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We introduce and investigate two new general subclasses of multivalently analytic functions of
complex order by making use of the familiar convolution structure of analytic functions. Among
the various results obtained here for each of these function classes, we derive the coefficient
bounds, distortion inequalities, and other interesting properties and characteristics for functions
belonging to the classes introduced here.

1. Introduction and Definitions

Let R = (−∞,∞) be the set of real numbers, and let C be the set of complex numbers,

N := {1, 2, 3, . . .} = N0 \ {0},

N
∗ := N \ {1} = {2, 3, 4, . . .}.

(1.1)

Let Tp denote the class of functions of the form

f(z) = zp −
∞∑

j=k

ajz
j (

p < k;aj ≥ 0
(
j ≥ k

)
; k, p ∈ N

)
, (1.2)

which are analytic and p-valent in the open unit disk

U = {z : z ∈ C, |z| < 1}. (1.3)
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Denote by f ∗ g the Hadamard product (or convolution) of the functions f and g, that
is, if f is given by (1.2) and g is given by

g(z) = zp +
∞∑

j=k

bjz
j (

p < k; bj ≥ 0
(
j ≥ k

)
; k, p ∈ N

)
, (1.4)

then

(
f ∗ g

)
(z) := zp −

∞∑

j=k

ajbjz
j =:
(
g ∗ f

)
(z). (1.5)

In [1], the author defined the following general class.

Definition 1.1. Let the function f ∈ Tp. Thenwe say that f is in the classSg(p, k, λ, μ, b, β,m, n)
if it satisfies the condition

∣∣∣∣∣∣
1
b

⎛

⎝zn
(
Fλ,μ ∗ g

)(m+n)(z)
(
Fλ,μ ∗ g

)(m)(z)
−
(
p −m

)
n

⎞

⎠

∣∣∣∣∣∣
< β,

(
m + n < p < k; p, n ∈ N; m ∈ N0; b ∈ C \ {0}; 0 ≤ μ ≤ λ ≤ 1; 0 < β ≤ 1; z ∈ U

)
,

(1.6)

where

Fλ,μ(z) = λμz2f ′′(z) +
(
λ − μ

)
zf ′(z) +

(
1 − λ + μ

)
f(z), (1.7)

g is given by (1.4), and (ν)n denotes the falling factorial defined as follows:

(ν)0 = 1 =:
(
ν
0

)
,

(ν)n = ν(ν − 1) · · · (ν − n + 1) =: n!
(
ν
n

)
(n ∈ N).

(1.8)

Various special cases of the class Sg(p, k, λ, μ, b, β,m, n)were considered by many ear-
lier researchers on this topic of geometric function theory. For example,Sg(p, k, λ, μ, b, β,m, n)
reduces to the function class

(i) Sn
g(p, λ, b, β) form = 0, n = 1, and μ = 0, studied by Mostafa and Aouf [2],

(ii) Sg(p, k, b,m, n) for λ = μ = 0, and β = 1, studied by Srivastava et al. [3],

(iii) Sg(p, n, b,m) for n = 1, λ = μ = 0, and β = 1, studied by Prajapat et al. [4],

(iv) Sn,p(g;λ, μ, α) for m = 0, n = 1, β = 1, and b = p(1 − α) (0 ≤ α < 1), studied by
Srivastava and Bulut [5],

(v) TS∗
g(p,m, α) form = 0, n = 1, λ = μ = 0, β = 1, and b = p(1 − α) (0 ≤ α < 1), studied

by Ali et al. [6].
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Definition 1.2. Let the function f ∈ Tp. Then we say that f is in the class Kg(p, k, λ, μ, b, β,m,
n; q, u) if it satisfies the following nonhomogenous Cauchy-Euler differential equation (see,
e.g., [7, page 1360, Equation (9)] and [5, page 6512, Equation (1.9)]):

zq
dqw

dzq
+
(
q
1

)(
u + q − 1

)
zq−1

dq−1w

dzq−1
+ · · · +

(
q
q

)
w

q−1∏

ε=0
(u + ε) = h(z)

q−1∏

ε=0

(
u + ε + p

)
, (1.9)

where

w = f(z) ∈ Tp; h ∈ Sg

(
p, k, λ, μ, b, β,m, n

)
; q ∈ N

∗, u ∈
(
−p,∞

)
. (1.10)

Setting m = 0, n = 1, μ = 0, and q = 2 in Definition 1.2, we have the special class intro-
duced by Mostafa and Aouf [2].

Following the works of Goodman [8] and Ruscheweyh [9] (see also [10, 11]), Altıntaş
[12] defined the δ-neighborhood of a function f ∈ T(p) by

Nδ
k

(
f
)
=

⎧
⎨

⎩h ∈ Tp : h(z) = zp −
∞∑

j=k

cjz
j ,

∞∑

j=k

j
∣∣aj − cj

∣∣ ≤ δ

⎫
⎬

⎭. (1.11)

It follows from the definition (1.11) that if

e(z) = zp
(
p ∈ N

)
, (1.12)

then

Nδ
k(e) =

⎧
⎨

⎩h ∈ Tp : h(z) = zp −
∞∑

j=k

cjz
j ,

∞∑

j=k

j
∣∣cj
∣∣ ≤ δ

⎫
⎬

⎭. (1.13)

Themain object of this paper is to investigate the various properties and characteristics
of functions belonging to the above-defined classes

Sg

(
p, k, λ, μ, b, β,m, n

)
, Kg

(
p, k, λ, μ, b, β,m, n; q, u

)
. (1.14)

Apart from deriving coefficient bounds and distortion inequalities for each of these classes,
we establish several inclusion relationships involving the δ-neighborhoods of functions
belonging to the general classes which are introduced above.
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2. Coefficient Bounds and Distortion Theorems

Lemma 2.1 (see [1]). Let the function f ∈ Tp be given by (1.2). Then f is in the class Sg(p, k, λ,
μ, b, β,m, n) if and only if

∞∑

j=k

(
j
)
m

[(
j −m

)
n −
(
p −m

)
n + β|b|

]
ψ
(
j
)
ajbj ≤ β|b|

(
p
)
mψ
(
p
)
,

(
m + n < p < k; p, n ∈ N;m ∈ N0; b ∈ C \ {0}; 0 < β ≤ 1; z ∈ U

)
,

(2.1)

where

ψ(s) = (s − 1)
(
λμs + λ − μ

)
+ 1

(
0 ≤ μ ≤ λ ≤ 1

)
. (2.2)

Remark 2.2. If we setm = 0, n = 1, and μ = 0 in Lemma 2.1, then we have [2, Lemma 1].

Lemma 2.3 (See[1]). Let the function f ∈ Tp given by (1.2) be in the class Sg(p, k, λ, μ, b, β,m, n).
Then, for bj ≥ bk(j ≥ k), one has

∞∑

j=k

aj ≤
β|b|
(
p
)
mψ
(
p
)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

, (2.3)

∞∑

j=k

jaj ≤
(k −m)!β|b|

(
p
)
mψ
(
p
)

(k − 1)!
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

(
p > |b|

)
, (2.4)

where ψ is defined by (2.2).

Remark 2.4. If we setm = 0, n = 1, and μ = 0 in Lemma 2.3, then we have [2, Lemma 2].

The distortion inequalities for functions in the class Sg(p, k, λ, μ, b, β,m, n) are given
by the following Theorem 2.5.

Theorem 2.5. Let a function f ∈ Tp be in the class Sg(p, k, λ, μ, b, β,m, n). Then

∣∣f(z)
∣∣ ≤ |z|p +

β|b|
(
p
)
mψ
(
p
)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

|z|k, (2.5)

∣∣f(z)
∣∣ ≥ |z|p −

β|b|
(
p
)
mψ(p)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

|z|k, (2.6)
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and in general

∣∣f (r)(z)
∣∣ ≤
(
p
)
r |z|

p−r +
β|b|
(
p
)
m(k)rψ

(
p
)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

|z|k−r ,

∣∣f (r)(z)
∣∣ ≥
(
p
)
r |z|

p−r −
β|b|
(
p
)
m(k)rψ

(
p
)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

|z|k−r ,
(
p > r; r ∈ N0; z ∈ U

)
,

(2.7)

where ψ is defined by (2.2).

Proof. Suppose that f ∈ Sg(p, k, λ, μ, b, β,m, n). We find from the inequality (2.3) that

∣∣f(z)
∣∣ ≤ |z|p + |z|k

∞∑

j=k

aj ≤ |z|p +
β|b|
(
p
)
mψ
(
p
)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

|z|k, (2.8)

which is equivalent to (2.5) and

∣∣f(z)
∣∣ ≥ |z|p − |z|k

∞∑

j=k

aj ≥ |z|p −
β|b|
(
p
)
mψ
(
p
)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

|z|k, (2.9)

which is precisely the assertion (2.6).

If we setm = 0, n = 1, and μ = 0 in Theorem 2.5, then we get the following.

Corollary 2.6. Let a function f ∈ Tp be in the class Sn
g(p, λ, b, β). Then

∣∣f(z)
∣∣ ≤ |z|p +

β|b|
[
1 + λ

(
p − 1

)]
[
k − p + β|b|

]
[1 + λ(k − 1)]bk

|z|k,

∣∣f(z)
∣∣ ≥ |z|p −

β|b|
[
1 + λ

(
p − 1

)]
[
k − p + β|b|

]
[1 + λ(k − 1)]bk

|z|k,

(2.10)

and in general

∣∣∣f (r)(z)
∣∣∣ ≤

p!
(
p − r

)
!
|z|p−r +

k!β|b|
[
1 + λ

(
p − 1

)]

(k − r)!
[
k − p + β|b|

]
[1 + λ(k − 1)]bk

|z|k−r ,

∣∣f (r)(z)
∣∣ ≥

p!
(
p − r

)
!
|z|p−r −

k!β|b|
[
1 + λ

(
p − 1

)]

(k − r)!
[
k − p + β|b|

]
[1 + λ(k − 1)]bk

|z|k−r ,
(
p > r; r ∈ N0; z ∈ U

)
,

(2.11)

where ψ is defined by (2.2).
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The distortion inequalities for functions in the class Kg(p, k, λ, μ, b, β,m, n; q, u) are
given by Theorem 2.7 below.

Theorem 2.7. Let a function f ∈ Tp be in the classKg(p, k, λ, μ, b, β,m, n; q, u). Then

∣∣f(z)
∣∣ ≤ |z|p

+
β|b|
(
p
)
mψ
(
p
)∏q−1

ε=0

(
u + ε + p

)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)

(
q − 1

)∏q−2
ε=0(u + ε + k)bk

|z|k,
(2.12)

∣∣f(z)
∣∣ ≥ |z|p

−
β|b|
(
p
)
mψ
(
p
)∏q−1

ε=0

(
u + ε + p

)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)

(
q − 1

)∏q−2
ε=0(u + ε + k)bk

|z|k,
(2.13)

and in general

∣∣∣f (r)(z)
∣∣∣ ≤
(
p
)
r |z|

p−r

+
(k)rβ|b|

(
p
)
mψ
(
p
)∏q−1

ε=0

(
u + ε + p

)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)

(
q − 1

)∏q−2
ε=0(u + ε + k)bk

|z|k−r ,

∣∣∣f (r)(z)
∣∣∣ ≥
(
p
)
r |z|

p−r

−
(k)rβ|b|

(
p
)
mψ
(
p
)∏q−1

ε=0

(
u + ε + p

)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)

(
q − 1

)∏q−2
ε=0(u + ε + k)bk

|z|k−r ,

(
p > r; r ∈ N0; z ∈ U

)
,

(2.14)

where ψ is defined by (2.2).

Proof. Suppose that a function f ∈ Tp is given by (1.2), and also let the function h ∈ Sg(p, k,
λ, μ, b, β,m, n) be occurring in the nonhomogenous Cauchy-Euler differential equation (1.9)
with of course

cj ≥ 0
(
j ≥ k

)
. (2.15)

Then we readily see from (1.9) that

aj =
∏q−1

ε=0

(
u + ε + p

)

∏q−1
ε=0

(
u + ε + j

) cj
(
j ≥ k

)
, (2.16)
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so that

f(z) = zp −
∞∑

j=k

ajz
j = zp −

∞∑

j=k

∏q−1
ε=0

(
u + ε + p

)

∏q−1
ε=0

(
u + ε + j

) cjzj , (2.17)

∣∣f(z)
∣∣ ≤ |z|p + |z|k

∞∑

j=k

∏q−1
ε=0

(
u + ε + p

)

∏q−1
ε=0

(
u + ε + j

) cj . (2.18)

Moreover, since h ∈ Sg(p, k, λ, μ, b, β,m, n), the first assertion (2.3) of Lemma 2.3 yields the
following inequality:

cj ≤
β|b|
(
p
)
mψ
(
p
)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

, (2.19)

and together with (2.19) and (2.18) it yields that

∣∣f(z)
∣∣ ≤ |z|p

+
β|b|
(
p
)
mψ
(
p
)∏q−1

ε=0

(
u + ε + p

)

(k)m
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

|z|k
∞∑

j=k

1
∏q−1

ε=0

(
u + ε + j

) .
(2.20)

Finally, in view of the following sum:

∞∑

j=k

1
∏q−1

ε=0

(
j + u + ε

) =
∞∑

j=k

(
q−1∑

ε=0

(−1)ε
(
q − 1 − ε

)
!ε!
(
j + u + ε

)
)

=
1

(
q − 1

)∏q−2
ε=0(u + ε + k)

,

(u ∈ R − {−k,−k − 1,−k − 2, . . .}),

(2.21)

the assertion (2.12) of Theorem 2.7 follows at once from (2.20) together with (2.21). The
assertion (2.13) can be proven by similarly applying (2.17), and (2.19)–(2.21).

Remark 2.8. If we setm = 0, n = 1, μ = 0, and q = 2 in Theorem 2.7, then we have [2, Theorem
1].

3. Neighborhoods for the Classes Sg(p, k, λ, μ, b, β,m, n) and Kg(p, k, λ, μ,
b, β,m, n; q, u)

In this section, we determine inclusion relations for the classes

Sg

(
p, k, λ, μ, b, β,m, n

)
, Kg

(
p, k, λ, μ, b, β,m, n; q, u

)
, (3.1)

involving δ-neighborhoods defined by (1.11) and (1.13).
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Theorem 3.1 (see [1]). If bj ≥ bk (j ≥ k) and

δ =
(k −m)!β|b|

(
p
)
mψ
(
p
)

(k − 1)!
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

(
p > |b|

)
, (3.2)

then

Sg

(
p, k, λ, μ, b, β,m, n

)
⊂ Nδ

k(e), (3.3)

where e and ψ are given by (1.12) and (2.2), respectively.

Remark 3.2. If we setm = 0, n = 1, and μ = 0 in Theorem 3.1, then we have [2, Theorem 2].

Theorem 3.3. If bj ≥ bk(j ≥ k) and

δ =
(k −m)!β|b|

(
p
)
mψ
(
p
)

(k − 1)!
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

⎛

⎝1 +
∏q−1

ε=0

(
u + ε + p

)

(
q − 1

)∏q−2
ε=0(u + ε + k)

⎞

⎠ (
p > |b|

)
,

(3.4)

then

Kg

(
p, k, λ, μ, b, β,m, n; q, u

)
⊂ Nδ

k(h), (3.5)

where h and ψ are given by (1.11) and (2.2), respectively.

Proof. Suppose that f ∈ Kg(p, k, λ, μ, b, β,m, n; q, u). Then, upon substituting from (2.16) into
the following coefficient inequality:

∞∑

j=k

j
∣∣cj − aj

∣∣ ≤
∞∑

j=k

jcj +
∞∑

j=k

jaj
(
cj ≥ 0;aj ≥ 0

)
, (3.6)

we obtain

∞∑

j=k

j
∣∣cj − aj

∣∣ ≤
∞∑

j=k

jcj +
∞∑

j=k

∏q−1
ε=0

(
u + ε + p

)

∏q−1
ε=0

(
u + ε + j

) jcj . (3.7)

Since h ∈ Sg(p, k, λ, b, β,m, n), the assertion (2.4) of Lemma 2.3 yields

jcj ≤
(k −m)!β|b|

(
p
)
mψ
(
p
)

(k − 1)!
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

(
p > |b|

)
. (3.8)
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Finally, by making use of (2.4) as well as (3.8) on the right-hand side of (3.7), we find that

∞∑

j=k

j
∣∣cj − aj

∣∣ ≤
(k −m)!β|b|

(
p
)
mψ
(
p
)

(k − 1)!
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

×

⎛

⎝1 +
∞∑

j=k

∏q−1
ε=0

(
u + ε + p

)

∏q−1
ε=0

(
u + ε + j

)

⎞

⎠,

(3.9)

which, by virtue of the sum in (2.21), immediately yields

∞∑

j=k

j
∣∣cj − aj

∣∣ ≤
(k −m)!β|b|

(
p
)
mψ
(
p
)

(k − 1)!
[
(k −m)n −

(
p −m

)
n + β|b|

]
ψ(k)bk

×

⎛

⎝1 +
∏q−1

ε=0

(
u + ε + p

)

(
q − 1

)∏q−2
ε=0(u + ε + k)

⎞

⎠ =: δ.

(3.10)

Thus, by applying the definition (1.11), we complete the proof of Theorem 3.3.

Remark 3.4. If we set m = 0, n = 1, μ = 0, and q = 2 in Theorem 3.3, then we have [2,
Theorem 3].
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