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A piecewise algebraic curve is a curve defined by the zero set of a bivariate spline function. Given
two bivariate spline spaces Sr

m(Δ) and St
n(Δ) over a domain D with a partition Δ, the Bezout

number BN(m,r;n,t;Δ) is defined as the maximum finite number of the common intersection points
of two arbitrary piecewise algebraic curves f(x, y) = 0 and g(x, y) = 0, where f(x, y) ∈ Sr

m(Δ) and
g(x, y) ∈ St

n(Δ). In this paper, an upper bound of the Bezout number for piecewise algebraic curves
over a rectangular partition is obtained.

1. Introduction

Let D ⊂ R2 be a bounded domain, and let Pk be the collection of real bivariate polynomials
with total degree not greater than k. DivideD by using finite number of irreducible algebraic
curves we get a partition denoted by Δ. The subdomains D1, D2, . . . , DN are called the cells.
The line segments that form the boundary of each cell are called the edges. Intersection points
of the edges are called the vertices. The vertices in the inner of the domain are called interior
vertices, otherwise are called boundary vertices. For a vertex v, its so-called star st(v) means
the union of all cells in Δ sharing v as a common vertex, and its degree d(v) is defined as the
number of the edges sharing v as a common endpoint. If d(v) is odd, we call v an odd vertex.
For integers k and μwith k > μ ≥ 0, the bivariate spline space with degree k and smoothness
μ over D with respect to Δ is defined as follows [1, 2]:

S
μ

k(Δ) :=
{
s ∈ Cμ(D) | s|Di ∈ Pk, i = 1, . . . ,N

}
. (1.1)
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For a spline s ∈ S
μ

k(Δ), the zero set

Z(s) :=
{(

x, y
) ∈ D | s(x, y) = 0

}
(1.2)

is called a piecewise algebraic curve [1, 2]. Obviously, the piecewise algebraic curve is a
generalization of the usual algebraic curve [3, 4].

In fact, the definition of piecewise algebraic curve is originally introduced by Wang
in the study of bivariate spline interpolation. He pointed out that the given interpolation
knots are properly posed if and only if they are not lying on a same nonzero piecewise
algebraic curve [1, 2]. Hence, to solve a bivariate spline interpolation problem, it is necessary
to deal with the properties of piecewise algebraic curve. Moreover, piecewise algebraic
curve is also helpful for us to study the usual algebraic curve. Besides, piecewise algebraic
curve also relates to the remarkable Four-Color conjecture [5–7]. In fact, the Four-Color
conjecture holds if and only if, for any triangulation, there exist three linear piecewise
algebraic curves such that the union of them equals the union of all central lines of all
triangles in the triangulation. We know that any triangulation is 2-vertex signed [6, 7], which
means the vertices of the triangulation can be marked by −1 or 1 such that the vertices of
every triangle in the triangulation are marked by different numbers. So, we remark that the
Four-Color conjecture holds if and only if there exist three nonequivalent mark methods.
Based on these observations, in a word, piecewise algebraic curve is a new and important
topic of computational geometry and algebraic geometry. It is of important theoretical and
practical significance in many fields such as bivariate spline interpolation and computer-
aided geometric design (CAGD). Hence, it is necessary to continue to study it.

In this paper, we mainly focus on the Bezout number for piecewise algebraic curves.
It is well known that the Bezout theorem for usual algebraic curves is very important in
algebraic geometry [3, 4]. Its weak form says that two algebraic curves with degree m and
n, respectively, will have infinite number of common intersection points if they have more
intersection points (including multiple points) than the product mn of their degrees, that
is, the so-called Bezout number. Similarly, for two given bivariate spline spaces Sr

m(Δ) and
St
n(Δ), the following number [2]

BN(m, r;n, t;Δ) := max
f,g

{
#
(
f, g
)
< ∞ | f(x, y) ∈ Sr

m(Δ), g
(
x, y
) ∈ St

n(Δ)
}

(1.3)

is called the Bezout number, where #(f, g) denotes the number of the common intersection
points (including multiple points) of f(x, y) = 0 and g(x, y) = 0. It also implies that two
piecewise algebraic curves determined by two splines in Sr

m(Δ) and St
n(Δ) respectively will

have infinite number of common intersection points if they have more intersection points
than BN(m, r;n, t;Δ). Needless to say, it is crucial for us to obtain BN(m, r;n, t;Δ). Obviously,
if r ≤ t, then we have

BN(m, r;n, t;Δ) ≤ BN(m, r;n, r;Δ) ≤ Nmn. (1.4)

However, we remark that it is very hard to obtain exact BN(m, r;n, t;Δ). On the one
hand, piecewise algebraic curve itself is difficult; on the other hand, the Bezout number
BN(m, r;n, t;Δ) is also complicated; we know it not only relies on the degrees m, n and
the smoothness orders r, t, but also the dimensions of Sr

m(Δ) and St
n(Δ) and the geometric
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Figure 1: Δk .

characteristics ofΔ as well [6, 7]. Hence, we can only get an upper bound for BN(m, r;n, t;Δ)
sometimes.

Throughout the relative literatures, we find that there have been some results on the
Bezout number for piecewise algebraic curves over triangulations [6–9], while this paper, as
a continue paper to fill a gap, is mainly devoted to an upper bound of the Bezout number
for two piecewise algebraic curves over a rectangular partition. Our method is different
from the methods in [6–9] and is new and effective. The remainder is organized as follows.
In Section 2, for the sake of integrity, some prevenient results on the Bezout number for
piecewise algebraic curves over parallel lines partition and triangulation are introduced;
Section 3 is the main section, in this section; assume Δ to be a rectangular partition, an upper
bound of BN(m, r;n, r;Δ) is well estimated; finally, this paper is concluded in Section 4 with
a conjecture.

2. Preliminary

Denoted by Δk the partition containing only k parallel lines (Figure 1), we have the
followeing theorem.

Theorem 2.1 (see [10]). One has

BN(m, r;n, t;Δk) ≤ (k + 1)mn −min{r, t}k. (2.1)

For a triangulation Δ, the Bezout number for two continuous piecewise algebraic
curves satisfying the following theorem.

Theorem 2.2 (see [6]). Cosnider

BN(m, 0;n, 0;Δ) ≤ Nmn −
[
Vodd + 2

3

]
, (2.2)

where N and Vodd is the number of the triangles and the odd interior vertices in Δ, respectively, and
[x] means the maximum integer not greater than x.

By using resultants and polar coordinates, Zhao studied the Bezout number for two
C1 piecewise algebraic curves over a non-obtuse-angled star st(v) (Figures 2 and 3).
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V

Figure 2: An interior star.

V

Figure 3: A boundary star.

Theorem 2.3 (see [9]). If v is an interior vertex, then

BN(m, 1;n, 1; st(v)) ≤ d(v)mn − (d(v) − 1), (2.3)

and if v is a boundary vertex, then

BN(m, 1;n, 1; st(v)) ≤ (d(v) − 1)mn − (d(v) − 2). (2.4)

Based on Theorem 2.3, by a combinatorial optimization method, a result for a general
nonobtuse triangulation is obtained.

Theorem 2.4 (see [7]). For any given nonobtuse triangulation Δ,

BN(m, 1;n, 1;Δ) ≤ Nmn − 2EI − VI − VB

3
, (2.5)

where N, EI , VI , and VB is the number of the triangles, the interior edges, the interior vertices, and
the boundary vertices in Δ.

We know that the Bezout number for piecewise algebraic curves over stars is the key
issue for the Bezout number for piecewise algebraic curves over a general partition. In order
to get BN(m, r;n, r;Δ), Wang and Xu generalized the smoothness order of Theorem 2.3 from
1 to r.
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Theorem 2.5 (see [7]). For any nonobtuse star st(v), if v is an interior vertex, then

BN(m, r;n, r; st(v)) ≤ d(v)mn −max
{
d(v) − 4,

[
d(v) + 1

2

]}
r, (2.6)

and if v is a boundary vertex, then

BN(m, r;n, r; st(v)) ≤ (d(v) − 1)mn −max
{
d(v) − 2,

[
d(v) − 1

2

]}
r. (2.7)

Here, we note that if v is a boundary vertex, then d(v) ≥ 2, so d(v)− 2 ≥ [(d(v)− 1)/2]
holds unconditionally; hence we have

BN(m, r;n, r; st(v)) ≤ (d(v) − 1)mn − (d(v) − 2)r. (2.8)

Recently, by using the theory of resultants, polar coordinates and periodic trigonomet-
ric spline, Theorem 2.5 is improved greatly when v is an interior vertex.

Theorem 2.6 (see [5, 8]). For any nonobtuse star st(v), if v is an interior vertex, then

BN(m, r;n, r; st(v)) ≤ 2
[
d(v)(mn − r)

2

]
, (2.9)

and if v is a boundary vertex, then

BN(m, r;n, r; st(v)) ≤ (d(v) − 1)(mn − r) + r. (2.10)

Here, we also remark that if v is a boundary vertex, then the second formula is likewise
equivalent to

BN(m, r;n, r; st(v)) ≤ (d(v) − 1)mn − (d(v) − 2)r. (2.11)

By Theorem 2.6, we get a better upper bound of BN(m, r;n, r;Δ) as follows.

Theorem 2.7. For any nonobtuse triangulation Δ, one has

BN(m, r;n, r;Δ) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Nmn − 2
3
EIr, if mn − r is even,

Nmn − 2
3
EIr − 1

3
Vodd, if mn − r is odd,

(2.12)

where Vodd stands for the number of the odd interior vertices in Δ.

Proof. Suppose that the number of the common intersection points of two piecewise algebraic
curves f(x, y) = 0 and g(x, y) = 0 is finite and equals BN(m, r;n, r;Δ), where f ∈ Sr

m(Δ) and
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g ∈ Sr
n(Δ). For a vertex v in Δ, let k(v) be the number of the common intersection points

of f(x, y) = 0 and g(x, y) = 0 in st(v). Summing k(v) for each vertex, so every common
intersection point is counted triply. Hence, we get

∑

v

k(v) = 3BN(m, r;n, r;Δ). (2.13)

By Theorem 2.6, we have

k(v) ≤ BN(m, r;n, r; st(v)) ≤ δ(v), (2.14)

where

δ(v) =

⎧
⎪⎪⎨

⎪⎪⎩

{
d(v)(mn − r), if d(v)(mn − r) is even
d(v)(mn − r) − 1, if d(v)(mn − r) is odd

if v is an interior vertex

(d(v) − 1)mn − (d(v) − 2)r, if v is a boundary vertex.

(2.15)

By the Euler formulae EI = VB + 3VI − 3, N = VB + 2VI − 2 and the equations
∑

v d(v) =
2(EI + EB), EB = VB, ifmn − r is even, we get

BN(m, r;n, r;Δ) =
1
3

∑

v

k(v) ≤ 1
3

∑

v

δ(v)

=
1
3

⎧
⎨

⎩

∑

interior v

d(v)(mn − r) +
∑

boundary v

((d(v) − 1)mn − (d(v) − 2)r)

⎫
⎬

⎭

=
1
3

(
∑

v

d(v) − VB

)

mn − 1
3

(
∑

v

d(v) − 2VB

)

r

= Nmn − 2
3
EIr.

(2.16)

Similarly, ifmn − r is odd, we have

BN(m, r;n, r;Δ) ≤ Nmn − 2
3
EIr − 1

3
Vodd. (2.17)

In the next section, we will apply Theorems 2.1 and 2.6 to a rectangular partition. A
good upper bound of the Bezout number for piecewise algebraic curves over a rectangular
partition is derived, which fills a gap in the study of the Bezout number for piecewise
algebraic curves over any partition.
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Figure 4: A rectangular partition Δa×b, a = 5, b = 4.

3. Results

Without loss of generality, let integers a ≥ b ≥ 1. For a rectangular domain D, subdivide it
into N := ab subrectangular cells by (a − 1) vertical lines and (b − 1) horizontal lines, and
denote by Δa×b the partition; see Figure 4 for an example. Let V0, V 0

1 , and V 1
1 be the collection

of the interior vertices (d(v) = 4), the boundary vertices that lying in the interior of the
boundary edges (d(v) = 3), and the else four corner vertices (d(v) = 2), respectively. The
cardinality of V0, V 0

1 , and V 1
1 is (a − 1)(b − 1), 2(a + b − 2), and 4, respectively. If a cell lies

in the ith column (from left to right) and in the jth row (from bottom to top), we denote it
by D(i, j), i = 1, 2, . . . , a; j = 1, 2, . . . , b. For an interior vertex v ∈ V0, if it is the intersection
point of the pth vertical interior line and the qth horizontal interior line, then we denote it by
v(p, q), p = 1, 2, . . . , a − 1; q = 1, 2, . . . , b − 1. The else boundary vertices can also be denoted
similarly.

Assume that the number of the common intersection points of two piecewise algebraic
curves f(x, y) = 0 and g(x, y) = 0 is finite and equals BN(m, r;n, r;Δa×b), where f ∈ Sr

m(Δa×b)
and g ∈ Sr

n(Δa×b). If b = 1, then Δa×1 is a partition Δa−1 containing only a − 1 parallel lines
essentially (Figure 1); by Theorem 2.1, we have

BN(m, r;n, r;Δa×1) ≤ amn − (a − 1)r. (3.1)

In the rest of this section, assume a ≥ b ≥ 2.

3.1. The First Method

For a vertex v inΔa×b, let k(v) be the number of the common intersection points of f(x, y) = 0
and g(x, y) = 0 in st(v). Summing k(v) for each vertex, so that every common intersection
point is counted fourfold. Hence, we get

∑

v

k(v) = 4BN(m, r;n, r;Δa×b). (3.2)
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By Theorem 2.6, we have

k(v) ≤ BN(m, r;n, r; st(v)) ≤ δ(v), (3.3)

where

δ(v) =

⎧
⎪⎪⎨

⎪⎪⎩

4mn − 4r, if v ∈ V0, d(v) = 4
2mn − r, if v ∈ V 0

1 , d(v) = 3
mn, if v ∈ V 1

1 , d(v) = 2.

(3.4)

We have

BN(m, r;n, r;Δa×b) =
1
4

∑

v

k(v) ≤ 1
4

∑

v

δ(v)

=
1
4

⎛

⎝
∑

v∈V0

δ(v) +
∑

v∈V 0
1

δ(v) +
∑

v∈V 1
1

δ(v)

⎞

⎠

=
1
4
{(4mn − 4r)(a − 1)(b − 1) + (2mn − r)(2(a + b − 2)) + 4mn}

= Nmn − r

(
N − a + b

2

)
.

(3.5)

Let BN1 = Nmn − r(N − ((a + b)/2)).

3.2. The Second Method

Let k(i, j) be the number of the common intersection points of f(x, y) = 0 and g(x, y) = 0 in
the cell D(i, j) (i = 1, 2, . . . , a; j = 1, 2, . . . , b) summing k(i, j) for all cells, we get

∑

i,j

k
(
i, j
)
= BN(m, r;n, r;Δa×b). (3.6)

For the cells in the jth row, by Theorem 2.1, we have

∑

i

k
(
i, j
) ≤ BN(m, r;n, r;Δa−1) ≤ amn − (a − 1)r. (3.7)

Hence,

BN(m, r;n, r;Δa×b) =
∑

i,j

k
(
i, j
)
=
∑

j

(
∑

i

k
(
i, j
)
)

≤ (amn − (a − 1)r)b = Nmn − r(N − b).

(3.8)
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Similarly,

BN(m, r;n, r;Δa×b) =
∑

i,j

k
(
i, j
)
=
∑

i

⎛

⎝
∑

j

k
(
i, j
)
⎞

⎠

≤ (bmn − (b − 1)r)a = Nmn − r(N − a).

(3.9)

Let BN2 = Nmn− r(N −b), BN3 = Nmn− r(N −a). Considering a ≥ b, we have BN2 ≤ BN1 ≤
BN3. This tells us a better summation method results in a better upper bound.

3.3. The Third Method

In this subsection, we will derive a rather better upper bound of BN(m, r;n, r;Δa×b) than
BN1, BN2, and BN3 by using a mixed method based on Theorems 2.1 and 2.6. We prefer this
summation method.

(1) If a and b are both even, then Δa×b = ∪a/2
p=1 ∪b/2

q=1 st(v(2p − 1, 2q − 1)); so

BN(m, r;n, r;Δa×b) =
a/2∑

p=1

b/2∑

q=1

k
(
v
(
2p − 1, 2q − 1

)) ≤
a/2∑

p=1

b/2∑

q=1

δ
(
v
(
2p − 1, 2q − 1

))

= (4mn − 4r) × a

2
× b

2
= Nmn −Nr.

(3.10)

(2) If a is odd and b is even, then Δa×b = ∪((a−1)/2)
p=1 ∪b/2

q=1 st(v(2p − 1, 2q − 1))∪b
j=1 D(a, j);

so we have

BN(m, r;n, r;Δa×b) =
((a−1)/2)∑

p=1

b/2∑

q=1

k
(
v
(
2p − 1, 2q − 1

))
+

b∑

j=1

k
(
a, j
)

≤
((a−1)/2)∑

p=1

b/2∑

q=1

δ
(
v
(
2p − 1, 2q − 1

))
+ BN(m, r;n, r;Δb−1)

= (4mn − 4r) × a − 1
2

× b

2
+ (bmn − (b − 1)r)

= Nmn − (N − 1)r.

(3.11)
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(3) If a is even and b is odd, thenΔa×b = ∪a/2
p=1 ∪

((b−1)/2)
q=1 st(v(2p− 1, 2q− 1))∪a

i=1 D(i, b); so

BN(m, r;n, r;Δa×b) =
a/2∑

p=1

((b−1)/2)∑

q=1

k
(
v
(
2p − 1, 2q − 1

))
+

a∑

i=1

k(i, b)

≤
a/2∑

p=1

((b−1)/2)∑

q=1

δ
(
v
(
2p − 1, 2q − 1

))
+ BN(m, r;n, r;Δa−1)

= (4mn − 4r) × a

2
× b − 1

2
+ (amn − (a − 1)r)

= Nmn − (N − 1)r.

(3.12)

(4) If a and b are both odd, then Δa×b = ∪((a−1)/2)
p=1 ∪((b−1)/2)

q=1 st(v(2p − 1, 2q −
1))∪b

j=1D(a, j)∪a−1
i=1 D(i, b), hence

BN(m, r;n, r;Δa×b) =
((a−1)/2)∑

p=1

((b−1)/2)∑

q=1

k
(
v
(
2p − 1, 2q − 1

))
+

b∑

j=1

k
(
a, j
)
+

a−1∑

i=1

k(i, b)

≤
((a−1)/2)∑

p=1

((b−1)/2)∑

q=1

δ
(
v
(
2p − 1, 2q − 1

))
+ BN(m, r;n, r;Δb−1)

+ BN(m, r;n, r;Δa−2)

= (4mn − 4r) × a − 1
2

× b − 1
2

+ (bmn − (b − 1)r) + ((a − 1)mn − (a − 2)r)

= Nmn − (N − 2)r.
(3.13)

Theorem 3.1. Let Δa×b be a rectangular partition, then

BN(m, r;n, r;Δa×b) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Nmn −Nr, if a and b are both even

Nmn − (N − 1)r, if (a − b) is odd
Nmn − (N − 2)r, if a and b are both odd

. (3.14)

Let BN denotes the upper bound given in Theorem 3.1. We remark that BN is better
than BN1, BN2, and BN3. Since a ≥ b ≥ 2 and BN2 ≤ BN1 ≤ BN3, we only give the comparisons
between BN and BN2 = Nmn− r(N − b). For fixedm, n, and r, we have the following results;
see Table 1. In a word, we have BN ≤ BN2.

4. Conclusions

In this paper, we mainly derive an upper bound for the Bezout number BN(m, r;n, r;Δa×b).
The results of Theorem 3.1 are excellent than BN1, BN2, and BN3. It is very useful in the fields
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Table 1: Comparisons of BN and BN2 (where a ≥ b ≥ 2 andN = ab).

BN BN2 BN2 − BN

a and b are both even Nmn −Nr Nmn − r(N − b) br ≥ 0
(a − b) is odd Nmn − (N − 1)r Nmn − r(N − b) (b − 1)r ≥ 0
a and b are both odd Nmn − (N − 2)r Nmn − r(N − b) (b − 2)r ≥ 0

of CAGD. For example, we are frequently needed to get the common intersection points of
two piecewise algebraic curves [11, 12]. By Theorem 3.1, a prior estimation of the number of
the common intersection points of two piecewise algebraic curves over a rectangular partition
will be obtained. In future, we will try best to improve Theorem 3.1 to get the exact number
or a lower upper bound for BN(m, r;n, r;Δa×b). In order to attract readers’ interest, here, we
also give a conjecture on the Bezout number BN(m, r;n, r;Δa×b).

Conjecture 4.1. Consider

BN(m, r;n, r;Δa×b) = mn + [(a − 1) + (b − 1)](mn − r) + (a − 1)(b − 1)(mn − 2r)

= Nmn − (2N − a − b)r.
(4.1)

If this conjecture holds, it can be applied into the study of the Nöther-type theorem [13, 14]
and the Cayley-Bacharach theorem [15] for piecewise algebraic curves over rectangular
partition.
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