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The purpose of this paper is to prove end-point theorems for multivalued mappings satisfying
comparatively a more general contractive condition in ordered complete metric spaces. After-
wards, we extend the results of previous sections and prove common end-point results for a pair of
T-weakly isotone increasing multivalued mappings in the underlying spaces. Finally, we present
common end point for a pair of T-weakly isotone increasing multivalued mappings satisfying
weakly contractive condition.

1. Introduction and Preliminaries

Fixed-point theory for multivalued mappings was originally initiated by Von Neumann in
the study of game theory. Fixed-point theorem for multivalued mappings is quite useful in
control theory and has been frequently used in solving the problem of economics and game
theory.

The theory of multivalued nonexpansive mappings is comparatively complicated as
compare to the corresponding theory of single-valued nonexpansive mappings. It is therefore
natural to expect that the theory of noncontinuous nonself-multivalued mappings would be
much more complicated.

The study of fixed-points for multivalued contraction mappings was equally an active
topic as single-valued mappings. The development of geometric fixed-point theory for
multivaluedwas initiatedwith thework of Nadler Jr. [1] in the year 1969. He used the concept
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of Hausdorffmetric to establish the multivalued contraction principle containing the Banach
contraction principle as a special case, as following.

Theorem 1.1. Let (X, d) be a complete metric space and T is a mapping from X into CB(X) such
that for all x, y ∈ X,

H
(
Tx,Ty

)
≤ λd

(
x, y

)
, (1.1)

where 0 ≤ λ < 1. Then T has a fixed-point.

Since then, this discipline has been further developed, and many profound concepts
and results have been established; for example, the work of Border [2], Ćirić [3], Corley [4],
Itoh and Takahashi [5], Mizoguchi and Takahashi [6], Petruşel and Luca [7], Rhoades [8],
Tarafdar and Yuan [9], and references cited therein.

Let (X, d) be a metric space. We denote the class of nonempty and bounded subsets of
X by B(X). For A, B ∈ B(X), functions D(A,B), and δ(A,B) are defined as follows:

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.
(1.2)

If A = {a}, then we write D(A,B) = D(a,B) and δ(A,B) = δ(a,B). Also in addition, if
B = {b}, then D(A,B) = d(a, b) and δ(A,B) = d(a, b). Obviously, D(A,B) ≤ δ(A,B).

For all A,B,C ∈ B(X), the definition of δ(A,B) yields the following:

δ(A,B) = δ(B,A),

δ(A,B) ≤ δ(A,C) + δ(C,B),

δ(A,B) = 0 iffA = B = {a},

δ(A,A) = diamA.

(1.3)

A point x ∈ X is called a fixed-point of a multivalued mapping T : X → B(X) if
x ∈ Tx. If there exists a point x ∈ X such that Tx = {x}, then x is called an end-point of T
[10].

Definition 1.2. LetX be a nonempty set. Then (X, d,�) is called an ordered metric space if and
only if:

(i) (X, d) is a metric space,

(ii) (X,�) is a partially ordered set.

Definition 1.3. Let (X,�) be a partial ordered set. Then x, y ∈ X are called comparable if x � y
or y � x holds.
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Definition 1.4 (see [11]). Let A and B be two nonempty subsets of a partially ordered set
(X,�). The relation between A and B is denoted and defined as follows:

A≺1 B, if for everya ∈ A there exists b ∈ B such thata � b. (1.4)

Definition 1.5 (see [12]). A function ψ : [0,∞) → [0,∞) is called an altering distance function
if the following properties are satisfied:

(i) ψ is monotone increasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

On the other hand, fixed-point theory has developed rapidly inmetric spaces endowed
with a partial ordering. The first result in this direction was given by Ran and Reurings [13,
Theorem 2.1] who presented its applications to matrix equations. Subsequently, Nieto and
Rodrı́guez-López [14] extended the result of Ran and Reurings for nondecreasing mappings
and applied it to obtain a unique solution for a first-order ordinary differential equation
with periodic boundary conditions. Thereafter, several authors obtained many fixed-point
theorems in ordered metric spaces. For detail see [14–28] and references cited therein. Beg
and Butt [11, 17, 29] worked on set-valued mappings and proved common fixed-point for
mapping satisfying implicit relation in partially ordered metric space. Recently, Choudhury
and Metiya [30] proved fixed-point theorems for multivalued mappings in the framework of
a partially ordered metric space.

The results of this paper are divided in three sections. In the first section we establish
the existence of end-points for a multivalued mapping under a more general contractive
condition in partially ordered metric spaces. The consequences of the main theorem are also
given. The second section is devoted for common end-point results for a pair of weakly
isotone increasing multivalued mappings. In the third section, we present common end-
point results for a pair of weakly isotone increasing multivalued mappings satisfying weakly
contractive condition.

2. End-Point Theorems for a Multivalued Mapping

In this section, we prove end-point theorems for a multivalued mapping in ordered complete
metric space.

Theorem 2.1. Let (X, d,�) be an ordered complete metric space. Let T : X → B(X) be such that
the following conditions are satisfied:

(i) there exists x0 ∈ X such that {x0} ≺1 Tx0,

(ii) for x, y ∈ X, x � y implies Tx ≺1 Ty,

(iii)

ψ
(
δ
(
Tx,Ty

))
≤ αψ

(
M

(
x, y

))
+ Lmin

{
D(x,Tx), D

(
y,Ty

)
, D

(
x,Ty

)
, D

(
y,Tx

)}
, (2.1)
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for all comparable x, y ∈ X, where L ≥ 0, 0 < α < 1 and ψ is an altering distance function and

M
(
x, y

)
= max

{

d
(
x, y

)
, D(x,Tx), D

(
y,Ty

)
,
D
(
x,Ty

)
+D

(
y,Tx

)

2

}

. (2.2)

If the property

{xn} ⊂ X is a nondecreasing sequencewithxn −→ z inX, thenxn ≺ z∀n (2.3)

holds, then T has a end-point.

Proof. By the assumption (i), there exists x1 ∈ Tx0 such that x0 � x1. By the assumption
(ii), Tx0 ≺1 Tx1. Then there exists x2 ∈ Tx1 such that x1 � x2. Continuing this process we
construct a monotone increasing sequence {xn} in X such that xn+1 ∈ Txn, for all n ≥ 0. Thus
we have

x0 � x1 � x2 � x3 � · · · � xn � xn+1 � · · · . (2.4)

If xn0 ∈ Txn0 for some n0, then the proof is finished. So assume xn /=xn+1 for all n ≥ 0.
Using the monotone property of ψ and the condition (iii), we have for all n ≥ 0,

ψ(d(xn+1, xn+2)) ≤ ψ(δ(Txn,Txn+1))

≤ αψ

(
max

{
d(xn, xn+1), D(xn,Txn), D(xn+1,Txn+1),

D(xn,Txn+1) +D(xn+1,Txn)
2

})

+ Lmin{D(xn,Txn), D(xn+1,Txn+1), D(xn,Txn+1), D(xn+1,Txn)}

≤ αψ

(
max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)
2

})

+ Lmin{d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+2), d(xn+1, xn+1)}.

(2.5)

Since d(xn, xn+2)/2 ≤max{d(xn, xn+1), d(xn+1, xn+2)}, it follows that

ψ(d(xn+1, xn+2)) ≤ αψ(max{d(xn, xn+1), d(xn+1, xn+2)}). (2.6)

Suppose that d(xn, xn+1) ≤ d(xn+1, xn+2), for some positive integer n.
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Then from (2.6), we have

ψ(d(xn+1, xn+2)) ≤ αψ(d(xn+1, xn+2)), (2.7)

it implies that d(xn+1, xn+2) = 0, or that xn+1 = xn+2, contradicting our assumption that
xn /=xn+1, for each n.

Therefore, d(xn+1, xn+2) < d(xn, xn+1), for all n ≥ 0 and {d(xn, xn+1)} is a monotone
decreasing sequence of nonnegative real numbers. Hence there exists an r ≥ 0 such that

d(xn, xn+1) −→ r asn −→ ∞. (2.8)

Taking the limit as n → ∞ in (2.6) and using the continuity of ψ, we have ψ(r) ≤ αψ(r),
which is a contradiction unless r = 0. Hence

lim
n→∞

d(xn, xn+1) = 0. (2.9)

Next we show that {xn} is a Cauchy sequence. If otherwise, there exists an ε > 0 for which
we can find two sequences of positive integers {m(k)} and {n(k)} such that for all positive
integers k, n(k) > m(k) > k and d(xm(k), xn(k)) ≥ ε.

Assuming that n(k) is the smallest such positive integer, we get n(k) > m(k) > k,

d
(
xm(k), xn(k)

)
≥ ε, d

(
xm(k), xn(k)−1

)
< ε. (2.10)

Now,

ε ≤ d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)
, (2.11)

that is,

ε ≤ d
(
xm(k), xn(k)

)
< ε + d

(
xn(k)−1, xn(k)

)
. (2.12)

Taking the limit as k → ∞ in the above inequality and using (2.9), we have

lim
k→∞

d
(
xm(k), xn(k)

)
= ε. (2.13)

Again,

d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xm(k)+1

)
+ d

(
xm(k)+1, xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)
,

d
(
xm(k)+1, xn(k)+1

)
≤ d

(
xm(k)+1, xm(k)

)
+ d

(
xm(k), xn(k)

)
+ d

(
xn(k), xn(k)+1

)
.

(2.14)

Taking the limit as k → ∞ in the above inequalities and using (2.9) and (2.13), we have

lim
k→∞

d
(
xm(k)+1, xn(k)+1

)
= ε. (2.15)
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Again,

d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)
,

d
(
xm(k), xn(k)+1

)
≤ d

(
xm(k), xn(k)

)
+ d

(
xn(k), xn(k)+1

)
.

(2.16)

Letting k → ∞ in the above inequalities and using (2.9) and (2.13), we have

lim
k→∞

d
(
xm(k), xn(k)+1

)
= ε. (2.17)

Similarly, we have that

lim
k→∞

d
(
xn(k), xm(k)+1

)
= ε. (2.18)

For each positive integer k, xm(k) and xn(k) are comparable. Then using themonotone property
of ψ and the condition (iii), we have

ψ
(
d
(
xm(k)+1, xn(k)+1

))
≤ ψ

(
δ
(
Txm(k),Txn(k)

))

≤ αψ

(

max

{

d
(
xm(k), xn(k)

)
, D

(
xm(k),Txm(k)

)
, D

(
xn(k),Txn(k)

)
,

D
(
xm(k),Txn(k)

)
+D

(
xn(k),Txm(k)

)

2

})

+ Lmin
{
D
(
xm(k),Txm(k)

)
, D

(
xn(k),Txn(k)

)
, D

(
xm(k),Txn(k)

)
,

D
(
xn(k),Txm(k)

)}

≤ αψ

(

max

{

d
(
xm(k), xn(k)

)
, d

(
xm(k), xm(k)+1

)
, d

(
xn(k), xn(k)+1

)
,

d
(
xm(k), xn(k)+1

)
+ d

(
xn(k), xm(k)+1

)

2

})

+ Lmin
{
d
(
xm(k), xm(k)+1

)
, d

(
xn(k), xn(k)+1

)
, d

(
xm(k), xn(k)+1

)
,

d
(
xn(k), xm(k)+1

)}
.

(2.19)

Letting k → ∞ in above inequality, using (2.9), (2.13), (2.15), (2.17), and (2.18) and the
continuity of ψ, we have

ψ(ε) ≤ αψ(ε), (2.20)

which is a contradiction by virtue of a property of ψ.



International Journal of Mathematics and Mathematical Sciences 7

Hence {xn} is a Cauchy sequence. From the completeness of X, there exists a z ∈ X
such that

xn −→ z asn −→ ∞. (2.21)

By the assumption (2.3), xn � z, for all n.
Then by the monotone property of ψ and the condition (iii), we have

ψ(δ(xn+1,Tz)) ≤ ψ(δ(Txn,Tz))

≤ αψ

(
max

{
d(xn, z), D(xn,Txn), D(z,Tz), D(xn,Tz) +D(z,Txn)

2

})

+ Lmin{D(xn,Txn), D(z,Tz), D(xn,Tz), D(z,Txn)}

≤ αψ

(
max

{
d(xn, z), d(xn, xn+1), D(z, Tz),

D(xn, Tz) + d(z, xn+1)
2

})

+ Lmin{d(xn, xn+1), D(z,Tz), D(xn,Tz), d(z, xn+1)}.
(2.22)

Taking the limit as n → ∞ in the above inequality, using (2.9) and (2.21) and the continuity
of ψ, we have

ψ(δ(z,Tz)) ≤ αψ(D(z,Tz)) ≤ αψ(δ(z,Tz)), (2.23)

which implies that δ(z,Tz) = 0, or that {z} = Tz. Moreover, z is a end-point of T.

Taking ψ an identity function in Theorem 2.1, we have the following result.

Corollary 2.2. Let (X, d,�) be an ordered complete metric space. Let T : X → B(X) be such that
the following conditions are satisfied:

(i) there exists x0 ∈ X such that {x0} ≺1 Tx0,
(ii) for x, y ∈ X, x � y implies Tx ≺1 Ty,
(iii)

δ
(
Tx,Ty

)
≤ αM

(
x, y

)
+ Lmin

{
D(x,Tx), D

(
y,Ty

)
, D

(
x,Ty

)
, D

(
y,Tx

)}
, (2.24)

for all comparable x, y ∈ X, where L ≥ 0, 0 < α < 1 and

M
(
x, y

)
= max

{

d
(
x, y

)
, D(x,Tx), D

(
y,Ty

)
,
D
(
x,Ty

)
+D

(
y,Tx

)

2

}

. (2.25)

If the property

{xn} ⊂ X is a nondecreasing sequencewithxn −→ z inX, thenxn � z ∀n (2.26)

holds, then T has a end-point.



8 International Journal of Mathematics and Mathematical Sciences

The following corollary is a special case of Theorem 2.1 when T is a single-valued
mapping.

Corollary 2.3. Let (X, d,�) be an ordered complete metric space. Let T : X → X be such that the
following conditions are satisfied:

(i) there exists x0 ∈ X such that x0 � Tx0,
(ii) for x, y ∈ X, x � y implies Tx � Ty,
(iii)

ψ
(
d
(
Tx,Ty

))
≤ αψ

(
M

(
x, y

))
+ Lmin

{
d(x,Tx), d

(
y,Ty

)
, d

(
x,Ty

)
, d

(
y,Tx

)}
, (2.27)

for all comparable x, y ∈ X, where L ≥ 0, 0 < α < 1 and ψ is an altering distance function and

M
(
x, y

)
= max

{

d
(
x, y

)
, d(x,Tx), d

(
y,Ty

)
,
d
(
x,Ty

)
+ d

(
y,Tx

)

2

}

. (2.28)

If the property (2.3) holds, then T has a fixed-point.

In the following theoremwe replace condition (2.3) of the above corollary by requiring
T to be continuous.

Theorem 2.4. Let (X, d,�) be an ordered complete metric space. Let T : X → X be a continuous
mapping such that the following conditions are satisfied:

(i) there exists x0 ∈ X such that {x0} ≺1 Tx0,
(ii) for x, y ∈ X, x � y implies Tx ≺1 Ty,
(iii)

ψ
(
d
(
Tx,Ty

))
≤ αψ

(
M

(
x, y

))
+ Lmin

{
d(x,Tx), d

(
y,Ty

)
, d

(
x,Ty

)
, d

(
y,Tx

)}
, (2.29)

for all comparable x, y ∈ X, where L ≥ 0, 0 < α < 1 and ψ is an altering distance function and

M
(
x, y

)
= max

{

d
(
x, y

)
, d(x,Tx), d

(
y,Ty

)
,
d
(
x,Ty

)
+ d

(
y,Tx

)

2

}

. (2.30)

Then T has a end-point.

Proof. If we assume T as a multivalued mapping in which Tx is a singleton set for every
x ∈ X. Then we consider the same sequence {xn} as in the proof of Theorem 2.1. Follows the
line of proof of Theorem 2.1, we have that {xn} is a Cauchy sequence and

lim
n→∞

xn = z. (2.31)
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Then, the continuity of T implies that

z = lim
n→∞

xn+1 = lim
n→∞

Txn = Tz (2.32)

and this proves that z is a end-point of T.

3. Common End-Point Theorems for a Pair of Multivalued Mappings

In this section, we prove common end-point theorems for a pair of T-weakly isotone
increasing multivalued mappings.

To complete the result, we need notion ofT-weakly isotone increasing for multivalued
mappings given by Vetro [31, Definition 4.2].

Definition 3.1. Let (X,�) be a partially ordered set and S,T : X → B(X) be two maps. The
mapping S is said to be T-weakly isotone increasing if Sx �2 Ty �2 Sz for all any x ∈ X,
y ∈ Sx and z ∈ Ty.

Note that, in particular, for single-valued mappings T,S : X → X, mapping S is
said to be T-weakly isotone increasing if [31, Definition 2.2] if for each x ∈ X we have Sx �
TSx � STSx.

Theorem 3.2. Let (X, d,�) be an ordered complete metric space. Let T,S : X → B(X) be such that

ψ
(
δ
(
Tx,Sy

))
≤ αψ

(
M

(
x, y

))
+ Lmin

{
D(x,Tx), D

(
y,Sy

)
, D

(
x,Sy

)
, D

(
y,Tx

)}
, (3.1)

for all comparable x, y ∈ X, where L ≥ 0, 0 < α < 1 and ψ is an altering distance function and

M
(
x, y

)
= max

{

d
(
x, y

)
, D(x,Tx), D

(
y,Sy

)
,
D
(
x,Sy

)
+D

(
y,Tx

)

2

}

. (3.2)

Also suppose that S is T-weakly isotone increasing and there exists an x0 ∈ X such that {x0} ≺2 Sx0.
If the property

{xn} ⊂ X is a nondecreasing sequencewithxn −→ z inX, thenxn � z ∀n (3.3)

holds, then S and T have a common end-point.

Proof. Define a sequence {xn} ⊂ X and prove that the limit point of that sequence is a unique
common end-point for T and S. For a given x0 ∈ X and nonnegative integer n let

x0 = x, x2n+1 ∈ Sx2n, x2n+2 ∈ Tx2n+1 for n ≥ 0. (3.4)

If xn0 ∈ Sxn0 or xn0 ∈ Txn0 for some n0, then the proof is finished. So assume xn /=xn+1 for all
n.
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Since {x0} �2 Sx0, x1 ∈ Sx0 can be chosen so that x0 � x1. Since S is T-weakly isotone
increasing, it is Sx0 �2 Tx1; in particular, x2 ∈ Tx1 can be chosen so that x1 � x2. Now,
Tx1 �2 Sx2 (since x2 ∈ Tx1); in particular, x3 ∈ Sx2 can be chosen so that x2 � x3.

Continuing this process we construct a monotone increasing sequence {xn} in X such
that

x0 � x1 � x2 � x3 � · · · � xn � xn+1 � · · · . (3.5)

If xn0 ∈ Sxn0 or xn0 ∈ Txn0 for some n0, then the proof is finished. So assume xn /=xn+1 for all
n.

Suppose that n is an odd number. Substituting x = xn and y = xn+1 in (3.1) and using
properties of function ψ, we have for all n ≥ 0,

ψ(d(xn+1, xn+2)) ≤ ψ(δ(Txn,Sxn+1))

≤ αψ

(
max

{
d(xn, xn+1), D(xn,Txn), D(xn+1,Sxn+1),

D(xn,Sxn+1) +D(xn+1,Txn)
2

})

+ Lmin{D(xn,Txn), D(xn+1,Sxn+1), D(xn,Sxn+1), D(xn+1,Txn)}

≤ αψ

(
max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)
2

})

+ Lmin{d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+2), d(xn+1, xn+1)}.

(3.6)

Since d(xn, xn+2)/2 ≤max{d(xn, xn+1), d(xn+1, xn+2)}, it follows that

ψ(d(xn+1, xn+2)) ≤ αψ(max{d(xn, xn+1), d(xn+1, xn+2)}). (3.7)

Suppose that d(xn, xn+1) ≤ d(xn+1, xn+2), for some positive integer n.
Then from (3.7), we have

ψ(d(xn+1, xn+2)) ≤ αψ(d(xn+1, xn+2)), (3.8)

it implies that d(xn+1, xn+2) = 0, or that xn+1 = xn+2, contradicting our assumption that
xn /=xn+1, for each n and so we have

d(xn+1, xn+2) < d(xn, xn+1). (3.9)
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In the similar fashion, we can also show inequalities (3.9) when n is an even number.
Therefore, the sequence {d(xn, xn+1)} is a monotone decreasing sequence of nonnegative real
numbers. Hence there exists an r ≥ 0 such that

d(xn, xn+1) −→ r asn −→ ∞. (3.10)

Taking the limit as n → ∞ in (3.7) and using the continuity of ψ, we have ψ(r) ≤ αψ(r),
which is a contradiction unless r = 0. Hence

lim
n→∞

d(xn, xn+1) = 0. (3.11)

Next we show that {xn} is a Cauchy sequence. If otherwise, there exists an ε > 0 for which
we can find two sequences of positive integers {m(k)} and {n(k)} such that for all positive
integers k, n(k) > m(k) > k and d(xm(k), xn(k)) ≥ ε.

Assuming that n(k) is the smallest such positive integer, we get n(k) > m(k) > k,

d
(
xm(k), xn(k)

)
≥ ε, d

(
xm(k), xn(k)−1

)
< ε. (3.12)

Now,

ε ≤ d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)
, (3.13)

that is,

ε ≤ d
(
xm(k), xn(k)

)
< ε + d

(
xn(k)−1, xn(k)

)
. (3.14)

Taking the limit as k → ∞ in the above inequality and using (3.11), we have

lim
k→∞

d
(
xm(k), xn(k)

)
= ε. (3.15)

Again,

d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xm(k)+1

)
+ d

(
xm(k)+1, xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)
,

d
(
xm(k)+1, xn(k)+1

)
≤ d

(
xm(k)+1, xm(k)

)
+ d

(
xm(k), xn(k)

)
+ d

(
xn(k), xn(k)+1

)
.

(3.16)

Taking the limit as k → ∞ in the above inequalities and using (3.11) and (3.15), we have

lim
k→∞

d
(
xm(k)+1, xn(k)+1

)
= ε. (3.17)

Again,

d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)
,

d
(
xm(k), xn(k)+1

)
≤ d

(
xm(k), xn(k)

)
+ d

(
xn(k), xn(k)+1

)
.

(3.18)
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Letting k → ∞ in the above inequalities and using (2.9) and (3.15), we have

lim
k→∞

d
(
xm(k), xn(k)+1

)
= ε. (3.19)

Similarly, we have that

lim
k→∞

d
(
xn(k), xm(k)+1

)
= ε. (3.20)

For each positive integer k, xm(k) and xn(k) are comparable. Then using themonotone property
of ψ and the condition (3.1), we have

ψ
(
d
(
xm(k)+1, xn(k)+2

))
≤ ψ

(
δ
(
Txm(k),Sxn(k)+1

))

≤ αψ

(

max

{

d
(
xm(k), xn(k)+1

)
, D

(
xm(k),Txm(k)

)
, D

(
xn(k)+1,Sxn(k)+1

)
,

D
(
xm(k),Sxn(k)+1

)
+D

(
xn(k)+1,Txm(k)

)

2

})

+ Lmin
{
D
(
xm(k),Txm(k)

)
, D

(
xn(k)+1,Sxn(k)+1

)
, D

(
xm(k),Sxn(k)+1

)
,

D
(
xn(k)+1,Txm(k)

)}

= αψ

(

max

{

d
(
xm(k), xn(k)+1

)
, d

(
xm(k), xm(k)+1

)
, d

(
xn(k)+1, xn(k)+1

)
,

d
(
xm(k), xn(k)+2

)
+ d

(
xn(k)+1, xm(k)+1

)

2

})

+ Lmin
{
d
(
xm(k), xm(k)+1

)
, d

(
xn(k)+1, xn(k)+2

)
, d

(
xm(k), xn(k)+2

)
,

d
(
xn(k)+1, xm(k)+1

)}
.

(3.21)

Letting k → ∞ in above inequality, using (3.11), (3.15), (3.17), (3.19), and (3.20) and using
the continuity of ψ, we have

ψ(ε) ≤ αψ(ε), (3.22)

which is a contradiction by virtue of a property of ψ.
Hence {xn} is a Cauchy sequence. From the completeness of X, there exists a z ∈ X

such that

xn −→ z asn −→ ∞. (3.23)

By the assumption (3.3), xn � z, for all n.
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Then by the monotone property of ψ and the condition (3.1), we have

ψ(δ(xn+1,Sz)) ≤ ψ(δ(Txn,Sz))

≤ αψ

(
max

{
d(xn, z), D(xn,Txn), D(z,Sz), D(xn,Sz) +D(z,Txn)

2

})

+ Lmin{D(xn,Txn), D(z,Sz), D(xn,Sz), D(z,Txn)}

≤ αψ

(
max

{
d(xn, z), d(xn, xn+1), D(z,Sz), D(xn,Sz) + d(z, xn+1)

2

})

+ Lmin{d(xn, xn+1), D(z,Sz), D(xn,Sz), d(z, xn+1)}.
(3.24)

Taking the limit as n → ∞ in the above inequality, using (3.11) and (3.23) and the continuity
of ψ, we have

ψ(δ(z,Sz)) ≤ αψ(D(z,Sz)) ≤ αψ(δ(z,Sz)), (3.25)

it implies that δ(z,Sz) = 0, or that {z} = Sz. Similarly {z} = Tz. Moreover, z is a common
end-point of T and S.

Putting S = T in Theorem 3.2, we immediately obtain the following result.

Corollary 3.3. Let (X, d,�) be an ordered complete metric space. Let T : X → B(X) be such that

ψ
(
δ
(
Tx,Ty

))
≤ αψ

(
M

(
x, y

))
+ Lmin

{
D(x,Tx), D

(
y,Ty

)
, D

(
x,Ty

)
, D

(
y,Tx

)}
, (3.26)

for all comparable x, y ∈ X, where L ≥ 0, 0 < α < 1 and ψ is an altering distance function and

M
(
x, y

)
= max

{

d
(
x, y

)
, D(x,Tx), D

(
y,Ty

)
,
D
(
x,Ty

)
+D

(
y,Tx

)

2

}

. (3.27)

Also suppose that Tx �1 T(Tx) for all x ∈ X and there is x0 ∈ X such that {x0} ≺1 Tx0. If the
property

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn ≺ z ∀n (3.28)

holds, then T has a end-point.

In Theorem 3.2, if T,S are single valued mappings, then we have the following result.

Theorem 3.4. Let (X, d,�) be an ordered complete metric space. Let T,S : X → X be such that

ψ
(
d
(
Tx,Sy

))
≤ αψ

(
M

(
x, y

))
+ Lmin

{
d(x,Tx), d

(
y,Sy

)
, d

(
x,Sy

)
, d

(
y,Tx

)}
, (3.29)
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for all comparable x, y ∈ X, where L ≥ 0, 0 < α < 1 and ψ is an altering distance function and

M
(
x, y

)
= max

{

d
(
x, y

)
, d(x,Tx), d

(
y,Sy

)
,
d
(
x,Sy

)
+ d

(
y,Tx

)

2

}

. (3.30)

Also suppose that S and T are weakly isotone increasing. If

S is continuous (3.31)

or

T is continuous (3.32)

or

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn � z ∀n (3.33)

holds, then S and T have a common end-point.

Proof. If we assume T and S as a multivalued mapping in which Tx and Sx are a singleton
set for every x ∈ X. Then we consider the same sequence {xn} as in the proof of Theorem 3.4.
Follows the line of proof of Theorem 3.4, we have that {xn} is a Cauchy sequence and

lim
n→∞

xn = z. (3.34)

Then, if T is continuous, we have

z = lim
n→∞

xn+1 = lim
n→∞

Txn = Tz (3.35)

and this proves that z is a end-point of T and so z is a end-point of S. Similarly, if S is
continuous, we have the result. Thus it is immediate to conclude thatT andS have a common
end-point.

4. Common End-Point Theorems for a Pair of Multivalued Mappings
Satisfying Weakly Contractive Condition

In this section, we prove common end-point theorems for a pair of weakly isotone increasing
multivalued mappings under weakly contractive condition.

To complete the result, we need notion of weakly contractive condition given by
Rhoades [32].

Definition 4.1 (Weakly Contractive Mapping). Let X be a metric space. A mapping T : X →
X is called weakly contractive if and only if

d
(
Tx,Ty

)
≤ d

(
x, y

)
− ϕ

(
d
(
x, y

))
, ∀x, y ∈ X, (4.1)

where ϕ is an altering distance function.
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Theorem 4.2. Let (X, d,�) be an ordered complete metric space. Let T,S : X → B(X) be such that

ψ
(
δ
(
Tx,Sy

))
≤ ψ

(

max

{

d
(
x, y

)
, D(x,Tx), D

(
y,Sy

)
,
D
(
x,Sy

)
+D

(
y,Tx

)

2

})

− φ
(
max

{
d
(
x, y

)
, δ
(
y,Sy

)})
,

(4.2)

for all comparable x, y ∈ X, where ψ, φ : [0,+∞) → [0, +∞) are an altering distance functions.
Also suppose that S is T-weakly isotone increasing and there exists an x0 ∈ X such that

{x0} ≺2 Sx0. If the property

{xn} ⊂ X is a nondecreasing sequencewithxn −→ z inX, thenxn � z ∀n (4.3)

holds, then S and T have a common end-point.

Proof. Define a sequence {xn} ⊂ X and prove that the limit point of that sequence is a unique
common end-point for T and S. For a given x0 ∈ X and nonnegative integer n let

x0 = x, x2n+1 ∈ Sx2n, x2n+2 ∈ Tx2n+1 forn ≥ 0. (4.4)

Since {x0} �2 Sx0, x1 ∈ Sx0 can be chosen so that x0 � x1. Since S is T-weakly isotone
increasing, it is Sx0 �2 Tx1; in particular, x2 ∈ Tx1 can be chosen so that x1 � x2. Now,
Tx1 �2 Sx2 (since x2 ∈ Tx1); in particular, x3 ∈ Sx2 can be chosen so that x2 � x3.

Continuing this process, we conclude that {xn} can be an increasing sequence in X:

x1 � x2 � · · · � xn � xn+1 � · · · . (4.5)

If there exists a positive integerN such that xN = xN+1, then xN is a common end-point of T
and S. Hence we will assume that xn /=xn+1, for all n ≥ 0.

Suppose that n is an odd number. Substituting x = xn and y = xn+1 in (2.6) and using
properties of functions ψ and φ, we have for all n ≥ 0,

ψ(d(xn+1, xn+2)) ≤ ψ(δ(Txn,Sxn+1))

≤ ψ

(
max

{
d(xn, xn+1), D(xn,Txn), D(xn+1,Sxn+1),

D(xn,Sxn+1) +D(xn+1,Txn)
2

})

− φ(max{d(xn, xn+1), δ(xn+1,Sxn+1)})

≤ ψ

(
max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)
2

})

− φ(max{d(xn, xn+1), d(xn+1, xn+2)}).

(4.6)
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Since d(xn, xn+2)/2 ≤ max{d(xn, xn+1), d(xn+1, xn+2)}, it follows that

ψ(d(xn+1, xn+2)) ≤ ψ(max{d(xn, xn+1), d(xn+1, xn+2)}) − φ(max{d(xn, xn+1), d(xn+1, xn+2)}).
(4.7)

Suppose that d(xn, xn+1) ≤ d(xn+1, xn+2), for some positive integer n. Then from (4.7), we
have

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn+1, xn+2)) − φ(d(xn+1, xn+2)), (4.8)

that is, φ(d(xn+1, xn+2)) ≤ 0, which implies that d(xn+1, xn+2) = 0, or that xn+1 = xn+2,
contradicting our assumption that xn /=xn+1. So we have

d(xn+1, xn+2) < d(xn, xn+1). (4.9)

In the similar fashion, we can also show inequalities (4.9) when n is an even number.
Therefore, for all n ≥ 0 and {d(xn, xn+1)} is a monotone decreasing sequence of nonnegative
real numbers. Hence there exists an r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r. (4.10)

In view of the above facts, from (4.7) we have for all n ≥ 0,

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1)) − φ(d(xn, xn+1)). (4.11)

Taking the limit as n → ∞ in the above inequality, using (4.10) and the continuities of φ and
ψ, we have

ψ(r) ≤ ψ(r) − φ(r), (4.12)

which is a contradiction unless r = 0. Hence

lim
n→∞

d(xn, xn+1) = 0. (4.13)

Next we show that {xn} is a Cauchy sequence. If {xn} is not a Cauchy sequence, then using an
argument similar to that given in Theorem 3.2, we can find two sequences of positive integers
{m(k)} and {n(k)} for which

lim
k→∞

d
(
xm(k), xn(k)

)
= ε, lim

k→∞
d
(
xm(k)+1, xn(k)+1

)
= ε,

lim
k→∞

d
(
xm(k), xn(k)+1

)
= ε, lim

k→∞
d
(
xn(k), xm(k)+1

)
= ε.

(4.14)
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For each positive integer k, xm(k) and xn(k) are comparable. Then using themonotone property
of ψ and (4.2), we have

ψ
(
d
(
xm(k)+1, xn(k)+2

))
≤ ψ

(
δ
(
Txm(k),Sxn(k)+1

))

≤ ψ

(

max

{

d
(
xm(k), xn(k)+1

)
, D

(
xm(k),Txm(k)

)
, D

(
xn(k)+1,Sxn(k)+1

)
,

D
(
xm(k),Sxn(k)+1

)
+D

(
xn(k)+1,Txm(k)

)

2

})

− φ
(
max

{
d
(
xm(k), xn(k)+1

)
, δ
(
xn(k)+1,Sxn(k)+1

)})
,

= ψ

(

max

{

d
(
xm(k), xn(k)+1

)
, d

(
xm(k), xm(k)+1

)
, d

(
xn(k)+1, xn(k)+2

)
,

d
(
xm(k), xn(k)+2

)
+ d

(
xn(k)+1, Txm(k)+1

)

2

})

− φ
(
max

{
d
(
xm(k), xn(k)+1

)
, d

(
xn(k)+1, xn(k)+2

)})
.

(4.15)

Letting k → ∞ in the above inequality, using (4.14) and the continuities of ψ and φ, we have

ψ(ε) ≤ ψ(ε) − φ(ε), (4.16)

which is a contradiction by virtue of a property of φ. Hence {xn} is a Cauchy sequence. From
the completeness of X, there exists a z ∈ X such that

xn −→ z as n −→ ∞. (4.17)

By the condition (4.3), xn � z, for all n. Then by the monotone property of ψ and (4.2), we
have

ψ(δ(xn+1,Sz)) ≤ ψ(δ(Txn,Sz))

≤ ψ

(
max

{
d(xn, z), D(xn,Txn), D(z,Sz), D(xn,Sz) +D(z,Txn)

2

})

− φ(max{d(xn, z), δ(z,Sz)})

≤ ψ

(
max

{
d(xn, z), d(xn, xn+1), D(z,Sz), D(xn,Sz) + d(z, xn+1)

2

})

− φ(max{d(xn, z), δ(z,Sz)}).

(4.18)
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Taking the limit as n → ∞ in the above inequality, using (4.13), (4.17) and the continuities of
ψ and φ, we have

ψ(δ(z,Sz)) ≤ ψ(D(z,Sz)) − φ(δ(z,Sz)), (4.19)

which implies that

ψ(δ(z,Sz)) ≤ ψ(δ(z,Sz)) − φ(δ(z,Sz)), (4.20)

which is a contradiction unless δ(z,Sz) = 0, or that {z} = Sz; that is, z is a end-point of S.
Similarly {z} = Tz. Moreover, z is a common end-point of T and S.

Similar corollaries can be derived from Theorem 4.2.
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