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In this paper, which is a companion paper to [W], starting from the Euler integral which appears in
a generalization of Jensen’s formula, we shall give a closed form for the integral of log Γ(1± t). This
enables us to locate the genesis of two new functions A1/a and C1/a considered by Srivastava and
Choi. We consider the closely related function A(a) and the Hurwitz zeta function, which render
the task easier than working with the A1/a functions themselves. We shall also give a direct proof
of Theorem 4.1, which is a consequence of [CKK, Corollary 1.1], though.

1. Introduction

If f(z) is analytic in a domainD containing the circle C : |z| = r and has no zero on the circle,
then the Gauss mean value theorem

log
∣
∣f(0)

∣
∣ =

1
2π

∫2π

0
log

∣
∣
∣f
(

reiθ
)∣
∣
∣ dθ (1.1)

is true. In [1, page 207] the case is considered where f(z) has a zero reiθ0 on the circle, and
(1.1) turns out that the Euler integral

∫π/2

0
log sinx dx = −π

2
log 2 (1.2)

which is essential in proving a generalization of Jensen’s formula [1, pages 207-208].
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Let G denote the Catalan constant defined by the absolutely convergent series

G =
∞∑

n=1

(−1)n−1
(2n − 1)2

= L
(

2, χ4
)

, (1.3)

where χ4 is the nonprincipal Dirichlet character mod 4.
As a next step from (1.2) the relation

∫π/4

0
log sin t dt = −π

4
log 2 − 1

2
G (1.4)

holds true. In this connection, in [2] we obtained some results on G viewing it as an intrinsic
value to the Barnes G-function. The Barnes G-function (which is Γ2−1 in the class of multiple
gamma functions) is defined as the solution to the difference equation (cf. (2.3))

logG(z + 1) − logG(z) = log Γ(z) (1.5)

with the initial condition

logG(1) = 0 (1.6)

and the asymptotic formula to be satisfied

logG(z +N + 2) =
N + 1 + z

2
log 2π

+
1
2

(

N2 + 2N + 1 + B2 + z2 + 2(N + 1)z
)

logN

− 3
4
N2 −N −Nz − logA +

1
12

+O
(

N−1
)

,

(1.7)

N → ∞, where Γ(s) indicates the Euler gamma function (cf., e.g., [3]).
Invoking the reciprocity relation for the gamma function

Γ(s) sinπs =
π

Γ(1 − s) , (1.8)

it is natural to consider the integrals of logΓ(α + t) or of multiple gamma functions Γr (cf.,
e.g., [4, 5]). Barnes’ theorem [6, page 283] reads

∫a

0
log Γ(α + t)dt = − log

G(α + a)
G(α)

− (1 − α) log Γ(α + a)
Γ(α)

+ a log Γ(α + a) − 1
2
a2 +

1
2
(

log 2π + 1 − 2α
)

a

(1.9)

valid for nonintegral values of a.
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In this paper, motivated by the above, we proceed in another direction to developing
some generalizations of the above integrals considered by Srivastava and Choi [7]. For q-
analogues of the results, compare the recent book of the same authors [8]. Our main result is
Theorem 2.1 which gives a closed form for

∫a

0 log Γ(1 − t) dt and locates its genesis. A slight
modification of Theorem 2.1 gives the counterpart of Barnes’ formula (1.9)which reads.

Corollary 1.1. Except for integral values of a, one has

∫a

0
log Γ(α − t)dt = log

G(α − a)
G(α)

+ (1 − α) log Γ(α − a)
Γ(α)

+ a log Γ(α − a) + 1
2
a2 +

1
2
(

log 2π + 1 − 2α
)

a.

(1.10)

Srivastava and Choi introduced two functions logA1/a and logC1/a by (2.9) and (2.9)
with formal replacement of 1/a by −1/a, respectively. They state C1/a = A−1/a, which is
rather ambiguous as to how we interpret the meaning because (2.9) is defined for a > 0 [7,
page 347, l.11]. They use this C1/a function to express the integral

∫a

0 log Γ(1 − t)dt, without
giving proof. This being the case, it may be of interest to locate the integral of logΓ(1 − t) [7,
(13), page 349], thereby logC1/a [7, page 347].

For this purpose we use a more fundamental function A(a) than A1/a defined by

logA(a) = −ζ′(−1, a) + 1
12
, (1.11)

where ζ(s, a) is the Hurwitz zeta-function

ζ(s, a) =
∞∑

n=0

1
(n + a)s

, Re s = σ > 1 (1.12)

in the first instance. For its theory, compare, for instance, [3], [9, Chapter 3].
We shall prove the following corollary which gives the right interpretation of the

function C1/a.

Corollary 1.2. For 0 < a < 1,

logC1/a = logA(1 − a) − 1
4
a2, (1.13)

or

logC1/a = logA1−1/a +
1
4
(1 − a)2 + (1 − a) log(1 − a) − 1

4
a2. (1.14)
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2. Barnes Formula

There is a generalization of (1.4) as well as (1.2) in the form [7, equation (28), page 31]:

∫a

0
log sinπtdt = a log

sinπa
2π

+ log
G(1 + a)
G(1 − a) , a /∈ Z. (2.1)

Equation (2.1) is Barnes’ formula [6, page 279] which is equivalent to Kinkelin’s 1860 result
[10] [7, equation (26), page 30]:

∫z

0
πtcotπtdt = log

G(1 − z)
G(1 + z)

+ z log 2π. (2.2)

Since (1.5) is equivalent to

G(z + 1) = G(z)Γ(z), (2.3)

it follows that

∫a

0
log sin πtdt = a log

sinπa
2π

+ log
G(a)

G(1 − a) + logΓ(a). (2.4)

Putting a = 1/2, we obtain

π−1
∫π/2

0
log sinxdx =

∫1/2

0
log sinπtdt = −1

2
log 2π + log Γ

(
1
2

)

= −1
2
log 2, (2.5)

which is (1.2).
The counterpart of (2.1) follows from the reciprocity relation (1.8), known as

Alexeievsky’s Theorem [7, equation (42), page 32].

∫a

0
log Γ(1 + t) dt =

1
2
(

log 2π − 1
)

a − a2

2
+ a log Γ(a + 1) − logG(a + 1), (2.6)

which in turn is a special case of (1.9).
Indeed, in [7, page 207], only (1.9) and the integral of logG(t+α) are in closed form and

the integral of log Γ3(t + α) is not. A general formula is given by Barnes [4] with constants to
be worked out. We shall state a concrete form for this integral in Section 3, using the relation
[7, equation (455), page 210] between log Γ3(t + α) and the integral of ψ and appealing to a
closed form for the latter in [11].

Formula (2.6) is stated in the following form [7, equation (12), page 349]:

∫a

0
log Γ(1 + t)dt =

1
2
(

log 2π − 1
)

a − 3
4
a2 + logA − logA1/a, (2.7)
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where logA is the Glaisher-Kinkelin constant defined by [7, equation (2), page 25]

logA = lim
N→∞

(
N∑

n=1

n logn − 1
2

(

N2 +N + B2

)

logN +
1
4
N2

)

, (2.8)

and logA1/a is defined by [7, equation (9), page 347]

logA1/a = lim
N→∞

(
N∑

n=1

(n + a) log(n + a)

−1
2

(

N2 + (2a + 1)N + a2 + a + B2

)

log(N + a) +
1
4
N2 +

a

2
N

)

,

(2.9)

for a > 0.
Comparing (2.6) and (2.7), we immediately obtain

logA1/a = logG(a + 1) − a log Γ(a + 1) + logA − a2

4

= logG(a) + (1 − a) logΓ(a) + loga − a2

4
− a loga,

(2.10)

on using the difference relation Γ(a + 1) = aΓ(a).
Thus, in a sense we have located the genesis of the function logA1/a. although they

prove (2.7) by an elementary method [7, page 348].
Indeed, A1/a and A(a) are almost the same:

logA1/a = logA(a) − 1
4
a2 − a loga, (2.11)

a proof being given below. However, logA(a) is more directly connected with ζ′(−1, a) for
which we have rich resources of information as given in [9, Chapter 3].

We prove the following theoremwhich gives a closed form for
∫a

0 logΓ(1−t) dt, thereby
giving the genesis of the constant C1/a.

Theorem 2.1. For a /∈ Z, one has

∫a

0
log Γ(1 − t) d t = logG(1 − a) + a log Γ(1 − a) + 1

2
a2 +

1
2
(

log 2π − 1
)

a. (2.12)

If 0 < a < 1, then

∫a

0
log Γ(1 − t) d t = logA(1 − a) − logA +

1
2
a2 +

1
2
(

log 2π − 1
)

a. (2.13)



6 International Journal of Mathematics and Mathematical Sciences

Proof. We evaluate the integral

I =
∫a

0
logΓ(1 + t) sinπtdt (2.14)

in two ways. First,

I = a logπ + a loga − a −
∫a

0
log Γ(1 − t)dt. (2.15)

On the other hand, noting that I is the sum of (2.1) and (2.7), we deduce that

I = a log
sinπa
2π

+ logG(a + 1) + logA − logG(1 − a)

+
1
2
(

log 2π − 1
)

a − 3
4
a2 − logA1/a.

(2.16)

Substituting (1.5), we obtain

I = a log
sinπa
2π

+ a log Γ(a) + logA(a) − logA1/a

− logG(1 − a) + 1
2
(

log 2π − 1
)

a − 3
4
a2.

(2.17)

The first two terms on the right of (2.17) become

a log
Γ(a) sinπa

2π
= a log

1
2
Γ(1 − a) = −a(log 2 + log Γ(1 − a)), (2.18)

while the 3rd and the 4th terms give, in view of (2.11), (1/4)a2 + a loga.
Hence, altogether

I = −a log 2 − a log Γ(1 − a) − logG(1 − a) + a loga − 1
2
a2 +

1
2
(

log 2π − 1
)

a. (2.19)

Comparing (2.15) and (2.19) proves (2.12), completing the proof.

Comparing (2.13) and [7, equation (13), page 349]

∫a

0
log Γ(1 − t)dt = logA(1 − a) − logA +

3
4
a2 +

1
2
(

log 2π − 1
)

a, (2.20)

we prove Corollary 1.2.
Hence the relation between C1/a and A1/a is (1.14), that is, one between C1/a and

A1−1/a rather than C1/a = A−1/a as Srivastava and Choi state.
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At this point we shall dwell on the underlying integral representation for (the
derivative of) the Hurwitz zeta-function, which makes the argument rather simple and lucid
as in [12] and gives some consequences.

Proof of (2.11). Consider that

ζ′(s, a) − 1
12

= −1
2
a2 loga − 1

4
a2 − 1

2
a loga

− B2

2
loga − 1

3!

∫∞

0
B3(t)(t + a)−2dt

(2.21)

[9, (3.15), page 59], where the last integral may be also expressed as

− 1
2!

∫∞

0
B2(t)(t + a)−1dt, (2.22)

and where Bk(t) is the kth periodic Bernoulli polynomial. Then

−ζ′(−1, a) =
∑

0≤n≤x
(n + a) log(n + a) − 1

2
(x + a)2 log(x + a)

+
1
4
(x + a)2 + B1(x)(x + a) − 1

2
B2(x)(x + a) +O

(

x−1 logx
)

;

(2.23)

whence in particular, we have the generic formula for ζ′(−1, a) and consequently for logA(a)
through (1.11):

logA(a) = lim
N→∞

( ∞∑

n=0
(n + a) log(n + a) − 1

2
log(N + a)

×
(

(N + a)2 +N + a + B2

)

+
1
4
(N + a)2

)

.

(2.24)

This may be slightly modified in the form

logA(a) = lim
N→∞

(
N∑

n=0
(n + a) log(n + a)

−1
2

(

N2 + (2a + 1)N + a2 + a + B2

)

log(N + a) +
1
4
N2 +

1
2
aN

)

+
1
4
a2 + a loga.

(2.25)

Comparing (2.9) and (2.25), we verify (2.11).
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The merit of using A(a) is that by way of ζ′(−1, a), we have a closed form for it:

logA(a) =
1
2
a2 loga − 1

4
a2 +

1
2
a loga +

B2

2
loga

+
1
2!

∫∞

0
B2(t)(t + a)−1dt.

(2.26)

In the same way, via another important relation [7, equation (23), page 94],

logG(a) = −
(

ζ′(−1, a) − 1
12

)

− logA − (1 − a) log Γ(a). (2.27)

Equation (2.21) gives a closed form for logG(a), too. We also have from (1.11) and (2.27)

logA(a) = logG(a) + (1 − a) log Γ(a) + logA

= logG(a + 1) − a log Γ(a) + logA.
(2.28)

There are some known expressions not so handy as given by (2.27). For example, [7,
page 25] and [7, equation (440), page 206], one of which reads

G′

G
(1 + z) =

∞∑

n=1

(
n

z + n
− 1 +

z

n

)

+
1
2
(

log 2π − 1
) − (

1 + γ
)

z, (2.29)

with γ designating the Euler constant. Equation (2.29) is a basis of (2.2) (cf. proof of [2,
Lemma 1]).

Remark 2.2. The Glaisher-Kinkelin constant A is connected with A(1) and A1 as follows:

logA = logA(1) = logA1 +
1
4
. (2.30)

This can also be seen from Vardi’s formula [7, (31), page 97]:

logA = −ζ′(−1) + 1
12
, (2.31)

which is (1.11)with a = 1.

We may also give another direct proof of Corollary 1.2.

Proof of Corollary 1.2 (another proof). logC1/a is the limit of the expression

SN =
N∑

k=1

(k − 1 + α) log(k − 1 + α) −
(
1
2
N2 +

(

α − 1
2

)

N +
1
2
B2(α)

)

× log(N − 1 + α) +
1
4
N2 +

N

2
(α − 1),

(2.32)
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where α = 1 − a. LetN =M + 1. Then

SN =
M∑

k=0

(k + α) log(k + α) −
(
1
2
(M + 1)2 +

(

α − 1
2

)

(M + 1) +
1
2
B2(α)

)

× log(M + α) +
1
4
(M + 1)2 +

M + 1
2

α − M + 1
2

.

(2.33)

Hence, simplifying, we find that

SN =
M∑

k=1

(k + α) log(k + α) −
(
1
2
M2 +

(

α +
1
2

)

M +
1
2

(

α2 + α + B2

))

× log(M + α) +
1
4
M2 +

1
2
αM + α logα − (α − 1)2

4
+
1
4
α2.

(2.34)

Hence

logC1/a = logAα + α logα − (α − 1)2

4
+
1
4
α2, (2.35)

which is (1.14). This completes the proof.

As an immediate consequence of Corollary 1.2, we prove (2.36) as can be found in [7,
pages 350–351].

A1/a =
(

πa

sinπa

)−aG(1 + a)
G(1 − a)C1/a, 0 < a < 1. (2.36)

Proof of (2.36). From (2.28), (1.5), and (1.8), we obtain

logA(a) − logA(1 − a) = log
G(1 + a)
G(1 − a) − a log

π

sinπa
. (2.37)

On the other hand, by (2.11) and (1.13), we see that the left-hand side of (2.37) is

log
A1/a

C1/a
+ a loga, (2.38)

whence we conclude that

log
A1/a

C1/a
= log

G(1 + a)
G(1 − a) − a log

πa

sinπa
. (2.39)

On exponentiating, (2.37) leads to (2.36).
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3. Polygamma Function of Negative Order

In this section we introduce the function Ãk(q) [13]:

Ãk

(

q
)

= kζ′
(

1 − k, q), (3.1)

which is closely related to the polygamma function of negative order and states some simple
applications. We recall some properties of Ãk(q):

Ã2
(

q + 1
)

= Ã2
(

q
)

+ 2q log q,

Ã2

(
1
2

)

= −ζ′(−1) − 1
12

log 2,

Ã2

(
1
4

)

= −1
4
ζ′(−1) + G

2π
,

(3.2)

Ã2

(
3
4

)

= −1
2
ζ′(−1) − Ã2

(
1
4

)

. (3.3)

Equation (3.3) is [2, equation (2.31)], which is used in proving [2, Theorem 2] and can
be read off from the distribution property [9, equation (3.72), page 76] as follows:

4∑

a=1

ζ
(

s,
a

4

)

= 4sζ(s). (3.4)

Differentiation gives

4∑

n=1

ζ′
(

s,
a

4

)

= 4s
((

log 4
)

ζ(s) + ζ′(s)
)

. (3.5)

Putting s = −1, we obtain

ζ′(−1) + ζ′
(

−1, 1
2

)

+ ζ′
(

−1, 1
4

)

+ ζ′
(

−1, 3
4

)

= 4−1
((

log 4
)

ζ(−1) + ζ′(−1)), (3.6)

which we solve in ζ′(−1, 3/4):

ζ′
(

−1, 3
4

)

=
1
4
((

2 log 2
)

ζ(−1) + ζ′(−1))

− ζ′(−1) − 1
2
Ã2

(
1
2

)

− ζ′
(

−1, 1
4

)

.

(3.7)
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Substituting (3.2) and ζ(−1) = −B2/2 = −1/12 and simplifying, we conclude that

ζ′
(

−1, 3
4

)

= −1
4
ζ′(−1) − ζ′

(

−1, 1
4

)

(3.8)

and that

Ã2

(
3
4

)

= 2ζ′
(

−1, 3
4

)

= −1
2
ζ′(−1) − 2ζ′

(

−1, 1
4

)

, (3.9)

whence (3.3).
Using these, we deduce from (2.37) the following.

Example 3.1.

logA1/4 =
5
64

+
1
2
log 2 − 1

8
logA − G

2π
. (3.10)

Proof. By (1.11) and (3.1), for q > 0,

logA
(

q
)

= −1
2
Ã2

(

q
)

+
1
12
. (3.11)

Since logA(1/4) − logA(3/4) = −1/2(Ã2(1/4) − Ã2(3/4)), it follows from (3.3) that
the left-hand side of (2.37) is

−Ã2

(
1
4

)

− 1
4
ζ′(−1), (3.12)

which is

2 logA
(
1
4

)

− 1
6
+
1
4

(

logA − 1
12

)

(3.13)

where we used (2.31).
The right-hand side of (2.37), log(G(5/4)/G(3/4)) − 1/4 log(π/ sin(π/4)), becomes

−(G/2π), in view of known values of G [7, page 30].
Hence, altogether, (2.37) with a = 1/4 reads

− G

2π
= 2 logA

(
1
4

)

+
1
4
logA − 3

16
. (3.14)

Invoking (2.11), this becomes (3.10).

We note that (3.14) gives a proof of the third equality in (3.2). Both (2.36) and (3.10)
are contained in [14, 1999a] and are given as exercises in [7].
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4. The Triple Gamma Function

For general material, we refer to [7, page 42]. As can been seen on [7, page 207], the important
integral

∫z

0 log Γ3(t + a)dt is not in closed form. Recently, Chakraborty-Kanemitsu-Kuzumaki
[5, Corollary 1.1] have given a general expressions for all the integrals in log Γr , by appealing
to Barnes’ original results.

In this section, we shall give a direct derivation of a closed form by combining [7,
(455), page 210] and [11, Corollary 3] (with λ = 3). The first reads

2
∫z

0
log Γ3(t + a)dt = −

∫z

0
t3ψ(t + a)dt + 2z log Γ3(z + a)

− 2(2a − 3)
log Γ3(z + a)
log Γ3(a)

+
(

3a2 − 9a + 7
) logG(z + a)

logG(a)

− (a − 1)3
log Γ(z + a)
log Γ(a)

+
3
8
z4 +

1
3
(

1 − log 2π
)

z3

+
(

−3
4
a2 +

7
4
a − 9

8
+
1
4
(2a − 3) log 2π + logA

)

z2,

+
(

a2 − 3
2
a +

1
4
+
1
2
(a − 2 − 3a + 2) log 2π + 2(3 − 2a) logA

)

z,

(4.1)

while the second reads (cf. also [15])

∫z

0
t3 logψ(t + a)dt = −

3∑

r=0

C3(r, a) log
Γr+1(a + z)
Γr+1(a)

−
3∑

l=1

(−1)l
((

3
l

)

ζ′(l − 3) +
B4−l(a)
l(4 − l)

)

zl +
11
24
z4,

(4.2)

where C3(r, a) are defined by

C3(r, a) = (−1)rr!
3∑

m=r

(
3
m

)

(−1)mS(m,n)(a − 1)3−m (4.3)

and where S(m,n) are the Stirling numbers of the second kind [7, page 58]. To express the
values of ζ′(l − 3), we appeal to [7]

(i) ζ′(0) = −(1/2) log 2π [7, (20), page 92],

(ii) ζ′(−2) = logB = ζ(3)/4π2 [7, pages 99-100]
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and (2.31). After some elementary but long calculations, we arrive at

∫z

0
t3 logψ(t + a)dt = −3! log Γ4(a + z)

Γ4(a)
− 6(a − 2) log

Γ3(a + z)
Γ3(a)

−
(

3a2 − 9a + 7
)

log
Γ2(a + z)
Γ2(a)

− (a − 1)3 log
Γ(a + z)
Γ(a)

11
24
z4

+
(

−1
2
log 2π +

1
3
B1(a)

)

z3 −
(
1
4
− 3 logA +

1
4
B2(a)

)

z2

+ 3
(

logB +
1
3
B3(a)

)

z.

(4.4)

Combining we have the following.

Theorem 4.1 (see [5, Example 2.3]). Except for the singularities of the multiple gamma function,
one has

∫z

0
log Γ3(t + a) d t = 3 log

Γ4(a + z)
Γ4(a)

+ z log Γ3(z + a)

+ (a − 3) log
Γ3(a + z)
Γ3(a)

− 1
24
z4 − 1

6

(

a − 3
2
− 1
2
log 2π

)

z3

+
1
8

(

−2a2 + 6a − 10
3

+ (2a − 3) log 2π − 8 logA
)

z2

− 1
2

(

a3 − 5
2
a2 + 2a − 1

4
+
1
2

(

a2 − 3a + 2
)

log 2π

+2(2a − 3) logA + 3 logB
)

z.

(4.5)

This theorem enables us to put many formulas in [7] in closed form including, for
instance, [7, (698), page 245]. Compare [5].
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