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We study the class of 1/|w|2-harmonic K-quasiconformal mappings with angular ranges. After
building a differential equation for the hyperbolic metric of an angular range, we obtain the sharp
bounds of their hyperbolically partial derivatives, determined by the quasiconformal constant K.
As an applicationwe get their hyperbolically bi-Lipschitz continuity and their sharp hyperbolically
bi-Lipschitz coefficients.

1. Introduction

Let Ω and Ω′ be two domains of hyperbolic type in the complex plane C. A C2 sense-
preserving homeomorphism f ofΩ ontoΩ′ is said to be a ρ-harmonic mapping if it satisfies the
Euler-Lagrange equation

fzz +
(
log ρ

)
w

(
f
)
fzfz = 0, (1.1)

where w = f(z) and ρ(w)|dw|2 is a smooth metric in Ω′. If ρ is a constant then f is said to be
euclidean harmonic. A euclidean harmonic mapping defined on a simply connected domain is
of the form f = h+g, where h and g are two analytic functions inΩ. For a survey of harmonic
mappings, see [1–3].

In this paper we study the class of 1/|w|2-harmonic mappings. This class of mappings
seems very particular but it includes the class of so-called logharmonic mappings. In fact, a
logharmonic mapping is a solution of the nonlinear elliptic partial differential equation

fz =

(

a
f

f

)

fz, (1.2)
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where a(z) is analytic and |a(z)| < 1 (see [4–6] for more details). By differentiating (1.2) in z,
we have that

fzz +

(

log
1

|w|2
)

w

◦ ffzfz = a
f

f

(

fzz +

(

log
1

|w|2
)

w

◦ ffzfz
)

. (1.3)

Hence, it follows that a logharmonic mapping is a 1/|w|2-harmonic mapping.
If a ρ-harmonic mapping f also satisfies the condition that |fz(z)| ≤ k|fz(z)| holds for

every z ∈ Ω, then it is called a ρ-harmonicK-quasiconformal mapping (for simplicity, a harmonic
quasiconformal mapping or H.Q.C mapping), where K = (1 + k)/(1 − k) .

Let λΩ(z)|dz| denote the hyperbolic metric of a simply connected region Ω with
gaussian curvature −4. For a harmonic quasiconformal mapping f of Ω onto Ω′, we call the
quantity

∥∥∂f
∥∥ =

λΩ′ ◦ f
λΩ

∣∣fz
∣∣ (1.4)

the hyperbolically partial derivative of f . If f is a harmonic quasiconformal mapping of Ω1 onto
Ω2 and ϕ is a conformal mapping ofΩ0 ontoΩ1 then f ◦ϕ is also a harmonic quasiconformal
mapping. We have

∥∥∂
(
f ◦ ϕ)∥∥ =

λΩ2

(
f ◦ ϕ(ζ))

λΩ0(ζ)

∣∣∣
(
f ◦ ϕ)ζ

∣∣∣ =
λΩ2

(
f(z)

)

λΩ1(z)

∣∣fz
∣∣ =

∥∥∂f
∥∥, (1.5)

where z = ϕ(ζ). Hence, we always fix the domain of a harmonic quasiconformal mapping to
be the unit disk D when studying its hyperbolically partial derivative.

The hyperbolic distance dh(z1, z2) between z1 and z2 is defined by infγ
∫
γ λΩ(z)|dz|,

where γ runs through all rectifiable curves in Ω which connect z1 and z2. A harmonic
quasiconformal mapping f of Ω onto Ω′ is said to be hyperbolically L1-Lipschitz (L1 > 0) if

dh
(
f(z1), f(z2)

) ≤ L1dh(z1, z2), z1, z2 ∈ Ω. (1.6)

The constant L1 is said to be the hyperbolically Lipschitz coefficient of f . If there also exists a
constant L2 > 0 such that

L2dh(z1, z2) ≤ dh
(
f(z1), f(z2)

)
, z1, z2 ∈ Ω, (1.7)

then f is said to be hyperbolically (L2, L1)-bi-lipschitz. We also call the array (L2, L1) the
hyperbolically bi-lipschitz coefficient of f .

Under differently restrictive conditions of the ranges of euclidean harmonic quasicon-
formal mappings, recent papers [7–13] obtained their euclidean Lipschitz and bi-Lipschitz
continuity. In [8], Kalaj obtained the following.

Theorem A. Let Ω and Ω′ be two Jordan domains, let α ∈ (0, 1] and let f : Ω �→ Ω′ be a euclidean
harmonic quasiconformal mapping. If ∂Ω and ∂Ω′ ∈ C1,α, then f is euclidean Lipschitz. In particular,
if Ω′ is convex, then f is euclidean bi-lipschitz.
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Recently, the hyperbolically Lipschitz or bi-lipschitz continuity of euclidean harmonic
quasiconformal mappings also excited much interest (see [14–17]). In [14], Chen and Fang
proved the following.

Theorem B. Let f be a euclidean harmonic K-quasiconformal mapping of Ω onto a convex domain
Ω′. Then f is hyperbolically (1/K,K)-bi-lipschitz.

Theorems A and B tell us that an euclidean harmonic quasiconformal mapping with
a convex range has both euclidean and hyperbolically bi-lipschitz continuity. Naturally, we
want to askwhether a general ρ-harmonic quasiconformalmapping also has similar Lipschitz
or bi-lipschitz continuity. In this paper we study the corresponding question for the class of
1/|w|2-harmonic quasiconformal mappings.

To this question, Examples 5.1, and 5.2 show that if the metric ρ is not necessary to be
smooth in the range of a ρ-harmonic quasiconformal mapping f , then f generally does not
need to have euclidean and hyperbolically Lipschitz continuity even if its range is convex.
Hence, we only consider the case that ρ is smooth, that is, 1/|w|2 does not vanish in the
range of a 1/|w|2-harmonic quasiconformal mapping in this paper. Kalaj and Mateljević (see
Theorem 4.4 of [18]) showed the following.

TheoremC. Let ϕ be analytic inΩ′ and f a |ϕ|-harmonic quasiconformal mapping of theC1,α domain
Ω onto the C1,α Jordan domain Ω′. IfM = ‖(log ϕ)′‖∞ <∞, then f is euclidean Lipschitz.

Let |ϕ(w)| be equal to 1/|w|2, where w ∈ Ω′. If the closure of the range Ω′ does not
include the origin, then M = ‖(logϕ)′‖∞ = ‖1/|w‖|∞ is finite. So by Theorem C a 1/|w|2-
harmonic quasiconformal mapping with such a range Ω′ has euclidean Lipschitz continuity.
Example 5.3 shows that if the origin is a boundary point of ∂Ω′ then a 1/|w|2-harmonic
quasiconformal mapping does not need to have euclidean Lipschitz continuity. However,
Example 5.3 also shows that there is a different result when we consider its hyperbolically
Lipschitz continuity. In this paper we will study the hyperbolically Lipschitz or bi-lipschitz
continuity of a 1/|w|2-harmonic quasiconformal mapping with an angular range and its
sharp hyperbolically Lipschitz coefficient determined by the constant of quasiconformality.
The main result of this paper is the sharp bounds of their hyperbolically partial derivatives.
The key of this paper is to build a differential equation for the hyperbolic metric of an angular
domain, which is different for using a differential inequality when we studied the class of
euclidean harmonic quasiconformal mappings in [14]. The rest of this paper is organized as
follows.

In Section 2, using a property of hyperbolic metric of the upper half plane H, we first
build a differential equation for the hyperbolic metric of an angular domain with the origin
of C as its vertex (see Lemma 2.1). The two-order differential equation (2.4) is important
to derive the upper and lower bounds of the hyperbolically partial derivative of a 1/|w|2-
harmonic quasiconformal mappings with an angular range.

In Section 3, by combining the well-known Ahlfors-Schwarz lemma and its opposite
type given by Mateljević [19] with the differential inequality (2.4), we obtain the upper
and lower bounds of the hyperbolically partial derivatives ‖∂f‖ of 1/|w|2-harmonic K-
quasiconformal mappings with angular ranges (see Theorem 3.1). We also show that both
the upper and lower bounds of ‖∂f‖ are sharp.

In Section 4, the hyperbolically K-bi-lipschitz continuity of a 1/|w|2-harmonic K-
quasiconformal mapping with an angular range is obtained by the sharp inequality (3.2)
(see Theorem 4.1). The hyperbolically bi-lipschitz coefficients (1/K,K) are sharp.
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At last, some auxiliary examples are given. In order to show the sharpness of Theorems
3.1 and 4.1, we present two examples satisfying that the inequalities (3.2) no longer hold
for two classes of 1/|w|2-harmonic quasiconformal mappings with nonangular ranges (see
Examples 5.4 and 5.5).

2. A Differential Equation for the Hyperbolic Metric of
an Angular Domain

Let λH(w)|dw| be the hyperbolic metric of the upper half plane H with gaussian curvature
−4. Then

λH(w)|dw| = i

w −w |dw|, (
logλH

)
w = − 1

w −w,
(
logλH

)
ww =

1

(w −w)2
. (2.1)

Hence, the hyperbolic metric λH(w)|dw| of H satisfies that

(
logλH

)
ww +

(
logλH

)
w

w
+
w

w
λ2H = 0. (2.2)

By the relation that (logλH)w = (λH)w/λH , the differential equation (2.2) becomes

(λH)ww
λH

=
(
(λH)w
λH

)2

− (λH)w
wλH

− w

w
(λH)

2. (2.3)

Using the differential equation (2.3) of the hyperbolic metric of H we obtain the
following.

Lemma 2.1. Let A be an angular domain with the origin of the complex plane C as its vertex. Then
for every ζ ∈ A the hyperbolic metric λA(ζ)|dζ| of A satisfies the following differential equation

(
logλA

)
ζζ +

(
logλA

)
ζ

ζ
+
ζ

ζ
(λA)

2 = 0. (2.4)

Proof. Let Aθ be the angular domain {z ∈ C | 0 < arg z < θ, θ ∈ (0, 2π]} with 0 as its vertex
and λAθ(z)|dz| as its hyperbolic metric with gaussian curvature −4. Let f be a conformal
mapping of Aθ onto H. Then by the fact that a hyperbolic metric is a conformal invariant it
follows that

λAθ(z) = λH ◦ f∣∣f ′∣∣. (2.5)
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Hence by the chain rule [20] we get

(
logλAθ

)
z =

(λH)w ◦ ff ′

λH ◦ f +
1
2
f ′′

f ′ ,

(
logλAθ

)
zz =

λH ◦ f
[
(λH)ww ◦ ff ′2 + (λH)w ◦ ff ′′

]
− [

(λH)w ◦ ff ′]2

(
λH ◦ f)2

+
(
f ′′

2f ′

)′
.

(2.6)

From the relations (2.5) and (2.6) we get

(
logλAθ

)
zz +

(
logλAθ

)
z

z
+
z

z
(λAθ)

2

=
(λH)ww
λH

◦ ff ′2 +
(λH)w
λH

◦ ff ′′ −
[
(λH)w
λH

◦ f
]2
f ′2

+
1
2

(
f ′′

f ′

)′
+
(λH)w
λH

◦ f f
′

z
+

1
2z

f ′′

f ′ +
z

z

(
λH ◦ f∣∣f ′∣∣)2.

(2.7)

Using (2.3) we can simplify the previous relation as

(
logλAθ

)
zz +

(
logλAθ

)
z

z
+
z

z
(λAθ)

2

=
(λH)w
λH

◦ f
(

f ′′ +
f ′

z
− f ′2

f

)

+
1
2

(
f ′′

f ′

)′
+

1
2z

f ′′

f ′ +
(
λH ◦ f)2

(
z

z

∣∣f ′∣∣2 − f

f
f ′2

)

,

(2.8)

where w = f(z).
Let f(z) = zα, α ∈ [1/2, 1) ∪ (1,∞). Then f is a conformal mapping of Aθ onto the

upper half plane H and the following relations

f ′′ +
f ′

z
− f ′2

f
= 0,

1
2

(
f ′′

f ′

)′
+

1
2z

f ′′

f ′ = 0,
z

z

∣∣f ′∣∣2 − f

f
f ′2 = 0 (2.9)

hold for every z ∈ Aθ. Hence, it follows from the above relations (2.8) and (2.9) that

(
logλAθ

)
zz +

(
logλAθ

)
z

z
+
z

z
(λAθ)

2 = 0. (2.10)

Let A be an arbitrary angular domain only satisfying that its vertex is the origin of C.
Then there exists a rotation transformation z = g(ζ) = eiθ0ζ, ζ ∈ A with 0 ≤ θ0 ≤ 2π such that
g conformally maps A onto Aθ. Hence,

λA(ζ) = λAθ

(
g(ζ)

)
,

(
logλA(ζ)

)
ζ = e

iθ0
(
logλθ(z)

)
z,

(
logλA(ζ)

)
ζζ = e

2iθ0
(
logλθ(z)

)
zz.

(2.11)
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Thus by the relation (2.10) the following differential equation:

(
logλA

)
ζζ +

(
logλA

)
ζ

ζ
+
ζ

ζ
(λA)

2 = 0 (2.12)

holds for every ζ ∈ A.

3. Sharp Bounds for Hyperbolically Partial Derivatives

In order to study the hyperbolically bi-lipschitz continuity of a 1/|w|2-harmonic K-
quasiconformal mapping, we will first derive the bounds, determined by the quasiconformal
constant K, of its hyperbolically partial derivative.

To do so we need the well-known Ahlfors-Schwarz lemma [21] and its opposite type
given by Mateljević [19] as follows.

Lemma A. If ρ > 0 is a C2 metric density on D for which the gaussian curvature satisfies Kρ ≥ −4
and if ρ(z) tends to +∞ when |z| tends to 1−, then λD ≤ ρ.

Kalaj [7] obtained the following.

Lemma B. Let Ω be a convex domain in C. If f is a euclidean harmonic K-quasiconformal mapping
of the unit disk onto Ω, satisfying f(0) = a, then

∣∣fz
∣∣ ≥ 1

2(1 + k)
δΩ, z ∈ D, (3.1)

where δΩ = d(a, ∂Ω) = inf{|f − a| : f ∈ ∂Ω} and k = (K − 1)/(K + 1).

Theorem 3.1. Let A be an angular domain with the origin of the complex plane C as its vertex. If f
is a 1/|w|2-harmonic K-quasiconformal mapping of the unit disk D onto A, then for every z ∈ D its
hyperbolically partial derivative satisfies the following inequality:

K + 1
2K

≤ ∥∥∂f
∥∥ ≤ K + 1

2
. (3.2)

Moreover, the upper and lower bound is sharp.

Proof. Let A be an angular domain with the origin of the complex plane C as its vertex and f
a 1/|w|2-harmonicK-quasiconformal mapping ofD ontoA. Let k = (K−1)/(K+1). From the
assumptions we have that f does not vanish onD. So log f is harmonic inΩ. Hence, we have
that (log f)z does not vanish by Lewy Theorem [22]. So fz also does not vanish. Suppose that
σ(z) = (1 − k)λA(f(z))|fz|, z ∈ D. Therefore σ(z) > 0 for every point z ∈ D. Thus we obtain

(
Δ logσ

)
(z) = 4

[(
logλA ◦ f)zz(z) +

(
log

∣∣fz
∣∣)
zz

]
. (3.3)
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By the chain rule [20] we get

4
(
logλA ◦ f)zz(z) = 4

{((
logλA

)
ww ◦ f)

(∣
∣fz

∣
∣2 +

∣
∣fz

∣
∣2
)

+2�[((
logλA

)
ww ◦ f)fzfz

]
+ 2�[(

logλA
)
w ◦ ffzz

]}
.

(3.4)

By Euler-Lagrange equation we have that a 1/|w|2-harmonic mapping f satisfies

fzz −
fzfz
f

= 0. (3.5)

Since fz does not vanish, we have from (3.5) that

(
log

∣∣fz
∣∣)
zz = 0. (3.6)

Using the relations (3.3), (3.4), (3.5), and (3.6) we have

(
Δ logσ

)
(z) = 4

{
(
logλA

)
ww ◦ f

(∣∣fz
∣∣2 +

∣∣fz
∣∣2
)
+ 2�

[[
(
logλA

)
ww +

(
logλA

)
w

w

]

◦ ffzfz
]}

.

(3.7)

By the differential equation at Lemma 2.1 the above relation becomes

(
Δ logσ

)
(z) = 4

{
(
logλA

)
ww ◦ f

(∣∣fz
∣∣2 +

∣∣fz
∣∣2
)
− 2�

[
(
λA ◦ f)2 ffzfz

f

]}

. (3.8)

So we get

−Δ logσ
σ2

=
−4

(1 − k)2
[
Δ logλA
4(λA)

2
◦ f

∣∣fz
∣∣2 +

∣∣fz
∣∣2

∣∣fz
∣∣2

− 2�ffz

ffz

]

. (3.9)

By (1.2) it is clear that |fz/fz| = |a|. Hence, it follows from (3.9) and the inequality |a| ≤ k that

Kσ = − Δ logσ
σ2

≤ − 4

(1 − k)2
(
1 + |a|2 − 2|a|

)
= −4(1 − |a|)2

(1 − k)2
≤ −4. (3.10)

Thus by Ahlfors-Schwarz Lemma [21, P13] it follows that σ ≤ λD, that is,

∥∥∂f
∥∥ =

λA ◦ f
λD

∣∣fz
∣∣ ≤ K + 1

2
. (3.11)
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Let F = w|w|K−1, w ∈ H. Then F is a 1/|w|2-harmonic K-quasiconformal mapping of
H onto itself. Moreover, we also have

‖∂F‖ =
λH ◦ F
λH

|Fw| = K + 1
2

. (3.12)

Choosing L to be a conformal mapping of D onto H, we have that F ◦ L is 1/|w|2-harmonic
K-quasiconformal mapping of D onto H. Thus by (1.5) the equality (3.12) becomes that

‖∂(F ◦ L)‖ =
K + 1
2

. (3.13)

Therefore the upper bound at (3.2) is sharp.
Next we will prove the lower bound of ‖∂f‖. Suppose that f is a 1/|w|2-harmonic

K-quasiconformal mapping of D onto A. Let δ = (1 + k)λA(f)|fz|.
Hence, we have

(
Δ log δ

)
(z) = 4

[(
logλA ◦ f)zz(z) +

(
log

∣∣fz
∣∣)
zz

]
. (3.14)

Combining Lemma 2.1 with the relations (3.4), (3.5), (3.6), and (3.14)we have

−Δ log δ
δ2

=
−4

(1 + k)2

[
Δ logλA
4(λA)

2
◦ f

∣∣fz
∣∣2 +

∣∣fz
∣∣2

∣∣fz
∣∣2

− 2�ffz

ffz

]

. (3.15)

Hence, it follows from the inequality |a| ≤ k and (3.15) that

Kδ = − Δ log δ
δ2

≥ − 4

(1 + k)2
(
1 + |a|2 + 2|a|

)
= −4(1 + |a|)2

(1 + k)2
≥ −4. (3.16)

Since the mapping logw maps A onto a strip domain S, we have that log f is an euclidean
harmonic mapping of D onto S. So it follows from Lemma B that |(log f)z| ≥ C0, where C0 is
a positive constant. Thus we have λA(f)|fz| = λS(log f)|(log f)z| → +∞ as |z| → 1−. Thus it
follows from Lemma A that

∥∥∂f
∥∥ =

λA ◦ f
λD

∣∣fz
∣∣ ≥ K + 1

2K
. (3.17)

Let F = w|w|1/K−1,w ∈ H. Then F is a 1/|w|2-harmonicK-quasiconformal mapping of
H onto itself. Moreover, we also have

‖∂F‖ =
λH ◦ F
λH

|Fw| = K + 1
2K

. (3.18)
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Choosing L to be a conformal mapping of D onto H, we have that F ◦ L is 1/|w|2-harmonic
K-quasiconformal mapping of D onto H. Thus by (1.5) it shows that

‖∂(F ◦ L)‖ =
K + 1
2K

. (3.19)

Therefore the positive lower bound at (3.2) is also sharp.

4. Sharp Coefficients of Hyperbolically Lipschitz Continuity

As an application of Theorem 3.1, we have the following main result in this paper.

Theorem 4.1. Let A be an angular domain with the origin of the complex plane C as its vertex. If f
is a 1/|w|2-harmonic K-quasiconformal mapping of the unit disk D onto A, then f is hyperbolically
(1/K,K)-bi-lipschitz. Moreover, both the coefficients K and 1/K are sharp.

Proof. Let γ be the hyperbolic geodesic between z1 and z2, where z1 and z2 are two arbitrary
points in D. Then it follows that

∫

f(γ)
λA(w)|dw| ≤

∫

γ

λA
(
f(z)

)
Lf(z)|dz| ≤ 2K

K + 1

∫

γ

λA
(
f(z)

)∣∣fz(z)
∣∣

λD(z)
λD(z)|dz|, (4.1)

where w = f(z). By the inequality of (3.2) and the definition of a hyperbolic geodesic, we
obtain from the above inequality that

dh
(
f(z1), f(z2)

) ≤
∫

f(γ)
λA(w)|dw| ≤ K

∫

γ

λD(z)|dz| = Kdh(z1, z2). (4.2)

Hence, f is hyperbolically K-Lipschitz.
Let F = w|w|K−1, w ∈ H. Then F is a 1/|w|2-harmonic K-quasiconformal mapping of

H onto itself. Let z1 = i and z2 = iy, y > 1 be two points in H. Then F(z1) = i and F(z2) = iyK.
Thus dh(z1, z2) = logy and dh(F(z1), F(z2)) = K logy. So the equality

dh(F(z1), F(z2)) = Kdh(z1, z2) (4.3)

holds. Choosing L to be a conformal mapping of D onto H, we have that φ = F ◦ L is 1/|w|2-
harmonic K-quasiconformal mapping of D onto H. Let φ(ζ1) = z1 and φ(ζ2) = z2. Thus by
the fact that the hyperbolic distance is a conformal invariant it follows from (1.5) that

dh
(
φ(ζ1), φ(ζ2)

)
= Kdh(L(ζ1), L(ζ2)) = Kdh(ζ1, ζ2). (4.4)

Thus the coefficient K is sharp.
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Let f(γ) ⊂ A be the hyperbolic geodesic connected f(z1) with f(z2). By the
assumption that λA|fz| tends to +∞ as |z| → 1−, we have that the inequality (3.2) also holds.
Hence, we also have

dh
(
f(z1), f(z2)

)
=
∫

f(γ)
λA(w)|dw| ≥ 1

K

∫

γ

λD(z)|dz| ≥ 1
K
dh(z1, z2), (4.5)

where w = f(z). Thus f is hyperbolically (1/K,K)-bi-lipschitz.
Let G = w|w|1/K−1, w ∈ H. Let z1 = i, and z2 = iy, y > 1 be two points in H. Then

G(z1) = i and G(z2) = iy1/K. Thus dh(z1, z2) = logy and dh(G(z1), G(z2)) = (1/K) logy. So
the equality

dh(G(z1), G(z2)) =
dh(z1, z2)

K
(4.6)

holds. Choosing L to be a conformal mapping of D onto H, we have that ψ = G ◦ L is 1/|w|2-
harmonic K-quasiconformal mapping of D onto H. Let ψ(ζ1) = z1 and ψ(ζ2) = z2. Thus by
the fact that the hyperbolic distance is a conformal invariant it shows that

dh
(
ψ(ζ1), ψ(ζ2)

)
=
dh(L(ζ1), L(ζ2))

K
=
dh(ζ1, ζ2)

K
. (4.7)

Thus the coefficient 1/K is also sharp. The proof of Theorem 4.1 is complete.

5. Auxiliary Examples

Example 5.1. Suppose that f = z|z|1/K−1, K > 1. Let D∗ = {z | 0 < |z| < 1} be the punctured
unit disk and D = {z | |z| < 1} the unit disk. Then 1/|w|2 is a smooth metric on D∗ but
not smooth on D. We have that f is a 1/|w|2-harmonic K-quasiconformal mapping of D∗

onto itself. If a ρ-harmonic mapping is not necessary to be smooth, then f is also a 1/|w|2-
harmonic K-quasiconformal mapping of D onto itself. Moreover, it follows that

lim
z→ 0

∣∣∣∣∣
λD

(
f(z)

)

λD(z)
fz

∣∣∣∣∣
= lim

z→ 0

1 − r2
1 − r2/K

(1/K + 1)|z|1/K−1

2
= ∞,

lim
z→ 0

∣∣f(z) − f(0)∣∣
|z − 0| = lim

z→ 0
|z|1/K−1 = ∞,

lim
z→ 0

dh
(
f(0), f(z)

)

dh(0, z)
= lim

z→ 0

log
((

1 + |z|1/K
)
/
(
1 − |z|1/K

))

log((1 + |z|)/(1 − |z|)) = lim
z→ 0

|z|1/K−1 = ∞,

lim
z→ 0

∣∣∣∣∣
λD∗

(
f(z)

)

λD∗(z)
fz

∣∣∣∣∣
= lim

z→ 0

|z| log(1/|z|)
|z|1/K log

(
1/|z|1/k

)
(1/K + 1)|z|1/k−1

2
=
K + 1
2

.

(5.1)

Example 5.2. Suppose that f = z|z|K−1, K > 1. We have that f is a 1/|w|2-harmonic K-
quasiconformal mapping of D∗ onto itself. If a ρ-harmonic mapping is not necessary to be
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smooth, then f is also a 1/|w|2-harmonicK-quasiconformal mapping ofD onto itself. Similar
to Example 5.1, it follows that

lim
z→ 0

∣
∣
∣
∣
∣
λD

(
f(z)

)

λD(z)
fz

∣
∣
∣
∣
∣
= lim

z→ 0

K + 1
2

1 − r2
1 − r2K r

K−1 = 0,

lim
z→ 0

|z − 0|
∣
∣f(z) − f(0)∣∣ = lim

z→ 0
|z|1−K = ∞,

lim
z→ 0

dh(0, z)
dh

(
f(0), f(z)

) = lim
z→ 0

log((1 + |z|)/(1 − |z|))
log

((
1 + |z|K

)
/
(
1 − |z|K

)) = lim
z→ 0

|z|1−K = ∞,

lim
z→ 0

∣
∣
∣
∣
∣
λD∗

(
f(z)

)

λD∗(z)
fz

∣
∣
∣
∣
∣
= lim

z→ 0

|z| log(1/|z|)
|z|K log

(
1/|z|K

)
K + 1
2

|z|K−1 =
K + 1
2K

.

(5.2)

Example 5.3. Suppose that f(z) = z|z|K−1, K > 1. Then f is a |ϕ|-harmonic K-quasiconformal
mapping of the upper half planeH onto itself, here ϕ(w) = 1/w2. Moreover,

lim
|z|→∞

∣∣fz
∣∣ = lim

|z|→∞
K + 1
2K

|z|K−1 = +∞,
∣∣(logϕ(w)

)
w

∣∣ =
∣∣∣∣
ϕw
ϕ

∣∣∣∣ =
∣∣∣∣
1
w

∣∣∣∣ −→ ∞, w −→ 0,

lim
z→∞

∣∣f(z)
∣∣

|z| = lim
z→∞

|z|K−1 = ∞,
∥∥∂f

∥∥ =
K + 1
2

.

(5.3)

Example 5.4. Let Ω∗ = C \D⋃{∞} and K > 1. Let ϕ(w) = 1/w2, w ∈ Ω∗. Then f = z|z|1/K−1

is a |ϕ|-harmonic K-quasiconformal mapping of Ω∗ onto itself and satisfies that

∣
∣(logϕ(w)w

)∣∣ =
∣∣∣∣
ϕw
ϕ

∣∣∣∣ =
∣∣
∣∣
1
w

∣∣∣∣ ≤ 1,

lim
z→ 0

∥∥∂f
∥∥ = lim

z→∞
r2 − 1
r2/K−1

(1/K + 1)|z|1/K−1

2
= ∞,

lim
r→∞

log
((
1 + 1/r1/K

)
/
(
1 − 1/r1/K

))

log((1 + 1/r)/(1 − 1/r))
= ∞.

(5.4)

Example 5.5. Let U
+ be the right half plane. Let Ω̃ = U

+ \ [1,+∞). Then Ω̃ is not an angular
domain. The hyperbolic metric λΩ̃(z)|dz|with gaussian curvature −4 is given by

λΩ̃(z)|dz| =
1

√
z2 + 1 +

√
z2 + 1

∣∣∣∣
z√
z2 + 1

∣∣∣∣|dz|. (5.5)
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Let f(z) = z|z|1/K−1, z ∈ Ω̃, where K > 1. Then f is a 1/|w|2-harmonic K-quasiconformal
mapping of Ω̃ onto itself. Moreover, we have

lim
z→ 0

∥
∥∂f

∥
∥ = lim

z→ 0

K + 1
2K

∣
∣
∣
√
z2 + 1

∣
∣
∣

∣
∣
∣
√
w2 + 1

∣
∣
∣

√
z2 + 1 +

√
z2 + 1

√
w2 + 1 +

√
w2 + 1

|z|2(1/K−1) = ∞, (5.6)

where w = f(z). Let g(z) = z|z|K−1, z ∈ Ω̃, where K > 1. Then g is a 1/|w|2-harmonic
K-quasiconformal mapping of Ω̃ onto itself. Moreover, we have

lim
z→ 0

∥
∥∂g

∥
∥ = lim

z→ 0

K + 1
2

∣
∣
∣
√
z2 + 1

∣
∣
∣

∣
∣
∣
√
ξ2 + 1

∣
∣
∣

√
z2 + 1 +

√
z2 + 1

√
ξ2 + 1 +

√
ξ2 + 1

|z|2(K−1) = 0, (5.7)

where ξ = g(z).
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[18] D. Kalaj and M. Mateljević, “Inner estimate and quasiconformal harmonic maps between smooth
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