : R → R is a locally

Lipschitz continuous function and satisfiesG(s) = 0 for s ≤ 0. In view of [3, Theorems 2.1 and
2.2], the above formula for ϕλ(u) defines a locally Lipschitz functional on X whose critical
points are solutions of the differential inclusion

−div
(
|∇u|p−2∇u

)
∈ ∂G(u) a.e. in Ω. (3.2)

In our present case, it follows that ∂G(s) = f(s) for s > 0, ∂G(s) = 0 for s < 0, and ∂G(s) =
[−a, 0] for s = 0.

We start with some preliminary lemmas.

Lemma 3.1. Assume (F0), (F1), and (F2). Then there exists λ0 such that problem (1.3) has no
nontrivial solution 0 ≤ u ∈ X for 0 < λ < λ0.

Proof . If u ≥ 0 is a solution of problem (1.3), then, multiplying the equation by u and inte-
grating over Ω yields

‖u‖p =
∫
Ω
|∇u|p dx = λ

∫
Ω
g(u)udx = λ

(∫
{x∈Ω|u(x)≥δ0}

ug(u)dx +
∫
{x∈Ω|u(x)≥δ0}

ug(u)dx

)
,

(3.3)
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hence

‖u‖p ≤ λ

∫
{x∈Ω|u(x)≥δ0}

ug(u)dx, (3.4)

where we have chosen δ0 > 0 so that g(s) ≤ 0 for 0 ≤ s ≤ δ0 (such a δ0 exists in view of (F0)).
Now, since (F1) implies the existence of c > 0 such that

sg(s) ≤ c(1 + sp), (3.5)

for all s > 0, we obtain from (3.4) that

‖u‖p ≤ λc

∫
{x∈Ω|u(x)≥δ0}

(1 + up) dx ≤ λc

(
1 +

1

δ
p

0

)∫
{x∈Ω|u(x)≥δ0}

up dx ≤ λc1

∫
Ω
up dx,

(3.6)

so that

‖u‖p ≤ λc2‖u‖p, (3.7)

where this last constant c2 > 0 is independent of both u and λ. Therefore we must have

λ ≥ 1
c2

:= λ0 > 0. (3.8)

Lemma 3.2. Assume (F0) and either (F1) or (F3). Then u = 0 is a strict local minimum of the func-
tional ϕλ.

Proof . Since (F1) or (F3) implies the existence of c3 > 0 such that

G(s) ≤ c3
(
1 + |s|p∗

)
∀s ∈ R, (3.9)

recall also that G(s) = 0 for s ≤ 0. Then, with δ0 > 0 as in the proof of Lemma 3.1 and noticing
that G(s) ≤ 0 for all −∞ < s ≤ δ0, we can write for an arbitrary u ∈ X,

ϕλ(u) =
1
p
‖u‖p − λ

∫
Ω
G(u)dx

≥ 1
p
‖u‖p − λ

∫
{x∈Ω|u(x)≥δ0}

G(u)dx

≥ 1
p
‖u‖p − λc3

∫
{x∈Ω|u(x)≥δ0}

(
1 + up∗

)
dx

≥ 1
p
‖u‖p − λc3

(
1 +

1

δ
p∗

0

)∫
{x∈Ω|u(x)≥δ0}

up∗ dx,

(3.10)



6 International Journal of Mathematics and Mathematical Sciences

so that, using the Sobolev embedding theorem in the last inequality andwith a constant c4 > 0
independent of u and Ω, we obtain

ϕλ(u) ≥ 1
p
‖u‖p − λc4‖u‖p

∗
=

1
p
‖u‖p

(
1 − pλc4‖u‖p

∗−p
)
. (3.11)

Therefore, for each 0 < ρ < ρλ := 1/(pλc4)
p∗−p, it follows that ϕλ(u) ≥ αρ > 0 if ‖u‖ = ρ. This

shows that u = 0 is a strict local minimum of ϕλ.

Lemma 3.3. Under the same assumptions as in Lemma 3.2, let û ∈ X be a critical point of ϕλ. Then,
û ∈ C1,α(Ω) and û is a nonnegative solution of problem (1.3), where 0 < α < 1.

Proof . We shall follow some of the arguments in [3]. As mentioned earlier, if û is a critical
point of ϕλ, then it is shown in [3] that û is a solution of the differential inclusion

−div
(
|∇û|p−2∇û

)
∈ ∂G(û) a.e. in Ω. (3.12)

Since g is only discontinuous at s = 0, the above differential inclusion reduces to an
equality, except possibly on the subset A ⊂ Ω where û = 0. Since f is subcritical, using
the C1,α regularity results for quasilinear elliptic equations with p-growth condition (see,
for example, [6]), we have û ∈ C1,α(Ω \ A). And, in this latter case, −div(|∇û|p−2∇û) takes
on values in the bounded interval [−a, 0]. Therefore, by the Michael selection theorem (see
Theorem 1.2.5 of [5]), we see that −Δp : u –→[−a, 0] admits a continuous selection. Using
the C1,α regularity results for quasilinear elliptic equations with p-growth condition again, it
follows that û ∈ C1,α(Ω), 0 < α < 1.

Next, using a Morrey-Stampacchia theorem [7, Theorem 3.2.2, page 69], we have that
−div(|∇û|p−2∇û) = 0 a.e. in A. Therefore, since we defined g(0) = 0, it follows that

−div
(
|∇û|p−2∇û

)
= g(û) a.e. in Ω. (3.13)

Replacing the inclusion (3.2) on û, we conclude that û ∈ C1,α(Ω) is a solution of (1.3). Finally,
recalling that g(s) = 0 for s ≤ 0, it is clear that û ≥ 0. The proof of Lemma 3.3 is complete.

Lemma 3.4. Assume either (F1) or (F3), (F4). Then ϕλ satisfies the nonsmooth (PS)c-condition at
every c ∈ R.
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Proof. Let {un}n≥1 ⊆ X be a sequence such that |ϕλ(un)| ≤ c for all n ≥ 1 and m(un) → 0 as
n → ∞. In the superlinear and subcritical case, from (F4), we have

c ≥ ϕλ(un) =
1
p

∫
Ω
|∇un|p dx − λ

∫
Ω
G(un) dx

≥ ‖un‖p
p

− λ

θ

∫
Ω
〈ξ(un), un〉 dx − c

≥
(
1
p
− 1
θ

)
‖un‖p +

∫
Ω

1
θ

(‖un‖p − λ〈ξ(un), un〉
)
dx − c

≥
(
1
p
− 1
θ

)
‖un‖p − λ

θ
‖ξ‖X∗‖un‖ − c,

(3.14)

where ξ(un) ∈ ∂G(un). Hence {un}n≥1 ⊆ X is bounded.
Thus by passing to a subsequence if necessary, we may assume that un ⇀ u in X as

n → +∞. We have

〈
J ′(un), un − u

〉 − ∫
Ω
ξ(un)(un − u) dx ≤ εn‖un − u‖ (3.15)

with εn ↓ 0, where ξ(un) ∈ ∂Ψ(un) and J = (1/p)
∫
Ω |∇un|p dx. From (F3) and Chang [4] we

know that ξ(un(x)) ∈ L(p∗−1)′(Ω) ((p∗ −1)′ = (p∗ −1)/(p∗ −2)). SinceX is embedded compactly
in Lp∗−1(Ω), we have that un → u as n → ∞ in Lp∗−1(Ω). So using the Hölder inequality, we
have

∫
Ω
ξn(x)(un − u) dx −→ 0 as n −→ +∞. (3.16)

Therefore, we obtain that limn→∞ sup〈J ′(un), un − u〉 ≤ 0. But we know that J ′ is a
mapping of type (S+). Thus we have

un −→ u in X. (3.17)

Using the similar method, we can more easily get the nonsmooth (PS)c-condition in the case
of sublinear.

Remark 3.5. Note that we cannot directly apply the results of [4] because the operator −Δp is
not self-adjoint linear.

Lemma 3.6. Under assumptions (F0), (F1), and (F2), let Ω = BR ⊂ R
N with N ≥ 2, and let

u ∈ C1(BR) be a radially symmetric, nonincreasing function such that u ≥ 0 and u is a minimizer of
ϕλ(u) with ϕλ(u) = m < 0. Then, u does not vanish in BR; that is, u(x) > 0 for all x ∈ BR.
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Proof. Since g is discontinuous at zero, we note that the conclusion does not follow directly
from uniqueness of solution for the Cauchy problem with data at r = R (in fact, writing
u = u(r), r = |x|, we may have u(R) = u′(R) = 0 and u/≡ 0).

Now, since u/≡ 0 by assumption, R0 := inf{r ≤ R : u(s) = 0 for r ≤ s ≤ R} satisfies
0 < R0 ≤ R. If R0 = R there is nothing to prove in view of the fact that u is non-increasing. On
the other hand, if R0 < R then u′(R0) = 0 and u(r) > 0 for r ∈ [0, R0). It is not hard to prove
that this contradicts that u is a minimizer of ϕλ. Indeed, if R0 < R then

ϕλ(u) =
1
p

∫
BR0

|∇u|p dx − λ

∫
BR0

G(u) dx = m < 0. (3.18)

A simple calculation shows that the rescaled function v(r) = u(R0r/R) ∈ W
1,p
0 (BR) ∩ C1(BR)

satisfies

ϕλ(v) = δp−N
[
1
p

∫
BR0

|∇u|p dx − δ−pλ
∫
BR0

G(u) dx

]
, (3.19)

where δ := R0/R is less than 1. Therefore, since we are assuming 1 < p ≤ N, we would reach
the contradiction ϕλ(v) < m.

Remark 3.7. Note that the condition (F2) is necessary because of which guarantee G can have
positive values.

Proof of Theorem 1.1. We observe that the functional ϕλ is weakly lower semicontinuous on X.
Moreover, the sublinearity assumption (F1) on g(u) implies that ϕλ is coercive. Therefore, the
infimum of ϕλ is attained at some uλ:

inf
u∈X

ϕλ(u) = ϕλ(uλ). (3.20)

And, in view of Lemma 3.3, uλ ∈ C1,α(Ω) is a nonnegative solution of (1.3). We now claim
that uλ is nonzero for all λ > 0 large.

Claim 1. There exists Λ > 0 such that ϕλ(uλ) < 0 for all λ ≥ Λ.
In order to prove the claim it suffices to exhibit an element w ∈ X such that ϕλ(w) < 0

for all λ > 0 large. This is quite standard considering that G(δ) > 0 by (F2). Indeed, letting
Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε} for ε > 0 small, define w so that w(x) = δ for x ∈ Ωε and
0 ≤ w(x) ≤ δ for x ∈ Ω \Ωε. Then

ϕλ(w) =
1
p
‖w‖p − λ

(∫
Ωε

G(w) dx +
∫
Ω\Ωε

G(w) dx

)

≤ 1
p
‖w‖p − λ(G(δ)meas(Ωε) − c(1 + δp)meas(Ω \Ωε)),

(3.21)
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where we note that the expression in the above parenthesis is positive if we choose ε > 0
sufficiently small. Therefore, there exists Λ > 0 such that ϕλ(w) < 0 for all λ ≥ Λ, which
proves the claim.

On the other hand, when Ω = BR, let u∗
λ denote the Schwarz symmetrization of uλ,

namely, u∗
λ
is the unique radially symmetric, nonincreasing, nonnegative function inX which

is equi-measurable with uλ. As is well known,

∫
BR

G
(
u∗
λ

)
dx =

∫
BR

G(uλ) dx, (3.22)

and ‖u∗
λ‖ ≤ ‖uλ‖ (the Faber-Krahn inequality; see [8]), so that ϕλ(u∗

λ) ≤ ϕλ(uλ). Therefore, we
necessarily have ϕλ(u∗

λ) = ϕλ(uλ) and may assume that uλ = u∗
λ. Moreover, uλ > 0 in Ω by

Lemma 3.6. Therefore, uλ is a positive solution of both problems (1.1) and (1.3).
Next, we recall that u = 0 is a strict local minimum of ϕλ by Lemma 3.2. Therefore, since

ϕλ satisfies the nonsmooth Palais-Smale condition by Lemma 3.4, we can use the minima
u = 0 and u = uλ of ϕλ to apply the nonsmooth mountain pass theorem and conclude that
there exists a second nontrivial critical point vλ with ϕλ(vλ) > 0. Again, vλ is a nonnegative
solution of problem (1.3) in view of Lemma 3.3. In addition, whenΩ = BR, arguments similar
to above passage show that we may assume vλ = v∗

λ
. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. As is well-known, the AR condition (F4) readily implies the existence of
an element eλ ∈ X such that ϕλ(eλ) ≤ 0. On the other hand, Lemma 3.2 says that u = 0 is a
(strict) local minimum of ϕλ and Lemma 3.4 says that ϕλ satisfies nonsmooth (PS)c for every
c ∈ R. Therefore, an application of the nonsmooth mountain pass theorem stated in section 2
yields the existence of a critical point vλ such that

ϕλ(vλ) > 0. (3.23)

In particular, vλ /= 0, and it follows that vλ is a nonnegative solution of problem (1.3) by
Lemma 3.3. As in the proof of Theorem 1.1, we may assume that vλ = v∗

λ
in the case of a

ball Ω = BR.
Finally, still in the case of a ball Ω = BR, we claim that there exists λ∗ > 0 such that, for

all 0 < λ < λ∗, vλ = v∗
λ
is a positive solution of problem (1.3) (hence of problem (1.1)) having

negative normal derivative on ∂BR. Indeed, if that is not the case, then, for any given λ > 0,
we can find 0 < μ = μ(λ) < λ such that the nonnegative solution vμ = v∗

μ of problem (1.1)
with λ = μ obtained a bove satisfies

vμ(r) > 0 for r ∈ [0, R0), v′
μ(R0) = 0, vμ(r) = 0 for r ∈ [R0, R], (3.24)

for some 0 < R0 ≤ R. Therefore, the rescaled function wμ(r) := vμ(R0r/R) is a positive
solution of (1.1)with λ = μ0 (again in the ball BR), with μ0 := μR

p

0/R
p ≤ μ. This shows that we

can always construct a decreasing sequence μn > 0 satisfying alternative (ii) of Theorem 1.2,
in case alternative (i) does not hold.
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