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We consider the fourth-order spectral problem y(4)(x)−(q(x)y′(x))′ = λy(x), x ∈ (0, l)with spectral
parameter in the boundary condition. We associate this problem with a selfadjoint operator in
Hilbert or Pontryagin space. Using this operator-theoretic formulation and analytic methods,
we investigate locations (in complex plane) and multiplicities of the eigenvalues, the oscillation
properties of the eigenfunctions, the basis properties in Lp(0, l), p ∈ (1,∞), of the system of root
functions of this problem.

1. Introduction

The following boundary value problem is considered:

y(4)(x) − (q(x)y′(x))′ = λy(x), x ∈ (0, l), ′ :=
d

dx
, (1.1)

y′(0) = 0, (1.2a)

y(0) cos β + Ty(0) sin β = 0, (1.2b)

y′(l) cos γ + y′′(l) sin γ = 0, (1.2c)

(aλ + b)y(l) − (cλ + d)Ty(l) = 0, (1.2d)

where λ is a spectral parameter, Ty ≡ y′′′ − qy′, q is absolutely continuous function on [0, l],
β, γ , a, b, c, and d are real constants such that 0 ≤ β, γ ≤ π/2 and σ = bc − ad /= 0. Moreover,
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we assume that the equation

y′′ − qy = 0, (1.3)

is disfocal in [0, l], that is, there is no solution of (1.3) such that y(a) = y′(b) = 0 for any
a, b ∈ [0, l]. Note that the sign of q which satisfies the disfocal condition may change in [0, l].

Problems of this type occur in mechanics. If β = 0, γ = π/2, b = c = 0, and d =
1 in the boundary conditions, then the problem (1.1), (1.2a)–(1.2d) arises when variables
are separated in the dynamical boundary value problem describing small oscillations of a
homogeneous rod whose left end is fixed rigidly and on whose right end a servocontrol force
in acting. In particular, the case when a < 0 corresponds to the situationwhere this is a particle
of mass a at the right end of the rod. For more complete information about the physical
meaning of this type of problem see [1–3].

Boundary value problems for ordinary differential operators with spectral parameter
in the boundary conditions have been considered in various formulations by many authors
(see, e.g., [1, 4–25]). In [14–16, 20, 22] the authors studied the basis property in various
function spaces of the eigen- and associated function system of the Sturm-Liouville spectral
problem with spectral parameter in the boundary conditions. The existence of eigenvalues,
estimates of eigenvalues and eigenfunctions, oscillation properties of eigenfunctions, and
expansion theorems were considered in [4, 7, 9, 12, 17, 18, 21, 24] for fourth-order ordinary
differential operators with a spectral parameter in a boundary condition. The locations,
multiplicities of the eigenvalues, the oscillation properties of eigenfunctions, the basis
properties in Lp(0, l), p ∈ (1,∞), of the system of root functions of the boundary value
problem (1.1), (1.2a)–(1.2d) with q ≥ 0, σ > 0, are considered in [18] and, with q ≥ 0, σ < 0,
c = 0, are considered in [4, 5].

The subject of the present paper is the study of the general characteristics of eigenvalue
locations on a complex plane, the structure of root subspaces, the oscillation properties of
eigenfunctions, the asymptotic behaviour of the eigenvalues and eigenfunctions, and the
basis properties in Lp(0, l), p ∈ (1,∞), of the system of root functions of the problem (1.1),
(1.2a)–(1.2d).

Note that the sign of σ plays an essential role. In the case σ > 0 we associate with
problem (1.1), (1.2a)–(1.2d) a selfadjoint operator in the Hilbert space H = L2(0, l) ⊕ C with
an appropriate inner product. Using this fact and extending analytic methods to fourth-
order problems, we show that all the eigenvalues are real and simple and the system of
eigenfunctions, with arbitrary function removed, forms a basis in the space Lp(0, l), p ∈
(1,∞). For σ < 0 problem (1.1), (1.2a)–(1.2d) can be interpreted as a spectral problem for a
selfadjoint operator in a Pontryagin spaceΠ1. It is proved below that nonreal and nonsimple
(multiple) eigenvalues are possible and the system of root functions, with arbitrary function
removed, forms a basis in the space Lp(0, l), p ∈ (1,∞), except some cases where the system
is neither completed nor minimal.

2. The Operator Interpretation of the Problem (1.1), (1.2a)–(1.2d)

LetH = L2(0, l) ⊕ C be a Hilbert space equipped with the inner product

(
ŷ, û
)
H =
({
y,m
}
, {u, s})H =

(
y, u
)
L2

+
∣∣∣σ−1
∣∣∣ms, (2.1)

where (y, u)L2
=
∫ l
0 yudx.
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We define in theH operator

Lŷ = L
{
y,m
}
=
{(
Ty(x)

)′
, dTy(l) − by(l)

}
(2.2)

with domain

D(L)=
{
ŷ=
{
y,m
}∈H/y(x)∈W4

2 (0, l),
(
Ty(x)

)′ ∈L2(0, l), y∈(B.C.), m=ay(l)−cTy(l)
}
,

(2.3)

that is dense in H [23, 25], where (B.C.) denotes the set of separated boundary conditions
(1.2a)–(1.2c).

Obviously, the operator L is well defined. By immediate verification we conclude that
problem (1.1), (1.2a)–(1.2d) is equivalent to the following spectral problem:

Lŷ = λŷ, ŷ ∈ D(L), (2.4)

that is, the eigenvalue λn of problem (1.1), (1.2a)–(1.2d) and those of problem (2.4) coincide;
moreover, there exists a correspondence between the eigenfunctions and the adjoint functions
of the two problems:

ŷn =
{
yn(x), mn

}←→ yn(x), mn = ayn(l) − cTyn(l). (2.5)

Problem (1.1), (1.2a)–(1.2d) has regular boundary conditions in the sense of [23, 25]; in
particular, it has a discrete spectrum.

If σ > 0, then L is a selfadjoint discrete lower-semibounded operator in H and hence
has a system of eigenvectors {{yn(x), mn}}∞n=1, that forms an orthogonal basis inH.

In the case σ < 0 the operator L is closed and non-selfadjoint and has compact resolvent
inH. InH we now introduce the operator J by J{y,m} = {y,−m}. J is a unitary, symmetric
operator in H. Its spectrum consists of two eigenvalues: −1 with multiplicity 1, and +1 with
infinite multiplicity. Hence, this operator generates the Pontryagin space Π1 = L2(0, l) ⊕ C by
means of the inner products (J-metric) [26]:

(
ŷ, û
)
Π1

=
({
y,m
}
, {u, s})Π1

=
(
y, u
)
L2

+ σ−1ms. (2.6)

Lemma 2.1. L is a J-selfadjoint operator inΠ1.

Proof. JL is selfadjoint inH by virtue of Theorem 2.2 [11]. Then, J-selfadjointness of L onΠ1

follows from [27, Section 3, Proposition 30].

Lemma 2.2 (see [27, Section 3, Proposition 50]). Let L∗ be an operator adjoined to the operator L
inH. Then, L∗ = JLJ .

Let λ be an eigenvalue of operator L of algebraic multiplicity ν. Let us suppose that
ρ(λ) is equal to ν if Imλ/= 0 and equal to whole part ν/2 if Imλ = 0.
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Theorem 2.3 (see [28]). The eigenvalues of operator L arrange symmetrically with regard to the real
axis.
∑n

k=1 ρ(λk) ≤ 1 for any system {λk}nk=1 (n ≤ +∞) of eigenvalues with nonnegative parts.

From Theorem 2.3 it follows that either all the eigenvalues of boundary value problem
(1.1), (1.2a)–(1.2d) are simple (all the eigenvalues are real or all, except a conjugate pair of
nonreal, are real) or all the eigenvalues are real and all, except one double or triple, are simple.

3. Some Auxiliary Results

As in [17, 19, 29, 30] for the analysis of the oscillation properties of eigenfunctions of the
problem (1.1), (1.2a)–(1.2d) we will use a Prüfer-type transformation of the following form:

y(x) = r(x) sinψ(x) cos θ(x),

y′(x) = r(x) cosψ(x) sinϕ(x),

y′′(x) = r(x) cosψ(x) cosϕ(x),

Ty(x) = r(x) sinψ(x) sin θ(x).

(3.1)

Consider the boundary conditions (see [29, 30])

y′(0) cosα − y′′(0) sinα = 0, (1.2a∗)

y(l) cos δ − Ty(l) sin δ = 0, (1.2d∗)

where α ∈ [0, π/2], δ ∈ [0, π).
Alongside the spectral problem (1.1), (1.2a)–(1.2d) we will consider the spectral

problem (1.1), (1.2a)–(1.2c), and (1.2d∗). In [30], Banks andKurowski developed an extension
of the Prüfer transformation (3.1) to study the oscillation of the eigenfunctions and their
derivatives of problem (1.1), (1.2a∗), (1.2b), (1.2c), and (1.2d∗) with q ≥ 0, δ ∈ [0, π/2] and
in some cases when (1.3) is disfocal and α = γ = 0, δ ∈ [0, π/2]. In [19], the authors used the
Prüfer transformation (3.1) to study the oscillations of the eigenfunctions of the problem (1.1),
(1.2a∗), (1.2b), (1.2c), and (1.2d∗) with q ≥ 0 and δ ∈ (π/2, π). In this work it is proved that
problem (1.1), (1.2a∗), (1.2b), (1.2c), and (1.2d∗) may have at most one negative and simple
eigenvalue and sequence of positive and simple eigenvalues tending to infinity, the number
of zeros of the eigenfunctions corresponding to positive eigenvalues behaves in that usual
way (it is equal to the serial number of an eigenvalue increasing by 1); the function associated
with the lowest eigenvalue has no zeros in (0, l) (however in reality, this eigenfunction has
no zeros in (0, l) if the least eigenvalue is positive; the number of zeros can by arbitrary if
the least eigenvalue is negative). In [31], Ben Amara developed an extension of the classical
Sturm theory [32] to study the oscillation properties for the eigenfunctions of the problem
(1.1), (1.2a)–(1.2c), and (1.2d∗) with β = 0, in particular, given an asymptotic estimate of the
number of zeros in (0, l) of the first eigenfunction in terms of the variation of parameters in
the boundary conditions.

Let u be a solution of (1.3) which satisfies the initial conditions u(0) = 0, u′(0) = 1.
Then the disfocal condition of (1.3) implies that u′(x) > 0 in [0, l]. Therefore, if h denotes
the solution of (1.3) satisfying the initial conditions u(0) = c > 0, u′(0) = 1, where c is a
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sufficiently small constant, then we have also h′(x) > 0 on [0, l]. Thus, h(x) > 0 in [0, l], and
hence the following substitutions [33, Theorem 12.1]:

t = t(x) = lω−1
∫x

0
h(s)ds, ω =

∫ l

0
h(s)ds, (3.2)

transform [0, l] into the interval [0, l] and (1.1) into

(
pÿ
)·· = λry, (3.3)

where p = (lω−1h)3, r = l−1ωh−1; h(x), y(x) are taken as functions of t and · := d/dt.
Furthermore, the following relations are useful in the sequel:

ẏ = l−1ωh−1y′, l2ω−2h3ÿ = hy′′ − h′y′, T̃y ≡
((

lω−1h
)3
ÿ

)·
= Ty. (3.4)

It is clear from the second relation (3.4) that the sign of y′′ is not necessarily preserved
after the transformation (3.2). For this reason this transformation cannot be used in any
straightforward way. The following lemma of Leighton and Nehari [33] will be needed
throughout our discussion. In [30, Lemma 2.1], Banks and Kurowski gave a new proof of
this lemma for q ≥ 0. However, in the case when (1.3) is disfosal on (0, l], they partially
proved it [30, Lemma 7.1], and therefore they were able to study problem (1.1), (1.2a)–(1.2c),
and (1.2d∗)with γ = 0, δ ∈ [0, π/2]. In [31], Ben Amara shows how Lemma 3.1 together with
the transformation (3.2) can be applicable to investigate boundary conditions (1.2a)–(1.2c),
and (1.2d∗)with β = 0.

Lemma 3.1 (see [33, Lemma 2.1]). Let λ > 0, and let y be a nontrivial solution of (3.3). If y, ẏ, ÿ,
and T̃y are nonnegative at t = a (but not all zero), they are positive for all t > a. If y, −ẏ, ÿ, and −T̃y
are nonnegative at t = a (but not all zero), they are positive for all t < a.

We also need the following results which are basic in the sequel.

Lemma 3.2. All the eigenvalues of problem (1.1), (1.2a)–(1.2c), and (1.2d∗) for δ ∈ [0, π/2) or
δ = π/2, β ∈ [0, π/2) are positive.

Proof. In this case, the transformed problem is determined by (3.3) and the boundary
conditions

ẏ(0) = 0, (3.5a)

y(0) cos β + T̃y(0) sin β = 0, (3.5b)

ẏ(l) cos γ∗ + p(l)ÿ(l) sin γ∗ = 0, (3.5c)

y(l) cos δ − T̃y(l) sin δ = 0, (3.5d)

where γ∗ = arctg{l−2ω2h−1(l)[h(l) cos γ + h′(l) sin γ]−1} ∈ [0, π/2).
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It is known that the eigenvalues of (3.3), (3.5a)–(3.5d) are given by the max-min
principle [13, Page 405] using the Rayleigh quotient

R
[
y
]
=

(∫ l
0 pÿ

2dt +N
[
y
])

(∫ l
0 y

2dt
) , (3.6)

whereN[y] = y2(0)cotβ + ẏ2(l)cotγ∗ + y2(l)cotδ. It follows by inspection of the numerator R
in (3.6) that zero is an eigenvalue only in the case β = δ = π/2. Hence, all the eigenvalues of
problem (3.3), (3.5a)–(3.5d) for δ ∈ [0, π/2) or δ = π/2, β ∈ [0, π/2), are positive. Lemma 3.2
is proved.

Lemma 3.3. Let E be the space of solution of the problem (1.1), (1.2a)–(1.2c). Then, dimE = 1.

The proof is similar to that of [19, Lemma 2] using transformation (3.2), Lemmas 3.1
and 3.2 (see also [31, Lemma 2.2]). However, it is not true if π/2 < γ < π (see, e.g., [31,
Page 9]). Therefore, Lemma 3.1 together with the transformation (3.2) cannot be applicable
to investigate more general boundary conditions, for example, (1.2a∗), (1.2b), and (1.2c) for
α ∈ (0, π/2].

Lemma 3.4 (see [29, Lemma 2.2]). Let λ > 0 and u be a solution of (3.3) which satisfies the
boundary conditions (3.5a)–(3.5c). If a is a zero of u and ü in the interval (0, l), then u̇(t)T̃u(t) < 0
in a neighborhood of a. If a is a zero of u̇ or T̃u in (0, l), then u(t)ü(t) < 0 in a neighborhood of a.

Theorem 3.5. Let u be a nontrivial solution of the problem (1.1), (1.2a) and (1.2c) for λ > 0. Then
the Jacobian J[u] = r3 cosψ sinψ of the transformation (3.1) does not vanish in (0, l).

Proof. Let u be a nontrivial solution of (1.1) which satisfies the boundary conditions (1.2a)
and (1.2c). Assume first that the corresponding angle ψ satisfies ψ(x0) = nπ for some integer
n and for some x0 ∈ (0, l). Then, the transformation (3.1) implies that u(x0) = Tu(x0) = 0.
Using the transformation (3.2), the solution u of (3.3) also satisfies u(t0) = T̃u(t0) = 0, where
t0 = l−1ω

∫x0
0 h(s)ds ∈ (0, l). However, it is incompatible with the conclusion of Lemma 3.4.

The proof of the inequality cosψ(x)/= 0, x ∈ (0, l), proceeds in the same fashion as in
the previous case. The proof of Theorem 3.5 is complete.

Let y(x, λ) be a nontrivial solution of the problem (1.1), (1.2a)–(1.2c) for λ > 0 and
θ(x, λ), ϕ(x, λ) the corresponding functions in (3.1). Without loss of generality, we can define
the initial values of these functions as follows (see [30, Theorem 3.3]):

θ(0, λ) = β − π
2
, ϕ(0, λ) = 0. (3.7)

With obvious modifications, the results stated in [30, Sections 3–5] are true for the
solution of the problem (1.1), (1.2a)–(1.2c), and (1.2d∗) for δ ∈ [0, π/2]. In particular, we
have the following results.

Theorem 3.6. θ(l, λ) is a strictly increasing continuous function on λ.
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Theorem 3.7. Problem (1.1), (1.2a)–(1.2c), and (1.2d∗) for δ ∈ [0, π/2] (except the case β = δ =
π/2) has a sequence of positive and simple eigenvalues

λ1(δ) < λ2(δ) < · · · < λn(δ) −→ ∞. (3.8)

Moreover, θ(l, λn(δ)) = (2n−1)π/2−δ, n ∈ N; the corresponding eigenfunctions υ(δ)
n (x) have n−1

simple zeros in (0, l).

Remark 3.8. In the case β = δ = π/2 the first eigenvalue of boundary value problem (1.1),
(1.2a)–(1.2c), and (1.2d∗) is equal to zero and the corresponding eigenfunction is constant;
the statement of Theorem 3.7 is true for n ≥ 2.

Obviously, the eigenvalues λn(δ), n ∈ N, of the problem (1.1), (1.2a)–(1.2c), and (1.2d∗)
are zeros of the entire function y(l, λ) cos δ − Ty(l, λ) cos δ = 0. Note that the function F(λ) =
Ty(l, λ)/y(l, λ) is defined for λ ∈ A ≡ (C/R) ∪ (⋃∞n=1(λn−1(0), λn(0))), where λ0(0) = −∞.

Lemma 3.9 (see [19, Lemma 5]). Let λ ∈ A. Then, the following relation holds:

d

dλ
F(λ) =

(∫ l
0 y

2(x, λ)dx
)

y2(l, λ)
. (3.9)

In (1.1)we set λ = ρ4. As is known (see [34, Chapter II, Section 4.5, Theorem 1]) in each
subdomain T of the complex ρ-plane equation (1.1) has four linearly independent solutions
zk(x, ρ), k = 1, 4, regular in ρ (for sufficiently large ρ) and satisfying the relations

z
(s)
k

(
x, ρ
)
=
(
ρωk

)s
eρωkx[1], k = 1, 4, s = 0, 3, (3.10)

where ωk, k = 1, 4, are the distinct fourth roots of unity, [1] = 1 +O(1/ρ).
For brevity, we introduce the notation s(δ1, δ2) = sgn δ1 + sgn δ2. Using relation (3.10)

and taking into account boundary conditions (1.2a)–(1.2c), we obtain

y(x, λ) =

⎧
⎪⎨

⎪⎩

(
sin
(
ρx +

π

2
sin β
)
− cos

(
ρl +

π

2
s
(
β, γ
))
eρ(x−l)

)
[1] if β ∈

(
0,
π

2

]
,

√
2 sin
(
ρx−π

4

)
−e−ρx + (−1)1−sgn γ

√
2 sin
(
ρl+(−1)sgn γ π

4

)
eρ(x−l)[1] if β = 0,

(3.11)

Ty(x, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−ρ3
(
cos
(
ρx +

π

2
sgn β

)
+ cos

(
ρl +

π

2
s
(
β, γ
))
eρ(x−l)

)
[1]

if β ∈
(
0,
π

2

]
,

−ρ3
(√

2 sin
(
ρx +

π

4

)
− e−ρx − (−1)1−sgn γ

√
2 sin
(
ρl +

π

4
(−1)sgn γ

)
eρ(x−l)

)
[1]

if β = 0.
(3.12)
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Remark 3.10. As an immediate consequence of (3.11), we obtain that the number of zeros in
the interval (0, l) of function y(x, λ) tends to +∞ as λ → ±∞.

Taking into account relations (3.11) and (3.12), we obtain the asymptotic formulas

F(λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(√
2
)1−sgn γ

ρ3
cos
(
ρl + (π/2) sgn β + (π/4) sgn γ

)

cos
(
ρl + (π/2) sgn β + (π/4)

(
1 + sgn γ

)) [1] if β ∈
(
0,
π

2

]
,

(√
2
)1−sgn γ

ρ3
cos
(
ρl + (π/4)

(
sgn γ − 1))

cos
(
ρl + (π/4)

(
1 + sgn γ

))[1] if β = 0.

(3.13)

Furthermore, we have

F(λ) = −
(√

2
)1−sgn γ 4

√
|λ|3
(
1 +O(|λ|)−1/4

)
, as λ −→ −∞. (3.14)

We define numbers τ , ν, η, αn, βn, ηn, n ∈ N, and a function z(x, t), x ∈ [0, l], t ∈ R, as
follows:

τ =

⎧
⎪⎪⎨

⎪⎪⎩

3
(
1 + s
(
β, δ
))

4
− 1 if γ ∈

(
0,
π

2

]
,

5
4
− 3
8

(
(−1)sgn β + (−1)sgn δ

)
− 1 if γ = 0,

η =

⎧
⎪⎪⎨

⎪⎪⎩

3
(
2 + sgn β

)

4
− 1 if γ ∈

(
0,
π

2

]
,

5
4
− 3
8

(
(−1)sgn β − 1

)
− 1 if γ = 0,

ν =

⎧
⎪⎪⎨

⎪⎪⎩

3
(
1 + s
(
β, |c|))

4
if γ ∈

(
0,
π

2

]
,

5
4
− 3
8

(
(−1)sgn β + (−1)sgn |c|

)
if γ = 0,

αn =
(n − τ)π

l
, ηn =

(
n − η)π

l
, βn =

(n − ν)π
l

,

z(x, t) =

⎧
⎪⎨

⎪⎩

sin
(
tx +

π

2
sgn β

)
− cos

(
tl +

π

2
s
(
β, γ
))
e−t(l−x) if β ∈

(
0,
π

2

]
,

√
2 sin
(
tx − π

4

)
+ e−tx + (−1)sgn γ

√
2 sin
(
tl +

(−1)sgn γπ
4

)
e−t(x−l) if β = 0.

(3.15)

By virtue of [18, Theorem 3.1], one has the asymptotic formulas

4
√
λn(δ) = αn +O

(
n−1
)
, (3.16)

υ
(δ)
n (x) = z(x, αn) +O

(
n−1
)
, (3.17)

where relation (3.17) holds uniformly for x ∈ [0, l].



International Journal of Mathematics and Mathematical Sciences 9

By (3.14), we have

lim
λ→−∞

F(λ) = −∞. (3.18)

From Property 1 in [30] and formulas (3.9), one has the relations

λ1
(π
2

)
< λ1(0) < λ2

(π
2

)
< λ2(0) < · · · . (3.19)

Remark 3.11. It follows by Theorem 3.7, Lemma 3.9, and relations (3.18) and (3.19) that if λ > 0
or λ = 0, β ∈ [0, π/2), then F(λ) < 0; besides, if λ = 0 and β = π/2, then F(λ) = 0.

Let s(λ) be the number of zeros of the function y(x, λ) in the interval (0, l).

Lemma 3.12. If λ > 0 and λ ∈ (λn−1(0), λn(0)], n ∈ N, then s(λ) = n − 1.

The proof is similar to that of [19, Lemma 10] using Theorems 3.6 and 3.7 and
Remark 3.11.

Theorem 3.13. The problem (1.1), (1.2a)–(1.2c), and (1.2d∗) for δ ∈ (π/2, π) has a sequence of
real and simple eigenvalues

λ1(δ) < λ2(δ) < · · · < λn(δ) −→ +∞, (3.20)

including at most one negative eigenvalue. Moreover, (a) if β ∈ [0, π/2), then λ1(δ) > 0 for δ ∈
(π/2, δ0); λ1(δ) = 0 for δ = δ0; λ1(δ) < 0 for δ ∈ (δ0, π), where δ0 = arctgTy(l, 0)/y(l, 0); (b) if
β = π/2, then λ1(δ) < 0; (c) the eigenfunction υ(δ)

n (x), corresponding to the eigenvalue λn(δ) ≥ 0,
has exactly n − 1 simple zeros in (0, l).

The proof parallels the proof of [19, Theorem 4] using Theorems 3.5–3.7 and Lemmas
3.9 and 3.12.

Lemma 3.14. The following non-selfadjoint boundary value problem:

y(4)(x) − (q(x)y′(x))′ = λy(x), x ∈ (0, l),

y(0) = y′(0) = Ty(0) = y′(l) cos γ + y′′(l) sin γ = 0,
(3.21)

has an infinite set of nonpositive eigenvalues ρn tending to −∞ and satisfying the asymptote

λn = −
(
n − 1

4
(
1 + sgn γ

)
)4π4

l4
+ o
(
n4
)
, n −→ ∞. (3.22)

Setting x = 0 in (3.12), we obtain (3.22).

Remark 3.15. By Remark 3.10 the number of zeros of the eigenfunction y(δ)
1 (x) corresponding

to an eigenvalue λ1(δ) < 0 can by arbitrary. In views of [31, Corollary 2.5], as λ1(δ) < 0 varies,
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new zeros of the corresponding eigenfunction y(δ)
1 (x) enter the interval (0, l) only through the

end point x = 0 (since y(δ)
1 (l)/= 0), and hence the number of its zeros, in the case β ∈ (0, π/2],

is asymptotically equivalent to the number of eigenvalues of the problem (3.21) which are
higher than λ1(δ). In the case β = 0 see [31, Theorem 5.3].

We consider the following boundary conditions:

ay(l) − cTy(l) = 0, (1.2d′)

cy(l) + aTy(l) = 0. (1.2d′′)

Note that (a, c)/= 0 since σ < 0. The boundary condition (1.2d′) coincides the boundary
condition (1.2d∗) for δ = π/2 (resp., δ = 0) in the case a = 0 (resp., c = 0), and the boundary
condition (1.2d′′) coincides the boundary condition (1.2d∗) for δ = 0 (resp., δ = π/2) in the
case a = 0 ( resp., c = 0).

Let ac /= 0. The eigenvalues of the problem (1.1), (1.2a)–(1.2c), and (1.2d′) (resp., (1.1)
(1.2a)–(1.2c), and (1.2d′′)) are the roots of the equation F(λ) = a/c (resp., F(λ) = −c/a). By
(3.9), this equation has only simple roots; hence all the eigenvalues of the problems (1.1),
(1.2a)–(1.2c), and (1.2d′) and (1.1), (1.2a)–(1.2c), and (1.2d′′) are simple. On the base of (3.9),
(3.18), and (3.19) in each interval An, n = 1, 2, . . ., the equation F(λ) = a/c (resp., F(λ) =
−c/a) has a unique solution μn (resp., νn); moreover,

ν1 < λ1
(π
2

)
< μ1 < λ1(0) < ν2 < λ2

(π
2

)
< μ2 < λ2(0) < · · · (3.23)

if a/c > 0 and

μ1 < λ1
(π
2

)
< ν1 < λ1(0) < μ2 < λ2

(π
2

)
< ν2 < λ2(0) < · · · (3.24)

if a/c < 0. Besides, μ1 = 0 if a/c < 0 and F(0) = a/c; ν1 = 0 if a/c > 0 and F(0) = −c/a.
Taking into account (1.2d′), (1.2d′′), (3.23), and (3.24) and using the corresponding

reasoning [18, Theorem 3.1] we have

4
√
μn = ηn +O

(
n−1
)
, 4

√
νn = ηn +O

(
n−1
)
, (3.25)

ϕn(x) = z
(
x, ηn
)
+O
(
n−1
)
, ψn(x) = z

(
x, ηn
)
+O
(
n−1
)
, (3.26)

where relation (3.26) holds uniformly for x ∈ [0, l] and eigenfunctions ϕn(x) and ψn(x), n ∈ N,
correspond to the eigenvalues μn and νn, respectively.

Let us denotem(λ) = ay(l, λ) − cTy(l, λ).

Remark 3.16. Note that if λ is the eigenvalue of problem (1.1), (1.2a)–(1.2d), then m(λ)/= 0
since σ /= 0.
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It is easy to see that the eigenvalues of problem (1.1), (1.2a)–(1.2d) are roots of the
equation

(aλ + b)y(l) − (cλ + d)Ty(l) = 0. (3.27)

By virtue of Remark 3.16 and formula (3.27), a simple calculation yields that the
eigenvalues of the problem (1.1), (1.2a)–(1.2d) can be realized at the solution of the equation

cy(l, λ) + aTy(l, λ)
ay(l, λ) − cTy(l, λ) =

a2 + c2

−σ λ +
ab + cd
−σ . (3.28)

Denote Bn = (μn−1, μn), n ∈ N, where μ0 = −∞.
We observe that the function G(λ) = (cy(l, λ) + aTy(l, λ))/(ay(l, λ) − cTy(l, λ)) is well

defined for λ ∈ B = (C \ R) ∪ (
⋃∞
n=1 Bn) and is a finite-order meromorphic function and the

eigenvalues νn and μn, n ∈ N, of boundary value problems (1.1), (1.2a)–(1.2c), and (1.2d′′)
and (1.1), (1.2a)–(1.2c), and (1.2d′) are zeros and poles of this function, respectively.

Let λ ∈ B. Using formula (3.9), we get

d

dλ
G(λ) =

(
a2 + c2

)
m−2(λ)

∫ l

0
y2(x, λ)dx. (3.29)

Lemma 3.17. The expansion

G(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G(0) +
∞∑

n=1

λcn

μn
(
λ − μn

) if μ1 /= 0,

c0 +
c1
λ

+
∞∑

n=2

λcn

μn
(
λ − μn

) if μ1 = 0,
(3.30)

holds, where cn, n ∈ N, are some negative numbers.

Proof. It is known (see [35, Chapter 6, Section 5]) that the meromorphic function G(λ) with
simple poles μn allows the representation

G(λ) = G1(λ) +
∞∑

n=1

(
λ

μn

)s cn
λ − μn , (3.31)

where G1(λ) is an entire function,

cn = res
λ=μn

G(λ) =
(
cy
(
l, μn
)
+ aTy

(
l, μn
))
(

a
∂y
(
l, μn
)

∂λ
− cTy

(
l, μn
)

∂λ

)−1
, (3.32)

and integers sn, n ∈ N, are chosen so that series (3.31) are uniformly convergent in any finite
circle (after truncation of terms having poles in this circle).
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We consider the case a/c > 0. By virtue of relation (3.18), we have limλ→−∞G(λ) =
−a/c. Hence, G(λ) < 0 for λ ∈ (−∞, ν1) and G(λ) > 0 for λ ∈ (ν1, μ1). Without loss of
generality, we can assume ay(l, λ)−cTy(l, λ) > 0 for λ ∈ (−∞, μ1). Then, cy(l, λ)+aTy(l, λ) < 0
for λ ∈ (−∞, ν1). Since the eigenvalues μn and νn, n ∈ N, are simple zeros of functions
ay(l, λ) − cTy(l, λ) and cy(l, λ) + aTy(l, λ), respectively, then by (3.29) the relations

(−1)n+1(cy(l, μn
)
+ aTy

(
l, μn
))

> 0,

(−1)n+1
(

a
∂y
(
l, μn
)

∂λ
− c∂Ty

(
l, μn
)

∂λ

)

< 0, n ∈ N,
(3.33)

are true.
Taking into account (3.33), in (3.32)we get cn < 0, n ∈ N. The cases a/c < 0, a = 0, and

c = 0 can be treated along similar lines.
Denote Ωn(ε) = {λ ∈ C | | 4

√
λ − 4
√
μn| < ε} where ε > 0 is some small number. From the

asymptotic formula (3.25), it follows that for ε < π/4l the domains Ωn(ε) asymptotically do
not intersect and contain only one pole μn of the function G(λ).

By (3.11), (3.12), (3.23), (3.24), and (3.25), we see that outside of domains Ωn(ε) the
asymptotic formulae are true:

G(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−a
c
+O
(
ρ−1
)

if ac /= 0,

ρ3z
(
ρ
)(
1 +O

(
ρ−1
))

if c = 0,

−ρ−3(z(ρ))−1(1 +O(ρ−1)) if a = 0,

(3.34)

where

z
(
ρ
)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cos
(
(π/4) sgn γ

)
cos
(
ρl + (π/2) sgn β + (π/4) sgn γ

)

sin
(
(π/4)

(
1 + sgn γ

))
cos
(
ρl + (π/2) sgn β + (π/4)

(
1 + sgn γ

)) if β ∈
(
0,
π

2

]
,

(√
2
)1−2 sgn γ

cos
(
ρl − (1 − sgn γ)(π/4))

cos
(
ρl + (π/4) sgn γ

) if β = 0.

(3.35)

Following the corresponding reasoning (see [36, Chapter VII, Section 2, formula
(27)]), we see that outside of domains Ωn(ε) the estimation

|G(λ)| ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M̃1 if ac /= 0,

M̃2
4
√
|λ|3 if c = 0,

M̃3
4
√
|λ|−3 if a = 0,

(3.36)
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holds; using it in (3.32)we get

|cn| =
∣
∣
∣∣
∣

1
2πi

∫

∂Ωn(ε)
G(λ)dλ

∣
∣
∣∣
∣
=

2
π

∣
∣
∣∣
∣

∫

|ν− 4√μn|=ε
ν3G
(
ν4
)
dν

∣
∣
∣∣
∣
≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M1n
3 if ac /= 0,

M2n
6 if c = 0,

M3 if a = 0,

(3.37)

where M̃1, M̃2, M̃3, M1, M2, M3 are some positive constants. By (3.37) and asymptotic
formula (3.25) the series

∑∞
n=1 cn|μn|−2 converges. Then, according to Theorem 2 in [35,

Chapter 6, Section 5], in formula (3.31) we can assume sn = 1, n ∈ N.
Let {Γn}∞n=1 be a sequence of the expanding circles which are not crossing domains

Ωn(ε). Then, according to Formula (9) in [37, Chapter V, Section 13], we have

G(λ) −
∑

μk∈int Γn

ck
λ − μk =

1
2πi

∫

Γn

G(ξ)
ξ − λdξ,

G(0) +
∑

μk∈int Γn

ck
μk

=
1

2πi

∫

Γn

G(ξ)
ξ

dξ.

(3.38)

By (3.38), we get

G(λ) −G(0) =
∑

μk∈int Γn

λck

μk
(
λ − μk

) =
1

2πi

∫

Γn

λG(ξ)
ξ(ξ − λ)dξ. (3.39)

From (3.36), the right side of (3.39) tends to zero as n → ∞. Then, passing to the limit
as n → ∞ in (3.39), we obtain

G(λ) = G(0) +
∞∑

n=1

λcn

μn
(
λ − μn

) , (3.40)

which implies G1(λ) ≡ G(0).
Differentiating the right side of the least equality, we have

G(s)(λ) = (−1)ss!
∞∑

n=1

cn
(
λ − μn

)s+1 , s = 1, 2, 3. (3.41)

Note that the function F(λ) has the following expansion:

F(λ) = F(0) +
∞∑

n=1

λc̃n
λn(0)(λ − λn(0)) , (3.42)

where

c̃n = res
λ=λn(0)

F(λ), n = 1, 2, . . . . (3.43)
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Now let μ1 = 0, that is, F(0) = a/c. G(λ) has the following expansion:

G(λ) = G1(λ) +
c1
λ

+
∞∑

n=2

λcn

μn
(
λ − μn

) . (3.44)

Again, according to Formula (9) in [37, Chapter V, Section 13], we have

G(λ) − c1
λ
−
∑

μk∈int Γn
k /= 1

ck
λ − μk =

1
2πi

∫

Γn

G(ξ)
ξ − λdξ. (3.45)

By (2.6) [18] and (3.9), we get

c1 = −c−2
(
a2 + c2

)(
F ′(0)

)−1
. (3.46)

Using (3.42), (3.41), and (3.46), we obtain

G(λ) − c1
λ

= −a
c
+ c−2
(
a2 + c2

) ∑∞
n=1
(
c̃n/λ

2
n(0)(λ − λn(0))

)

F ′(0)
∑∞

n=1(c̃n/λn(0)(λ − λn(0)))
. (3.47)

Passing to the limit as λ → 0 in (3.47), we get

lim
λ→ 0

(
G(λ) − c1

λ

)
= −a

c
+ c−2
(
a2 + c2

)( ∞∑

n=1

c̃n

λ2n(0)

)−1( ∞∑

n=1

c̃n

λ3n(0)

)−1

=
a

c
+ 2c−2

(
a2 + c2

)(
F ′(0)

)−2
F ′′(0) = c0.

(3.48)

Using (3.48) in (3.45), we have

c0 +
∑

μk∈int Γn
k /= 1

ck
λ − μk =

1
2πi

∫

Γn

G(ξ)
ξ

dξ.
(3.49)

In view of (3.49) and (3.45), we get

G(λ) − c0 − c1
λ
−
∑

μk∈int Γn
k /= 1

λck

μk
(
λ − μk

) =
1

2πi

∫

Γn

λG(ξ)
ξ(ξ − λ)dξ. (3.50)

Passing to the limit as n → ∞ in (3.50), we obtain

G(λ) = c0 +
c1
λ

+
∞∑

n=2

λcn

μn
(
λ − μn

) . (3.51)

Lemma 3.17 is proved.
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4. The Structure of Root Subspaces, Location of Eigenvalues on
a Complex Plane, and Oscillation Properties of Eigenfunctions of
the Problem (1.1), (1.2a)–(1.2d)

For c /= 0, we find a positive integerN from the inequality μN−1 < −d/c ≤ μN .

Theorem 4.1. The problem (1.1), (1.2a)–(1.2d) for σ > 0 has a sequence of real and simple
eigenvalues

λ1 < λ2 < · · · < λn −→ +∞, (4.1)

including at most 1 + sgn |c| number of negative ones. The corresponding eigenfunctions have the
following oscillation properties.

(a) If c = 0, then the eigenfunction yn(x), n ≥ 2, has exactly n − 1 zeros in (0, l), the
eigenfunction y1(x) has no zeros in (0, l) in the case λ1 ≥ 0, and the number of zeros
of y1(x) can be arbitrary in the case λ1 < 0.

(b) If c /= 0, then the eigenfunction yn(x) corresponding to the eigenvalue λn ≥ 0 has exactly
n − 1 simple zeros for n ≤ N and exactly n − 2 simple zeros for n > N in (0, l) and the
eigenfunctions associated with the negative eigenvalues may have an arbitrary number of
simple zeros in (0, l).

The proof of this theorem is similar to that of [18, Theorem 2.2] using Remark 3.15.
Throughout the following, we assume that σ < 0.
Let λ, μ(λ/=μ) be the eigenvalue of the operator L. The eigenvectors y(λ) = {y(x, λ),

m(λ)} and y(μ) = {y(x, μ), m(μ)} corresponding to the eigenvalues λ and μ, respectively, are
orthogonal in Π1, since the operator L is J-selfadjoint in Π1. Hence, by (2.4), we have

∫ l

0
y(x, λ)y

(
x, μ
)
dx = −σ−1m(λ)m

(
μ
)
. (4.2)

Lemma 4.2. Let λ∗ ∈ R be an eigenvalue of boundary value problem (1.1), (1.2a)–(1.2d) and
G′(λ∗) ≤ A, whereA = −(a2+c2)/σ. Then, problem (1.1), (1.2a)–(1.2d) has no nonreal eigenvalues.

Proof. Let μ ∈ C\R be an eigenvalue of problem (1.1), (1.2a)–(1.2d). Then, from Remark 3.16
and equality (4.2), we obtain

∫ l

0

y(x, λ∗)
m(λ∗)

⎛

⎝y
(
x, μ
)

m
(
μ
)

⎞

⎠dx = −σ−1,
∫ l

0

y(x, λ∗)
m(λ∗)

y
(
x, μ
)

m
(
μ
) dx = −σ−1, (4.3)

∫ l

0

∣∣∣∣∣
y
(
x, μ
)

m
(
μ
)

∣∣∣∣∣

2

dx = −σ−1. (4.4)

In view of formula (3.29), the inequality
∫ l

0

(
y(x, λ∗)
m(λ∗)

)2

dx ≤ −σ−1 (4.5)

is true.
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By (4.3),

∫ l

0

y(x, λ∗)
m(λ∗)

Re
y
(
x, μ
)

m
(
μ
) dx = −σ−1. (4.6)

From (4.4)–(4.6), we get

∫ l

0

⎧
⎨

⎩

(
y(x, λ∗)
m(λ∗)

− Re y
(
x, μ
)

m
(
μ
)

)2

+ Im2y
(
x, μ
)

m
(
μ
)

⎫
⎬

⎭
dx < 0 if G′(λ∗) < A,

∫ l

0

⎧
⎨

⎩

(
y(x, λ∗)
m(λ∗)

− Re y
(
x, μ
)

m
(
μ
)

)2

+ Im2y
(
x, μ
)

m
(
μ
)

⎫
⎬

⎭
dx = 0 if G′(λ∗) = A.

(4.7)

From the second relation it follows that Im(y(x, μ)/m(μ)) = 0, which by (1.1)
contradicts the condition μ ∈ C \ R. The obtained contradictions prove Lemma 4.2.

Lemma 4.3. Let λ∗1, λ
∗
2 ∈ R, λ∗1 /=λ

∗
2 be eigenvalues of problem (1.1), (1.2a)–(1.2d) and G′(λ∗1) ≤ A.

Then, G′(λ∗2) > A.

Proof. Let G′(λ∗2) ≤ A. By (3.29) and (4.2), we have

∫ l

0

(
y
(
x, λ∗1
)

m
(
λ∗1
)

)2

dx≤−σ−1,
∫ l

0

(
y
(
x, λ∗2
)

m
(
λ∗2
)

)2

dx≤−σ−1,
∫ l

0

y
(
x, λ∗1
)

m
(
λ∗1
)
y
(
x, λ∗2
)

m
(
λ∗2
) dx=−σ−1.

(4.8)

Hence, we get

∫ l

0

(
y
(
x, λ∗1
)

m
(
λ∗1
)
y
(
x, λ∗2
)

m
(
λ∗2
)

)

dx < 0 if G′
(
λ∗1
)
< A or G′

(
λ∗2
)
< A,

∫ l

0

y
(
x, λ∗1
)

m
(
λ∗1
)
y
(
x, λ∗2
)

m
(
λ∗2
) dx = 0 if G′

(
λ∗1
)
= G′
(
λ∗2
)
= A.

(4.9)

From (4.9), it follows that y(x, λ∗1)/m(λ∗1) = y(x, λ∗2)/m(λ∗2) for x ∈ [0, l]. Therefore,
m(λ∗2)y(x, λ

∗
1) = m(λ∗1)y(x, λ

∗
2).

Since λ1 /=λ2, then by (1.1) y(x, λ1) ≡ 0. The obtained contradictions prove Lemma 4.3.

By Lemmas 4.2 and 4.3 problem (1.1), (1.2a)–(1.2d) can have only one multiple real
eigenvalue. From (3.41), we get G(3)(λ) > 0, λ ∈ B, whence it follows that the multiplicity of
real eigenvalue of problem (1.1), (1.2a)–(1.2d) does not exceed three.

Theorem 4.4. The boundary value problem (1.1), (1.2a)–(1.2d) for σ < 0 has only point spectrum,
which is countable infinite and accumulates at +∞ and can thus be listed as λn, n ≥ 1with eigenvalues
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repeated according to algebraic multiplicity and ordered so as to have increasing real parts. Moreover,
one of the following occurs.

(1) All eigenvalues are real, at that B1 contains algebraically two (either two simple or one
double) eigenvalues, and Bn, n = 2, 3, . . ., contain precisely one simple eigenvalues.

(2) All eigenvalues are real, at that B1contains no eigenvalues but, for some s ≥ 2, Bs
contains algebraically three (either three simple, or one simple and one double, or one triple)
eigenvalues, and Bn, n = 2, 3, . . ., n/= s contain precisely one simple eigenvalue.

(3) There are two nonreal eigenvalues appearing as a conjugate pair, at that B1 contains no
eigenvalues, and Bn, n = 2, 3, . . ., contain precisely one simple eigenvalue.

Proof. Remember that the eigenvalues of problem (1.1), (1.2a)–(1.2d) are the roots of the
equation G(λ) = Aλ+B, whereA = −(a2 + c2)/σ, B = −(ab + cd) \ σ (see (3.28)). From (3.41),
it follows that G′′(λ) > 0 for λ ∈ B1; therefore, the function G(λ) is convex on the interval B1.
By virtue of (3.18) and (3.30), we have

lim
λ→−∞

G(λ) =

⎧
⎨

⎩

−a
c

if c /= 0,

−∞ if c = 0,

lim
λ→μn−0

G(λ) = +∞.
(4.10)

That is why for each fixed numberA there exists number BA such that the linesAλ+BA,
λ ∈ R, touch the graph of function G(λ) at some point λ̃ ∈ B1. Hence, in the interval B1, (3.28)
has two simple roots λ1 < λ2 if B > BA, one double root λ1 = λ̃ if B = BA, and no roots if
B < BA.

By (3.29) and (3.30) we have limλ→μn+0G(λ) = −∞, limλ→μn−0G(λ) = +∞, n ∈ N.
Therefore, (3.28) has at least one solution in the interval Bn, n = 2, 3, . . ..

Let B ≥ BA. If B > BA, thenG′(λ1) < A,G′(λ2) < A; if B = BA thenG′(λ1) = A. By (3.29),
(3.28) has only simple root λn+1 for B > BA, λn for B = BA in the interval Bn, n = 2, 3, . . ..

Let B < BA. By Lemma 4.3 either G′(λn) > A for any λn ∈ R, or there exists k ∈ N such
that F ′(λk) ≤ A and F ′(λn) > A, n ∈ N \ {k}. Assume that λk ∈ Bs. Obviously, s ≥ 2. Choose
natural number n0 such that the inequalities

ARn0 + B > 0,

|G(λ) − (Aλ + BA)| > |BA − B|, λ ∈ SRn0 ,
(4.11)

are fulfilled; where Rn = τn + δ0,

τn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λn
(π
2

)
if c = 0,

νn if c /= 0,
a

c
> 0,

λn(0) − 1 if c /= 0, a = 0,

νn − 1 if c /= 0,
a

c
< 0,

(4.12)

δ0 is sufficiently small positive number, and SRn = {z ∈ C | |z| = Rn}.
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We have

ΔSRn0
arg(G(λ) − (Aλ + B))=ΔSRn0

arg(G(λ) − (Aλ + BA))+ΔSRn0
arg
(
1 +

BA − B
G(λ) − (Aλ + BA)

)
,

(4.13)

where

ΔSRn0
arg f(z) =

1
i

∫

SRn0

(
f ′(z)
f(z)

)
dz (4.14)

(see [37, Chapter IV, Section 10]). By (4.11)

∣∣∣∣
(BA − B)

(G(λ) − (Aλ + BA))

∣∣∣∣ < 1, λ ∈ SRn0 , (4.15)

hence, the point

ω =
(BA − B)

(G(λ) − (Aλ + BA))
(4.16)

does not go out of circle {|ω| < 1}. Therefore, vector w = 1 + ω cannot turn around the point
w = 0, and the second summand in (4.13) equals zero. Thus,

ΔSRn0
arg(G(λ) − (Aλ + B)) = ΔSRn0

arg(G(λ) − (Aλ + BA)). (4.17)

By the argument principle (see [37, Chapter IV, Section 10, Theorem 1]) we have

1
2π

ΔSRn0
arg(G(λ) − (Aλ + BA)) =

∑

λ
(BA)
n ∈intSRn0

�
(
λ
(BA)
n

)
−
∑

μn∈intSRn0
�
(
μn
)
, (4.18)

where ρ(λ(BA)n ) and �(μn) are multiplicity of zero λ(BA)n and pole μn of the functionG(λ)−(Aλ+
BA), respectively (λ(BA)1 = λ(BA)2 ). Obviously,

∑
λ
(BA)
n ∈intSRn0

ρ(λ(BA)n ) = n0 and
∑

μn∈intSRn0
ρ(μn) =

n0 − 1. Then, by (4.18) we obtain

(2π)−1ΔSRn0
arg(G(λ) − (Aλ + BA)) = 1. (4.19)

From (4.17) and (4.19) follows the validity of the equality

(2π)−1ΔSRn0
arg(G(λ) − (Aλ + B)) = 1. (4.20)
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Using the argument principle again, by (4.20)we get
∑

λn∈intSRn0
ρ(λn) −

∑

μn∈intSRn0
�
(
μn
)
= 1, (4.21)

whence it follows that
∑

λn∈intSRn0
ρ(λn) = n0, (4.22)

where λn, n ∈ N, are roots of the equation G(λ) = Aλ + B. From the above-mentioned
reasoning, by (4.22) we have

∑

λm∈intSRn
ρ(λm) = n, n = n0, n0 + 1, . . . , (4.23)

and, therefore, problem (1.1), (1.2a)–(1.2d) in the interval Bn for n = n0, n0 + 1, . . ., has only
one simple eigenvalue.

Consider the following two cases.

Case 1. For all real eigenvalues λn of problem (1.1), (1.2a)–(1.2d) the inequalities G′(λn) >
A, λn ∈

⋃∞
m=2 Bm, are fulfilled. The problem (1.1), (1.2a)–(1.2d) in every interval Bm, m =

2, 3, . . . , n0 − 1, has one simple eigenvalue. Hence, problem (1.1), (1.2a)–(1.2d) in the interval
(−∞, SRn), n ≥ n0, has n − 2 simple eigenvalues, and hence, by (4.23), this problem in the
circle SRn ⊂ C has one pair of simple nonreal eigenvalues. In this case, the location of the
eigenvalues will be in the following form: λ1, λ2 ∈ C \ R, λ2 = λ1, Imλ1 > 0, λn ∈ Bn−1,
n = 3, 4, . . ..

Case 2. Let G′(λk) ≤ A, G′(λn) > A, n ∈ N | {k} and λk ∈ Bs, s ≥ 2. By Lemma 4.2 problem
(1.1), (1.2a)–(1.2d) has no nonreal eigenvalues. From the above-mentioned reasoning it
follows that in each interval Bn, n/= k, n = 2, 3, . . ., problem (1.1), (1.2a)–(1.2d) has one simple
eigenvalue.

Subcase 1. Let G′(λk) = A,G′′(λk)/= 0, that is, the eigenvalue λk is a double one (by this λk =
λk+1). Then, from (4.23) it follows that the interval Bs besides the eigenvalue λk contains one
more simple eigenvalue: at that it is either λk−1 (by this k = s) or λk+2 (by this k = s − 1).
Hence, λn ∈ Bn+1, n = 1, 2, . . . , s − 2, λs−1, λs, λs+1 ∈ Bs (by this either λs−1 < λs = λs+1 or
λs−1 = λs < λs+1), λn ∈ Bn−1, n = s + 2, s + 3, . . ..

Subcase 2. Let G′(λk) = A, G′′(λk) = 0. By (3.41), G′′′(λk)/= 0. Hence, λk is a triple eigenvalue
of the problem (1.1), (1.2a)–(1.2d) (by this λk = λk+1 = λk+2). Then, from (4.23) it follows that
in the interval Bs problem (1.1), (1.2a)–(1.2d) has unique triple eigenvalue λk, and therefore,
k = s−1. At this λn ∈ Bn+1, n = 1, 2, . . . , s−2, λs−1 = λs = λs+1 ∈ Bs, λn ∈ Bn−1, n = s+2, s+3, . . ..

Subcase 3. Let G′(λk) < A, that is, the eigenvalue λk is simple. Then, by (4.23), in the interval
Bsproblem (1.1), (1.2) has an eigenvalue λk as well as two more simple eigenvalues, which,
by Lemma 4.3, are λk−1 and λk+1 (and hence k = s). In this case, we have λn ∈ Bn+1, n =
1, 2, . . . , s − 2, λs−1, λs, λs+1 ∈ Bs (λs−1 < λs < λs+1), λn ∈ Bn−1, n = s + 2, s + 3, . . ..

Theorem 4.4 is proved.
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By Theorem 4.4 we have �(λn) = 2, that is, λn = λn+1 if n = s− 1 or n = s; �(λn) = 3, that
is, λn = λn+1 = λn+2 if n = s − 1 (If assertion (2) in Theorem 4.4 holds, then we set s = 1).

Let {yn(x)}∞n=1 be a system of eigen- and associated functions corresponding to the
eigenvalue system {λn}∞n=1 of problem (1.1), (1.2a)–(1.2d), where yn(x) = y(x, λn) if ρ(λn) = 1;
yn(x) = y(x, λn), yn+1(x) = y∗n+1(x) + cnyn(x), y∗n+1(x) = (∂y(x, λn))/∂λ, cn is an arbitrary
constant, if �(λn) = 2; yn(x) = y(x, λn), yn+1(x) = y∗n+1(x) + dnyn(x), yn+2(x) = y∗n+2(x) +
dny

∗
n+1(x) + hnyn(x), y

∗
n+2(x) = ∂2y(x, λn)/2∂λ2, dn, hn are arbitrary constants, if ρ(λn) = 3.

Here, yn(x) is an eigenfunction for λn and yn+1(x) when ρ(λn) = 2; yn+1(x), yn+2(x) when
ρ(λn) = 3 are the associated functions (see [34, Pages 16–20] for more details).

We turn now to the oscillation theorem of the eigenfunctions corresponding to the
positive eigenvalues of problem (1.1), (1.2a)–(1.2d) since the eigenfunctions associated with
the negative eigenvalues may have an arbitrary number of simple zeros in (0, l).

Theorem 4.5. For each n < N (resp., n > N), yn has n − 1 (resp., n) zeros in the interval (0, l).
Similarly ys, ys+1 both have s− 1 (resp., s) zeros if s < N (resp., s > N). Finally, if c /= 0, then each of
yN (and ys, ys+1 if s =N) hasN − 1 orN zeros according to λN , λS, λS+1 ≤ or > −d/c, and if c = 0
and s =N, then ys, ys+1 both have s zeros.

The proof of this theorem is similar to that of [11, Theorem 4.4] using Lemma 3.12.

5. Asymptotic Formulae for Eigenvalues and Eigenfunctions of
the Boundary Value Problem (1.1), (1.2a)–(1.2d)

For c /= 0, let K be an integer such that λk−1(π/2) < b/a ≤ λk(π/2) (interpreting λ0(π/2) =
−∞).

Lemma 5.1. The following relations hold for sufficiently large n ∈ N, n > n1 = max{s,N,K} + 2:

λn−2(0) < λn < λn−1
(π
2

)
< λn−1(0) if c /= 0,

a

c
≤ 0,

λn−2(0) < λn−1
(π
2

)
< λn < λn−1(0) if c/= 0,

a

c
> 0 or c = 0.

(5.1)

Proof. Let ac /= 0. Note that the eigenvalues λn(0) (resp., λn(π/2)), n ∈ N, of problem (1.1),
(1.2a)–(1.2c), and (1.2d′′) for δ = 0 (resp., for δ = π/2) are roots of the equation G(λ) =
−a/c (resp., G(λ) = c/a). The equation Aλ + B = −a/c (resp., Aλ + B = c/a) has a unique
solution λ = −d/c (resp., λ = −b/a). Since n > max{N + 2, K + 2}, in view of (3.29), G(λn) >
max{−a/c, c/a}. Hence, by (3.23), (3.24), and (3.29), the following relations hold for n > n1:

μn−2 < λn−2
(π
2

)
< νn−2 < λn−2(0) < λn < μn−1 if

a

c
< 0,

μn−2 < λn−2(0) < νn−1 < λn−1
(π
2

)
< λn < μn−1 if

a

c
> 0.

(5.2)
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Let a = 0. In this case μn = λn(π/2), νn = λn(0), n ∈ N. Since n > N + 2, so G(λn) > 0.
Then, by the equality G(λn) = Aλn + B, n ∈ N, we obtain

λn−2
(π
2

)
< λn−2(0) < λn < λn−1

(π
2

)
< λn−1(0), n > n1. (5.3)

Now let c = 0. In this case μn = λn(0), νn = λn(π/2), n ∈ N. Since n > K + 2, so G(λn) > 0.
Therefore, using G(λn) = Aλn + B, we have

λn−2(0) < λn−1
(π
2

)
< λn < λn−1(0), n > n1. (5.4)

Relations (5.1) are consequences of relations (5.2)–(5.4).
The proof of Lemma 5.1 is complete.

We define numbers χ, χn, n ∈ N, as follows:

χ =

⎧
⎪⎪⎨

⎪⎪⎩

3
(
1 + s
(
β, |c|))

4
if γ ∈

(
0,
π

2

]
,

5
4
− 3
8

(
(−1)sgn β + (−1)sgn |c|

)
if γ = 0,

χn =

(
n − χ)π

l
.

(5.5)

Using relations (5.1) and formulas (3.16), (3.17), the following corresponding
reasoning [18, Theorem 3.1] can be proved.

Theorem 5.2. The following asymptotic formulae hold:

4
√
λn = χn +O

(
n−1
)
,

yn(x) = z
(
x, χn
)
+O
(
n−1
)
,

(5.6)

where relation (5.6) holds uniformly for x ∈ [0, l].

6. Necessary and Sufficient Conditions of Basicity of
Root Function System of Problem (1.1), (1.2a)–(1.2d)

Note that the element ŷn = {yn(x), mn}, n ∈ N, of the system {ŷn}∞n=1 of the root vectors of
operator L satisfies the relation

Lŷn = λnŷn + θnŷn−1, (6.1)

where θn equals either 0 (at that ŷn is eigenvector) or 1 (at that λn = λn−1 and ŷn is associated
vector) (see, e.g., [38]).
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Theorem 6.1. The system of eigen- and associated functions of operator L is a Riesz basis in the space
H.

Proof. Let μ be a regular value of operator L, that is, Rμ = (L − μI)−1 exists and a bounded in
H. Then, problem (2.4) is adequate to the following problem of eigenvalues:

Rμŷ =
(
λ − μ)−1ŷ, ŷ ∈ D(L). (6.2)

By Lemma 2.1, Rμ is a completely continuous J-selfadjoint operator in Π1. Then, in
view of [39] the system of the root vectors of operator Rμ (hence of operator L) forms a Riesz
basis inH. Theorem 6.1 is proved.

Let {υ̂∗n}∞n=1, where υ̂∗n = {υ∗n(x), s∗n}, be a system of the root vectors of operator L∗, that
is,

L∗υ̂∗n = λnυ̂∗n + θn+1υ̂
∗
n+1. (6.3)

By Lemma 2.2 and relations (6.1), (6.3) we have the following.

Lemma 6.2. υ̂∗n = Jŷn(ŷn = {yn(x), mn}) if �(λn) = 1; υ̂∗n = Jŷ∗n+1 + c̃nJŷn, υ̂
∗
n+1 = Jŷn if

�(λn) = 2; υ̂∗n = Jŷ∗n+2 + d̃nJŷ
∗
n+1h̃nJŷ

∗
n, υ̂

∗
n+1 = Jŷ∗n+1 + d̃nJŷn, υ̂

∗
n+2 = Jŷn if �(λn) = 3, where

ŷ∗n+1 = {y∗n+1(x), m∗n+1}, mn+1 = m′(λn), ŷ∗n+2 = {y∗n+2(x), m∗n+2},m∗n+2 = (1/2)m′′(λn), c̃n, d̃n, h̃n
are arbitrary constants.

Lemma 6.3. Let

δ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ l

0
y2
n(x)dx + σ−1m2

n, if ρ(λn) = 1,
(
ŷn, ŷ

∗
n+1

)
Π1
, if ρ(λn) = 2,

∥∥ŷ∗n+1
∥∥2
Π1

if ρ(λn) = 3,

(6.4)

where ‖ · ‖Π1
is the norm inΠ1. Then, δn /= 0, n ∈ N.

Proof. By Remark 3.16, mn /= 0 if ŷn is the eigenvector of operator L. If �(λn) = 1, then
G′(λn)/=A, whence by (3.29), we get δn /= 0.

Let �(λn) = 2. Then, G′(λn) = A and G′′(λn)/= 0. Differentiating the right-hand side of
equality (3.29) on λ, we obtain

G′′(λ) =
2
(
a2 + c2

)

m2(λ)

{∫ l

0
y(x, λ)

∂y(x, λ)
∂λ

dx − m
′(λ)

m(λ)

∫ l

0
y2(x, λ)dx

}

. (6.5)

Assuming λ = λn in (6.5) and taking into account (3.29) and (2.6), we get

G′′(λn) = 2
(
a2 + c2

)
m−2n
(
yn, y

∗
n+1

)
Π1
. (6.6)

Since G′′(λn)/= 0, from the last equality it follows that δn /= 0.
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Now let �(λn) = 3, that is, G′(λn) = A and G′′(λn) = 0, G′′′(λn)/= 0. Differentiating the
right-hand side of (6.5) on λ, we have

G′′′(λ) = 2
(
a2 + c2

)
m−6(λ)

{{(∫ l

0

(
∂y(x, λ)
∂λ

)2

dx +
∫ l

0
y(x, λ)

∂2y(x, λ)
∂λ2

dx

)

m(λ)

−m′(λ)
∫ l

0
y(x, λ)

∂y(x, λ)
∂λ

dx −m′′(λ)
∫ l

0
y2(x, λ)dx

}

m(λ)

−3m′(λ)
{

m(λ)
∫ l

0
y(x, λ)

∂y(x, λ)
∂λ

dx −m′(λ)
∫ l

0
y2(x, λ)dx

}}

,

(6.7)

whence (supposing in that equality λ = λn), we obtain

G′′′(λn) = 2
(
a2 + c2

)
m−4n
{∥∥ŷ∗n+1

∥∥2
Π1

+ 2
(
ŷn, ŷ

∗
n+2
)
Π1

}
. (6.8)

By (6.1) and (6.3), we have

(
ŷn, ŷ

∗
n+2
)
Π1

=
∥∥ŷ∗n+1

∥∥2
Π1
; (6.9)

then taking into account (6.8), we get

δn =
∥∥ŷ∗n+1

∥∥2
Π1

=
1
6

(
a2 + c2

)−1
m4
nG
′′′(λn)/= 0. (6.10)

Lemma 6.3 is proved.

Lemma 6.4. The elements υ̂n = {υn(x), sn} of the system {υ̂n}∞n=1 conjugated to the system {ŷn}∞n=1
are defined by the equality

υ̂n = δ
−1
n υ̂∗n, (6.11)

where c̃n = −cn −δ−1n ‖ŷ∗n+1‖2Π1
if �(λn) = 2; d̃n = −dn −δ−1n (ŷ∗n+1, ŷ

∗
n+2)Π1

, h̃n = −hn −δ−1n ‖ŷ∗n+2‖2Π1
+

δ−2n (ŷ∗n+1, ŷ
∗
n+2)

2
Π1

+ dn(dn + δ−1n (ŷ∗n+1, ŷ
∗
n+2)Π1

) if �(λn) = 3.
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Proof. On the bases of (6.1), (6.3), (2.1), (2.6), and (6.9), we have

(
ŷn, υ̂

∗
n

)
= δn if �(λn) = 1;

(
ŷn, υ̂

∗
m

)
= 0 if �(λn) = �(λm) = 1, n /=m;

(
ŷn, υ̂

∗
m

)
= 0, m = k, k + 1,

(
ŷk, υ̂

∗
k+1

)
=
(
ŷk+1, υ̂

∗
k

)
=
∥
∥ŷ∗k+1

∥
∥2
Π1

+ (ck + c̃k)δk,
(
ŷk, υ̂

∗
k

)
=
(
ŷk+1, υ̂

∗
k+1

)
= δk if �(λn) = 1, �(λk) = 2;

(
ŷn, υ̂

∗
m

)
= 0,

(
ŷm, υ̂

∗
m

)
= δm, m = k, k + 1, k + 2,

(
ŷk, υ̂

∗
k+1

)
=
(
ŷk+1, υ̂

∗
k

)
=
(
y∗k+1, y

∗
k+2

)
Π1

+
(
dk + d̃k

)
δk,

(
ŷk, υ̂

∗
k+2

)
=
(
ŷk+2, υ̂

∗
k

)
=
∥
∥ŷ∗k+2

∥
∥2
Π1

+
(
dk + d̃k

)(
ŷ∗k+1, ŷ

∗
k+2

)
Π1

+
(
dkd̃k + hk + h̃k

)
δk if �(λn) = 1, �(λk) = 3.

(6.12)

Using relation (6.12) and taking into account (6.11), we get the validity of the equality

(
ŷn, υ̂k

)
= δnk , (6.13)

where δnk is the Kronecker delta. The proof of Lemma 6.4 is complete.

Corollary 6.5. (i) If �(λn) = 1, then sn /= 0; (ii) if �(λn) = 2, then sn+1 /= 0, sn /= 0 at cn /= c
(0)
n ,

sn = 0 at cn = c
(0)
n , where c(0)n = m−1n m

∗
n+1 − δ−1n ‖ŷ∗n+1‖2Π1

; (iii) if �(λn) = 3, then sn+2 /= 0,

sn+1 /= 0 at dn /=d
(0)
n , sn+1 = 0 at dn = d

(0)
n ; sn /= 0 at hn /=h

(0)
n , sn = 0 at hn = h

(0)
n , where

d0
n = m−1n m

∗
n+1 − δ−1n (ŷ∗n+1, ŷ

∗
n+2)Π1

, h(0)n = m−1n m
∗
n+2 − (dn + δ−1n (ŷ∗n+1, ŷ

∗
n+2)Π1

)(dn − m−1n m∗n+1) −
δ−1n ‖ŷ∗n+2‖2Π1

+ δ−2n (ŷ∗n+1, ŷ
∗
n+2)

2
Π1
.

Theorem 6.6. Let r be an arbitrary fixed integer. If sr /= 0, then the system {yn(x)}∞n=1, n /= r forms a
basis in Lp(0, l), p ∈ (1,∞), and even a Riezs basis in L2(0, l); if sr = 0, the system {yn(x)}∞n=1,n /= r is
neither complete nor minimal in Lp(0, l), p ∈ (1,∞).

Proof. By Theorem 7 in [40, Chapter 1, Section 4] and Theorem 6.1, the system {υ̂n}∞n=1 is a
Riesz basis inH. Then, for any vector f = {f, ξ} ∈ H, the following expansion holds:

f̂ =
{
f, ξ
}
=
∞∑

n=1

(
f̂ , ŷn
)

H
υ̂n =

∞∑

n=1

((
f, yn
)
L2

+ σ−1ξmn

)
{υn, sn}, (6.14)

whence it follows the equalities

f =
∞∑

n=1

((
f, yn
)
L2

+ σ−1ξmn

)
υn,

ξ =
∞∑

n=1

((
f, yn
)
L2

+ σ−1ξmn

)
sn.

(6.15)
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If ξ = 0, then by (6.15), we have

f =
∞∑

n=1

(
f, yn
)
L2
υn, (6.16)

0 =
∞∑

n=1

(
f, yn
)
L2
sn. (6.17)

Let sr /= 0. Then by (6.17), we obtain

(
f, yr
)
L2

= −s−1r
∞∑

n=1
n/= r

(
f, yn
)
L2
sn, (6.18)

considering which in (6.16), we get

f =
∞∑

n=1
n/= r

(
f, yn
)
L2

(
υn − s−1r snυr

)
. (6.19)

By (6.13) and (2.1), we have

(
yn, υk − s−1r skυr

)

L2
=
(
yn, υk

)
L2
− s−1r sk

(
yn, υr

)
L2

=
(
ŷn, υ̂k

)
H − |σ|−1mnsk − s−1r sk

(
yn, υr

)
L2

+ s−1r sk|σ|−1mnsr = δnk, n, k /= r,

(6.20)

that is, the system {υn(x) − s−1r snυr(x)}∞n=1,n /= r is conjugated to the system {yn(x)}∞n=1,n /= r . By
virtue of (6.19), the system {υn(x) − s−1r snυr(x)}∞n=1,n /= r is a Riesz basis in L2(0, l). Then, on the
base of Corollary 2 [40, Chapter 1, Section 4] {yn(x)}∞n=1,n /= r is also in a Riesz basis in L2(0, l).
The basicity of the system {yn(x)}∞n=1,n /= r in the space Lp(0, l), p ∈ (1,∞) \ {2}, can be proved
by scheme of the proof of Theorem 5.1 in [18] using Theorem 5.2.

Now let sr = 0. Then, by (2.1) and (6.13)we have

(
yn, υr

)
L2

=
(
ŷn, υ̂r

)
H − |σ|−1mnsr = 0, n ∈ N, n /= r. (6.21)

So, the function υτ(x) is orthogonal to all functions of the system {yn(x)}∞n=1, n /= r , that
is, the system {yn(x)}∞n=1, n /= r is incomplete in L2(0, l).

On the basis of Corollary 6.5 there exists k ∈ N such that sk /= 0 (e.g., if �(λk) = 1). Then,
for any f(x) ∈ L2(0, l) the following expansion holds:

f =
∞∑

n=1
n/= k

(
f, υn − s−1k snυk

)

L2
yn. (6.22)
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By (6.21) and (6.22), we get

yk =
∞∑

n=1
n/= k

(
yk, υn − s−1k snυk

)

L2
yn =

∞∑

n=1
n/= k,r

(
yk, υn − s−1k snυk

)

L2
yn +
(
yk, υr − s−1k srυk

)

L2
yr

=
∞∑

n=1
n/= k,r

((
yk, υn

)
L2
− s−1k sn

(
yk, υk

)
L2

)
yn

=
∞∑

n=1
n/= k,r

{(
ŷk, υ̂n

)
H − |σ|−1mksn − s−1k sn

(
ŷk, υ̂k

)
+ s−1k sn|σ|−1mksk

}
yn = −

∞∑

n=1
n/= k,r

s−1k snyn,

(6.23)

whence it follows the equality
∑∞

n=1,n /= r snyn = 0, that is, the system {yn(x)}∞n=1,n /= r is
nonminimal in L2(0, l).

Obviously, this system is neither complete nor minimal in Lp(0, l), p ∈ (1,∞)\{2}. The
proof of Theorem 6.6 is complete.

Corollary 6.7. If σ > 0, the system {yn(x)}∞n=1, n /= r (for any r ∈ N) is a basis in Lp(0, l), p ∈ (1,∞),
and even a Riesz basis for p = 2.
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vol. 1, pp. 373–444, 1836.

[33] W. Leighton and Z. Nehari, “On the oscillation of solutions of self-adjoint linear differential equations
of the fourth order,” Transactions of the American Mathematical Society, vol. 89, pp. 325–377, 1958.

[34] M. A. Naimark, Linear Differential Operators, Ungar, New York, NY, USA, 1967.
[35] R. Courant and A. Gurvitz, Theory of Functions, Nauka, Moscow, Russia, 1968.
[36] I. I. Privalov, Introduction to Theory of Complex Variable Functions, Nauka, Moscow, Russia, 1984.
[37] B. V. Shabat, Introduction to Complex Analysis, Nauka, Moscow, Russia, 1969.
[38] V. A. Ilin, “Unconditional basis property on a closed interval of systems of eigen- and associated

functions of a second-order differential operator,” Doklady Akademii Nauk SSSR, vol. 273, no. 5, pp.
1048–1053, 1983.



28 International Journal of Mathematics and Mathematical Sciences

[39] T. Y. Azizov and I. S. Iokhvidov, “Completeness and basisity criterion of root vectors of completely
continuous J– self-adjoint operator in Pontryagin space IIæ,” Matematicheskie Issledovaniya, Kishinev,
vol. 6, no. 1, pp. 158–161, 1971.

[40] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Translations of Mathematical Monographs, vol. 75,
American Mathematical Society, Providence, RI, USA, Nauka, Moscow, Russia, 1984.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


