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We continue to adopt notations and methods used in the papers illustrated by Yang (2009, 2010)
to investigate the monotonicity properties of the ratio of mixed two-parameter homogeneous
means. As consequences of our results, the monotonicity properties of four ratios of mixed
Stolarsky means are presented, which generalize certain known results, and some known and new
inequalities of ratios of means are established.

1. Introduction

Since the Ky Fan [1] inequality was presented, inequalities of ratio of means have attracted
attentions of many scholars. Some known results can be found in [2–14]. Research for the
properties of ratio of bivariate means was also a hotspot at one time.

In this paper, we continue to adopt notations and methods used in the paper [13, 14]
to investigate the monotonicity properties of the functions Qif (i = 1, 2, 3, 4) defined by

Q1f
(
p
)
:=

g1f
(
p;a, b

)

g1f
(
p; c, d

) ,

Q2f
(
p
)
:=

g2f
(
p;a, b

)

g2f
(
p; c, d

) ,

Q3f
(
p
)
:=

g3f
(
p;a, b

)

g3f
(
p; c, d

) ,

Q4f
(
p
)
:=

g4f
(
p;a, b

)

g4f
(
p; c, d

) ,

(1.1)
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where

g1f
(
p
)
= g1f

(
p;a, b

)
:=
√
Hf

(
p, q
)
Hf

(
2k − p, q

)
, (1.2)

g2f
(
p
)
= g2f

(
p;a, b

)
:=
√
Hf

(
p, p +m

)
Hf

(
2k − p, 2k − p +m

)
, (1.3)

g3f
(
p
)
= g3f

(
p;a, b

)
:=
√
Hf

(
p, 2m − p

)
Hf

(
2k − p, 2m − 2k + p

)
, (1.4)

g4f
(
p
)
= g4f

(
p;a, b

)
:=
√
Hf

(
pr, ps

)
Hf

((
2k − p

)
r,
(
2k − p

)
s
)
, (1.5)

the q, r, s, k,m ∈ R, a, b, c, d ∈ R+ with b/a > d/c ≥ 1,Hf(p, q) is the so-called two-parameter
homogeneous functions defined by [15, 16]. For conveniences, we record it as follows.

Definition 1.1. Let f : R
2
+ \ {(x, x), x ∈ R+} → R+ be a first-order homogeneous continuous

functionwhich has first partial derivatives. Then,Hf : R
2×R

2
+ → R+ is called a homogeneous

function generated by f with parameters p and q ifHf is defined by for a/= b

Hf

(
p, q;a, b

)
=
(
f(ap, bp)
f(aq, bq)

)1(p−q)
, if pq

(
p − q

)
/= 0,

Hf

(
p, p;a, b

)
= exp

(
apfx(ap, bp) lna + bpfy(ap, bp) ln b

f(ap, bp)

)

, if p = q /= 0,

(1.6)

where fx(x, y) and fy(x, y) denote first-order partial derivatives with respect to first and
second component of f(x, y), respectively.

If limy→xf(x, y) exits and is positive for all x ∈ R+, then further define

Hf

(
p, 0;a, b

)
=
(
f(ap, bp)
f(1, 1)

)1/p

, if p /= 0, q = 0,

Hf

(
0, q;a, b

)
=
(
f(aq, bq)
f(1, 1)

)1/q

, if p = 0, q /= 0,

Hf(0, 0;a, b) = afx(1,1)/f(1,1)bfy(1,1)/f(1,1), if p = q = 0,

(1.7)

and Hf(p, q;a, a) = a.

Remark 1.2. Witkowski [17] proved that if the function (x, y) → f(x, y) is a symmetric and
first-order homogeneous function, then for all p, q Hf(p, q;a, b) is amean of positive numbers
a and b if and only if f is increasing in both variables on R+. In fact, it is easy to see that the
condition “f(x, y) is symmetric” can be removed.

If Hf(p, q;a, b) is a mean of positive numbers a and b, then it is called two-parameter
homogeneous mean generated by f .

For simpleness, Hf(p, q;a, b) is also denoted byHf(p, q) or Hf(a, b).
The two-parameter homogeneous function Hf(p, q;a, b) generated by f is very

important because it can generates many well-known means. For example, substituting
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L = L(x, y) = (x − y)/(lnx − lny) if x, y > 0 with x /=y and L(x, x) = x for f yields Stolarsky
means HL(p, q;a, b) = Sp,q(a, b) defined by

Sp,q(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q

p

ap − bp

aq − bq

)1/(p−q)
, if pq

(
p − q

)
/= 0,

L1/p(ap, bp), if p /= 0, q = 0,

L1/q(aq, bq), if q /= 0, p = 0,

I1/p(ap, bp), if p = q /= 0,
√
ab, if p = q = 0,

(1.8)

where I(x, y) = e−1(xx/yy)1/(x−y) if x, y > 0, with x /=y, and I(x, x) = x is the identric
(exponential) mean (see [18]). Substituting A = A(x, y) = (x + y)/2 for f yields Gini means
HA(p, q;a, b) = Gp,q(a, b) defined by

Gp,q(a, b) =

⎧
⎪⎨

⎪⎩

(
ap + bp

aq + bq

)1/(p−q)
, if p /= q,

Z1/p(ap, bp), if p = q,

(1.9)

where Z(a, b) = aa/(a+b)bb/(a+b) (see [19]).
As consequences of our results, the monotonicity properties of four ratios of mixed

Stolarskymeans are presented, which generalize certain known results, and some known and
new inequalities of ratios of means are established.

2. Main Results and Proofs

In [15, 16, 20], two decision functions play an important role, that are,

I = I
(
x, y
)
=

∂2 ln f
(
x, y
)

∂x∂y
=
(
ln f
(
x, y
))

xy =
(
ln f
)
xy,

J = J
(
x, y
)
=
(
x − y

)∂(xI)
∂x

=
(
x − y

)
(xI)x.

(2.1)

In [14], it is important to another key decision function defined by

T3
(
x, y
)
:= −xy(xI)xln

3
(
x

y

)
, where I =

(
ln f
)
xy, x = at, y = bt. (2.2)

Note that the function T defined by

T(t) := ln f
(
at, bt

)
, t /= 0 (2.3)
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has well properties (see [15, 16]). And it has shown in [14, (3.4)], [16, Lemma 4] the relation
among T ′′′(t), J(x, y) and T3(x, y):

T ′′′(t) = t−3T3
(
x, y
)
, where x = at, y = bt, (2.4)

T ′′′(t) = −Ct−3J
(
x, y
)
, where C = xy

(
x − y

)−1(lnx − lny
)3

> 0. (2.5)

Moreover, it has revealed in [14, (3.5)] that

T3
(
x, y
)
= T3

(
x

y
, 1
)

= T3

(
1,

y

x

)
. (2.6)

Now, we observe the monotonicities of ratio of certain mixed means defined by (1.1).

Theorem 2.1. Suppose that f : R+ × R+ → R+ is a symmetric, first-order homogenous, and three-
time differentiable function, andT3(1, u) strictly increase (decrease) with u > 1 and decrease (increase)
with 0 < u < 1. Then, for any a, b, c, d > 0 with b/a > d/c ≥ 1 and fixed q ≥ 0, k ≥ 0, but q, k are
not equal to zero at the same time,Q1f is strictly increasing (decreasing) in p on (k,∞) and decreasing
(increasing) on (−∞, k).

The monotonicity of Q1f is converse if q ≤ 0, k ≤ 0, but q, k are not equal to zero at the same
time.

Proof. Since f(x, y) > 0 for (x, y) ∈ R+ × R+, so T ′(t) is continuous on [p, q] or [q, p] for
p, q ∈ R, then (2.13) in [13] holds. Thus we have

ln g1f
(
p
)
=

1
2
lnHf

(
p, q
)
+
1
2
lnHf

(
2k − p, q

)
=

1
2

∫1

0
T ′(t11)dt +

1
2

∫1

0
T ′(t12)dt, (2.7)

where

t12 = tp + (1 − t)q, t11 = t
(
2k − p

)
+ (1 − t)q. (2.8)

Partial derivative leads to

(
ln g1f

(
p
))′ =

1
2

∫1

0
tT ′′(t12)dt −

1
2

∫1

0
tT ′′(t11)dt

=
1
2

∫1

0
tT ′′(|t12|)dt −

1
2

∫1

0
tT ′′(|t11|)dt

(
by[13], (2.7)

)

=
1
2

∫1

0
t

∫ |t12|

|t11|
T ′′′(v)dv dt,

(2.9)
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and then

(
lnQ1f

(
p
))′ =

(
ln g1f

(
p;a, b

))′ −
(
ln g1f

(
p; c, d

))′

=
1
2

∫1

0
t

∫ |t12|

|t11|
T ′′′(v)dv dt − 1

2

∫1

0
t

∫ |t12|

|t11|
T ′′′(v; c, d)dv dt

=
∫1

0
t(|t12| − |t11|)

∫ |t12|
|t11| (T

′′′(v;a, b) − T ′′′(v; c, d))dv

|t12| − |t11|
dt

:=
∫1

0
t(|t12| − |t11|)h(|t11|, |t12|)dt,

(2.10)

where

h
(
x, y
)
:=

⎧
⎪⎨

⎪⎩

∫y
x (T

′′′(v;a, b) − T ′′′(v; c, d))dv
y − x

, if x /=y,

T ′′′(x;a, b) − T ′′′(x; c, d), if x = y.

(2.11)

Since T3(1, u) strictly increase (decrease) with u > 1 and decrease (increase) with 0 < u < 1,
(2.4) and (2.6) together with b/a > d/c ≥ 1 yield

T ′′′(v;a, b) − T ′′′(v; c, d) = v−3(T3(av, bv) − T3(cv, dv))

= v−3
(
T3

(
1,
(
b

a

)v)
− T3

(
1,
(
d

c

)v))
> (<)0, for v > 0,

(2.12)

and therefore h(x, y) > (<)0 for x, y > 0. Thus, in order to prove desired result, it suffices to
determine the sign of (|t12| − |t11|). In fact, if q ≥ 0, k ≥ 0, then for t ∈ [0, 1]

|t12| − |t11| =
t212 − t211

|t12| + |t11|
= 4t

q(1 − t) + kt

t12 + t11

(
p − k

)
=

{
> 0, if p > k,

< 0, if p < k.
(2.13)

It follows that

(
lnQ1f

(
p
))′ =

{
> (<)0, if p > k,

< (>)0, if p < k.
(2.14)

Clearly, the monotonicity of Q1f is converse if q ≤ 0, k ≤ 0.
This completes the proof.

Theorem 2.2. The conditions are the same as those of Theorem 2.1. Then, for any a, b, c, d > 0 with
b/a > d/c ≥ 1 and fixed m, k with k ≥ 0, k +m ≥ 0, but m, k are not equal to zero at the same time,
Q2f is strictly increasing (decreasing) in p on (k,∞) and decreasing (increasing) on (−∞, k).
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The monotonicity of Q2f is converse if k ≤ 0 and k +m ≤ 0, but m, k are not equal to zero at
the same time.

Proof. By (2.13) in [13]we have

ln g2f
(
p
)
=

1
2
lnHf

(
p, p +m

)
+
1
2
lnHf

(
2k − p, 2k − p +m

)

=
1
2

∫1

0
T ′(t22)dt +

1
2

∫1

0
T ′(t21)dt,

(2.15)

where

t22 = tp + (1 − t)
(
p +m

)
, t21 = t

(
2k − p

)
+ (1 − t)

(
2k − p +m

)
. (2.16)

Direct calculation leads to

(
ln g2f

(
p
))′ =

1
2

∫1

0
T ′′(t22)dt −

1
2

∫1

0
T ′′(t21)dt =

1
2

∫1

0

∫ |t22|

|t21|
T ′′′(v)dv dt, (2.17)

and then

(
lnQ2f

(
p
))′ =

(
ln g2f

(
p;a, b

))′ −
(
ln g2f

(
p; c, d

))′

=
1
2

∫1

0

∫ |t22|

|t21|
T ′′′(v;a, b)dv dt − 1

2

∫1

0

∫ |t22|

|t21|
T ′′′(v; c, d)dv dt

=
1
2

∫1

0
(|t22| − |t21|)h(|t21|, |t22|)dt,

(2.18)

where h(x, y) is defined by (2.11). As shown previously, h(x, y) > (<)0 for x, y > 0 if T3(1, u)
strictly increase (decrease) with u > 1 and decrease (increase) with 0 < u < 1; it remains to
determine the sign of (|t22| − |t21|). It is easy to verify that if k ≥ 0 and k +m ≥ 0, then

|t22| − |t21| =
t222 − t221
|t22| + |t21|

= 4
k +m(1 − t)
|t22| + |t21|

(
p − k

)
=

{
> 0, if p > k,

< 0, if p < k.
(2.19)

Thus, we have

(
lnQ2f

(
p
))′ =

{
> (<)0, if p > k,

< (>)0, if p < k.
(2.20)

Clearly, the monotonicity of Q2f is converse if k ≤ 0 and k +m ≤ 0.
The proof ends.
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Theorem 2.3. The conditions are the same as those of Theorem 2.1. Then, for any a, b, c, d > 0 with
b/a > d/c ≥ 1 and fixed m > 0, 0 ≤ k ≤ 2m, Q3f is strictly increasing (decreasing) in p on (k,∞)
and decreasing (increasing) on (−∞, k).

The monotonicity of Q2f is converse ifm < 0, 2m ≤ k ≤ 0.

Proof. From (2.13) in [13], it is derived that

ln g3f
(
p
)
=

1
2
lnHf

(
p, 2m − p

)
+
1
2
lnHf

(
2k − p, 2m − 2k + p

)

=
1
2

∫1

0
T ′(t32)dt +

1
2

∫1

0
T ′(t31)dt,

(2.21)

where

t32 =
(
tp + (1 − t)

(
2m − p

))
, t31 =

(
t
(
2k − p

)
+ (1 − t)

(
2m − 2k + p

))
. (2.22)

Simple calculation yields

(
ln g3f

(
p
))′ =

1
2

∫1

0
(2t − 1)

(
T ′′(t32) − T ′′(t31)

)
dt =

1
2

∫1

0
(2t − 1)

∫ |t32|

|t31|
T ′′′(v;a, b)dv dt.

(2.23)

Hence,

(
lnQ3f

(
p
))′ =

(
ln g3f

(
p;a, b

))′ −
(
ln g3f

(
p; c, d

))′

=
1
2

∫1

0
(2t − 1)

∫ |t32|

|t31|

(
T ′′′(v;a, b) − T ′′′(v; c, d)

)
dv dt

=
1
2

∫1

0
(2t − 1)(|t32| − |t31|)h(|t31|, |t32|)dt,

(2.24)

where h(x, y) is defined by (2.11). It has shown that h(x, y) > (<)0 for x, y > 0 if T3(1, u)
strictly increase (decrease) with u > 1 and decrease (increase) with 0 < u < 1, and we have
also to check the sign of (2t− 1)(|t32| − |t31|). Easy calculation reveals that ifm > 0, 0 ≤ k ≤ 2m,
then

(2t − 1)(|t32| − |t31|) = (2t − 1)

(
t232 − t231

)

|t32| + |t31|

= 4(2t − 1)2
tk + (1 − t)(2m − k)

|t32| + |t31|
(
p − k

)

=

{
> 0, if p > k,

< 0, if p < k,

(2.25)
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which yields

(
lnQ3f

(
p
))′ =

{
> (<)0, if p > k,

< (>)0, if p < k.
(2.26)

It is evident that the monotonicity of Q3f is converse if m < 0, 2m ≤ k ≤ 0.
Thus the proof is complete.

Theorem 2.4. The conditions are the same as those of Theorem 2.1. Then, for any a, b, c, d > 0 with
b/a > d/c ≥ 1 and fixed k, r, s ∈ R with r + s /= 0, Q4f is strictly increasing (decreasing) in p on
(k,∞) and decreasing (increasing) on (−∞, k) if k(r + s) > 0.

The monotonicity of Q4f is converse if k(r + s) < 0.

Proof. By (2.13) in [13], lnHf(pr, ps) can be expressed in integral form

lnHf

(
pr, ps

)
=

⎧
⎨

⎩

1
r − s

∫ r
s T

′(pt
)
dt, if r /= s,

T ′(pr
)
, if r = s.

(2.27)

The case r = s /= 0 has no interest since it can come down to the case of m = 0 in Theorem 2.2.
Therefore, we may assume that r /= s. We have

ln g4f
(
p
)
= ln

√
Hf

(
pr, ps

)
Hf

((
2k − p

)
r,
(
2k − p

)
s
)

=
1
2

1
r − s

∫ r

s

T ′(pt
)
dt +

1
2

1
r − s

∫ r

s

T ′((2k − p
)
t
)
dt,

(2.28)

and then

(
ln g4f

(
p
))′ =

1
2

1
r − s

∫ r

s

tT ′′(pt
)
dt − 1

2
1

r − s

∫ r

s

tT ′′((2k − p
)
t
)
dt

=
1
2

1
r − s

∫ r

s

t
(
T ′′(pt

)
− T ′′((2k − p

)
t
))
.

(2.29)

Note that T ′′(t) is even (see [13, (2.7)]) and so t(T ′′(pt) − T ′′((2k − p)t)) is odd, then make use
of Lemma 3.3 in [13], (ln g4f(p))

′ can be expressed as

(
ln g4f

(
p
))′ =

1
2

r + s

|r| − |s|

∫ |r|

|s|
t
(
T ′′(∣∣pt

∣∣) − T ′′(∣∣(2k − p
)
t
∣∣))dt

=
1
2

r + s

|r| − |s|

∫ |r|

|s|
t

∫ |t42|

|t41|
T ′′′(v)dv dt,

(2.30)
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where

t42 = pt, t41 =
(
2k − p

)
t. (2.31)

Hence,

(
lnQ4f

(
p
))′ =

(
ln g4f

(
p;a, b

))′ −
(
ln g4f

(
p; c, d

))′

=
1
2

r + s

|r| − |s|

∫ |r|

|s|
t

∫ |t42|

|t41|

(
T ′′′(v;a, b) − T ′′′(v; c, d)

)
dv dt

=
1
2

r + s

|r| − |s|

∫ |r|

|s|
t(|t42| − |t41|)h(|t41|, |t42|)dt,

(2.32)

where h(x, y) is defined by (2.11). We have shown that h(x, y) > (<)0 for x, y > 0 if T3(1, u)
strictly increase (decrease) with u > 1 and decrease (increase) with 0 < u < 1, and we also
have

sgn(|t42| − |t41|) = sgn
(
t242 − t241

)
= sgn(k) sgn

(
p − k

)
. (2.33)

It follows that

sgnQ′
4f

(
p
)
= sgn(r + s) sgn(k) sgn

(
p − k

)
sgnh(|t41|, |t42|)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

> (<)0, if k(r + s) > 0, p > k,

< (>)0, if k(r + s) > 0, p < k,

< (>)0, if k(r + s) < 0, p > k,

> (<)0, if k(r + s) < 0, p < k.

(2.34)

This proof is accomplished.

3. Applications

As shown previously, Sp,q(a, b) = HL(p, q;a, b), where L = L(x, y) is the logarithmic mean.
Also, it has been proven in [14] thatT′

3(1, u) < 0 if u > 1 andT′
3(1, u) > 0 if 0 < u < 1. From the

applications of Theorems 2.1–2.4, we have the following.

Corollary 3.1. Let a, b, c, d > 0 with b/a > d/c ≥ 1. Then, the following four functions are all
strictly decreasing (increasing) on (k,∞) and increasing (decreasing) on (−∞, k):

(i) Q1L is defined by

Q1L
(
p
)
=

√
Sp,q(a, b)S2k−p,q(a, b)

√
Sp,q(c, d)S2k−p,q(c, d)

, (3.1)

for fixed q ≥ (≤)0, k ≥ (≤)0, but q, k are not equal to zero at the same time,
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(ii) Q2L is defined by

Q2L
(
p
)
=

√
Sp,p+m(a, b)S2k−p,2k−p+m(a, b)

√
Sp,p+m(c, d)S2k−p,2k−p+m(c, d)

, (3.2)

for fixed m, k with k ≥ (≤)0 and k +m ≥ (≤)0, but m, k are not equal to zero at the same
time,

(iii) Q3L is defined by

Q3L
(
p
)
=

√
Sp,2m−p(a, b)S2k−p,2m−2k+p(a, b)

√
Sp,2m−p(c, d)S2k−p,2m−2k+p(c, d)

, (3.3)

for fixed m > (<)0, k ∈ [0, 2m] ([2m, 0]).
(iv) Q4L is defined by

Q4L
(
p
)
=

√
Spr,ps(a, b)S(2k−p)r,(2k−p)s(a, b)

√
Spr,ps(c, d)S(2k−p)r,(2k−p)s(c, d)

, (3.4)

for fixed k, r, s ∈ R with k(r + s) > (<)0.

Remark 3.2. Letting in the first result of Corollary 3.1, q = k yields Theorem 3.4 in [13] since√
Sp,kS2k−p,k = Sp,2k−p. Letting q = 1, k = 0 yields

G(a, b)
G(c, d)

= Q1L(∞) <

√
Sp,1(a, b)S−p,1(a, b)

√
Sp,1(c, d)S−p,1(c, d)

< Q1L(0) =
L(a, b)
L(c, d)

. (3.5)

Inequalities (3.5) in the case of d = c were proved by Alzer in [21]. By letting q = 1, k = 1/2
from Q1L(1/2) > Q1L(1) > Q1L(2), we have

A(a, b) +G(a, b)
A(c, d) +G(c, d)

>

√
L(a, b)I(a, b)

√
L(c, d)I(c, d)

>

√
A(a, b)G(a, b)

√
A(c, d)G(c, d)

. (3.6)

Inequalities (3.6) in the case of d = c are due to Alzer [22].

Remark 3.3. Letting in the second result of Corollary 3.1, m = 1, k = 0 yields Cheung and Qi’s
result (see [23, Theorem 2]). And we have

G(a, b)
G(c, d)

= Q2L(∞) <

√
Sp,p+1(a, b)S−p,−p+1(a, b)

√
Sp,p+1(c, d)S−p,−p+1(c, d)

< Q2L(0) =
L(a, b)
L(c, d)

. (3.7)

When d = c, inequalities (3.7) are changed as Alzer’s ones given in [24].
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Remark 3.4. In the third result of Corollary 3.1, letting k = m also leads to Theorem 3.4 in [13].
Putm = 1/2, k = 1/4. Then from Q3L(1/4) > Q3L(1/2), we obtain a new inequality

He1/2(a, b)
He1/2(c, d)

>

√
L(a, b)I1/2(a, b)

√
L(c, d)I1/2(c, d)

. (3.8)

Puttingm = 1/2, k = 1/3 leads to another new inequality

A1/3(a, b)
A1/3(c, d)

>

√
S1/6,5/6(a, b)I1/2(a, b)

√
S1/6,5/6(c, d)I1/2(c, d)

. (3.9)

Remark 3.5. Letting in the third result of Corollary 3.1, k = 1/2 and (r, s) = (1, 0), (1, 1), (2, 1),
and we deduce that all the following three functions

p −→

√
Lp(a, b)L1−p(a, b)

√
Lp(c, d)L1−p(c, d)

, p −→

√
Ip(a, b)I1−p(a, b)

√
Ip(c, d)I1−p(c, d)

, p −→

√
Ap(a, b)A1−p(a, b)

√
Ap(c, d)A1−p(c, d)

,

(3.10)

are strictly decreasing on (1/2,∞) and increasing on (−∞, 1/2), where Lp = L1/p(ap, bp), Ip =
I1/p(ap, bp), and Ap = A1/p(ap, bp) are the p-order logarithmic, identric (exponential), and

power mean, respectively, particularly, so are the functions
√
LpL1−p,

√
IpI1−p,

√
ApA1−p.

4. Other Results

Let d = c in Theorems 2.1–2.4. Then, Hf(p, q; c, d) = c and T ′′′(t; c, c) = 0. From the their
proofs, it is seen that the condition “T3(1, u) strictly increases (decreases) with u > 1 and
decreases (increases) with 0 < u < 1” can be reduce to “T ′′′(v) > (<)0 for v > 0”, which is
equivalent with J = (x−y)(xI)x < (>)0, where I = (ln f)xy, by (2.4). Thus, we obtain critical
theorems for the monotonicities of gif , i = 1 − 4, defined as (1.2)–(1.5).

Theorem 4.1. Suppose that f : R+×R+ → R+ is a symmetric, first-order homogenous, and three-time
differentiable function and J = (x − y)(xI)x < (>)0, where I = (ln f)xy. Then, for a, b > 0 with
a/= b, the following four functions are strictly increasing (decreasing) in p on (k,∞) and decreasing
(increasing) on (−∞, k):

(i) g1f is defined by (1.2), for fixed q, k ≥ 0, but q, k are not equal to zero at the same time;

(ii) g2f is defined by (1.3), for fixed m, k with k ≥ 0 and k +m ≥ 0, but m, k are not equal to
zero at the same time;

(iii) g3f is defined by (1.4), for fixed m > 0 and 0 ≤ k ≤ 2m;

(iv) g4f is defined by (1.5), for fixed k, r, s ∈ R with k(r + s) > 0.

If f is defined on R
2
+ \ {(x, x), x ∈ R+}, then T ′(t) may be not continuous at t = 0, and

(2.13) in [13] may not hold for p, q ∈ R but must be hold for p, q ∈ R+. And then, we easily
derive the following from the proofs of Theorems 2.1–2.4.
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Theorem 4.2. Suppose that f : R
2
+ \ {(x, x), x ∈ R+} → R+ is a symmetric, first-order homogenous

and three-time differentiable function and J = (x − y)(xI)x < (>)0, where I = (ln f)xy. Then for
a, b > 0 with a/= b the following four functions are strictly increasing (decreasing) in p on (k, 2k) and
decreasing (increasing) on (0, k):

(i) g1f is defined by (1.2), for fixed q, k > 0;

(ii) g2f is defined by (1.3), for fixed m, k with k > 0 and k +m > 0;

(iii) g3f is defined by (1.4), for fixed m > 0 and 0 ≤ k ≤ 2m;

(iv) g4f is defined by (1.5), for fixed k, r, s > 0.

If we substitute L,A, and I for f , where L,A, and I denote the logarithmic, arithmetic,
and identric (exponential) mean, respectively, then from Theorem 4.1, we will deduce some
known and new inequalities for means. Similarly, letting in Theorem 4.2 f(x, y) = D(x, y) =
|x−y|,K(x, y) = (x+y)| ln(x/y)|, where x, y > 0 with x /=y, we will obtain certain companion
ones of those known and new ones. Here no longer list them.
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