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Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of
piezoelectric layers of 6mm class and an isotropic LEMV (Linear Elastic Materials with Voids)
layers is studied. The frequency equations are obtained for the traction free outer surface with
continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and
outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material) layers and the
dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models
with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced
plastics).

1. Introduction

Piezocomposite materials have drawn considerable attention in recent years due to their
potential application in ultrasonic and underwater transducers [1, 2]. Piezocomposites
have potential for higher electromechanical coupling coefficients, lower acoustic impedance,
higher piezoelectric voltage constants, and higher hydrostatic coefficients compared to con-
ventional dense materials. In addition, by changing the ceramic/polymer volume fractions,
the material parameters of a composite transducer can be altered to meet specific require-
ments for different applications [3]. Piezocomposites exist in various connectivities [4], with
0–3 [5], 1–3 [6], 2–2 [7], and 3–3 [8] being the most common for transducer applications.

The 1–3 piezocomposite system has been studied extensively and various modelling
and experimental studies have been reported in the literature [9, 10]. Although, 1–3
composites are highly useful for transducer applications, their production can be relatively
expensive [6]. The 3–3 piezocomposites are a possible alternative, with comparable material
properties and a relatively simple method of synthesis [8, 11]. Experimental studies on 3–3
piezoelectric structures indicate that they have a higher hydrostatic figure of merit [12–14]
compared to dense PZT hydrophones of similar design [8, 15, 16].
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Multilayer piezoelectric structures are widely applied as a smart structure in precise
apparatus.

Multilayer piezoelectric ceramic displacement actuator is a typical smart composite
structure and has wide application in precise apparatus [17, 18].

Damage detection and vibration control of a new smart board designed by mounting
piezoelectric fibers with metal cores on the surface of a CFRP composite were studied by
Takagi et al. [19]. Tanimoto [20] has discussed the passive damping of CFRP cantilever beam,
surface bonded by piezoelectric ceramics.

The exact frequency equation for piezoelectric circular cylindrical shell of hexagonal
(6mm) class was first obtained by Paul [21]. Paul and Nelson [22–25] have studied free
vibration of piezocomposite plate and cylinders by embedding LEMV-layer between piezoe-
lectric layers.

A general frequency equation is derived for axisymmetric vibration of an infinite lam-
inated hollow cylinder. Both the inner and outer surfaces are traction free and connected with
electrodes and are shorted. Numerical calculations are carried out for PZT4/LEMV/PZT4/
LEMV/PZT4. The attenuation effect is considered through the imaginary part of the dimen-
sionless complex frequency Sinha et al. [26].

2. Fundamental Equations and Method of Analysis

The cylindrical polar coordinate system (r, θ, z) is used for composite piezoelectric cylinder.
The superscripts � = 1, 3, 5 are taken to denote the inner solid, middle, and outer hollow
piezoelectric cylinders, respectively.

The governing equations for hexagonal (6mm) class are Paul and Nelson (1996) [24].

c�11

(
u�
,rr + r−1u�

,r − r−2u�
)
+ c�44u

�
,zz +

(
c�44 + c�13

)
w�

,rz +
(
e�31 + e�15

)
φ�
,rz = ρ�u�

,tt,

(
c�44 + c�13

)(
u�
,rz + r−1u�

,z

)
+c�44

(
w�

,rr + r−1w�
,r

)
+ c�33w

�
,zz+ e�15

(
φ�
,rr + r−1φ�

,θθ

)
+ e�33φ

�
,zz=ρ

�w�
,tt,

(
e�31 + e�15

)(
u�
,rz + r−1u�

,z

)
+ e�15

(
w�

,rr + r−1w�
,r

)
+ e�33w

�
,zz − ε�11

(
φ�
,rr + r−1φ�

,r

)
− ε�33φ

�
,zz = 0.

(2.1)

Here u�, w� are the displacement components along r, z directions; φ� the potentials and c�ij :

elastic constants, e�ij : piezoelectric constants, ε�ij : dielectric constants, and ρ� : density of the
materials.

The comma followed by superscripts denotes the partial differentiation with respect to
those variables and t is the time.
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where p is the angular frequency, k wave number, and “h” is the inner radius of the cylinder.
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Substituting (2.2) along with the dimensionless variables x = r/h and ε = kh (k =
2π/wave length) in (2.1) yields the following equation for the inner and outer cylinder.
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Equation (2.3) can be expressed as
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For isotropic LEMV materials, the governing equations are

μ�∇2u� +
(
λ� + μ�

)
∇∇ · u� = ρ�u�

,tt, (2.10)

where

u� is the displacement vector,

λ� = c12, μ
� = (c11 − c12)/2 are Lame’s constants,

ρ� is the mass density and t is the time.
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The solution of (2.10) is taken as
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Using the solution in (2.11) and the dimensionless variables x and ∈, equation (2.10) can be
simplified as
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3. Boundary Interface Conditions and Frequency Equations

The frequency equations can be obtained by using the following boundary and interface con-
ditions.

(i) On the traction free inne outer surface T�
rr = T�

rz = φ� = 0 with � = 1, 5.

(ii) At the interface between (outer and middle and middle and inner) cylinders T�
rr =

Trr , T�
rz = Trz, u� = u, w� = w, φ� = 0, with � = 1, 2, 3, 4, 5.

The frequency equation is obtained as a 26 × 26 determinant equation by substituting
the solutions in the boundary interface conditions. It is written as
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and the nonzero elements by varying j from 1 to 3 and k varies from 1 to 2 are
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and the other elements D(i, j + 3) (i = 1, 2, 3, . . . , 8; j = 1, 2, 3) and D(i, k + 8) (i = 4, 5, 6, 7; k =
1, 2) are obtained by replacing Jn and Jn+1 by Yn and Yn+1 in the above elements.

At the inter face x = x2, non zero elements along the following rows D(i, j), (i =
9, 10, 11, 12, 13) (j = 7, 8, 9, . . . , 16) are obtained on replacing x1 by x2 and super script 1 by 2
in order. The non-zero elements at the second interface are, D(i, j), (i = 14, 15, 16, 17, 18) (j =
11, 12, 13, . . . , 20) can be obtained by assigning x3 for x4 and superscript 4 for 3. The non zero
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Figure 1: (a) A three-layered piezocomposite solid cylinder. (b) A three-layered piezocomposite hollow
cylinder. (c) a Five-Layered Piezocomposite Solid Cylinder.

elements at the third layer are, D(k, j), ((i = 19, 20, 21, 22, 23) and j = 17, 18, 19, . . . , 26) are
obtained on replacing x4 by x5. Similarly, at the outer surface x = x5, the nonzero elements
D(i, j), (i = 24, 25, 26) (j = 21, 22, 23, 24, 25, 26) can be had from the nonzero elements of the
first four rows by assigning x5 for x0 and superscript 2 for 1. The frequency equations derived
above are valid for different inner solid, middle and outer hollowmaterials of 6mm class and
arbitrary thickness of layers.

4. Piezocomposite Cylindrical Models

A three-layered Piezocomposite solid/hollow cylinder made of Cermaic-1/Adhesive/
Ceramic-2 and a five-layered Piezocomposite solid cylinder made of Cermaic-1/Adhesive1/
Ceramic-2/Adhesive2/Ceramic-3 considered for deriving frequency equations in various
types of vibrations (Figure 1).

5. Numerical Results

The frequency equation (3.1) and corresponding equation are numerically evaluated for
PZT4/CFRP/PZT4/CFRP/PZT4. Material Constants of CFRP bonding layer are taken from
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Table 1:Different value of complex frequencies for real wave numbers in the first axial mode of piezocom-
posite Hollow cylinder.

Wave no Frequencies

(ε) With middle core LEMV
(N = 0.33) [24]

With middle core
CFRP-3 layer [27]

With middle core
LEMV-5 layer

0.1 0.3269 + i 0.0622 0.2779 + i 0.0022 0.2081 + i 0.0000

0.4 0.4949 + i 0.1394 0.3515 + i 0.2519 0.4120 + i 0.0001

0.8 0.6768 + i 0.0011 0.7996 + i 0.0000 0.5230 + i 0.0000

1.2 1.1933 + i 0.0023 1.0986 + i 0.0001 0.8310 + i 0.0000

1.6 1.4775 + i 0.1255 1.3755 + i 0.0001 1.0000 + i 0.0000

2.0 1.6034 + i 0.2067 1.6998 + i 0.0016 1.2380+ i 0.0000

2.4 1.8824 + i 0.4089 2.0231 + i 0.0050 1.4000 + i 0.0000

2.8 2.0968 + i 0.0000 2.8000 + i 0.0000 1.6120 + i 0.0000

3.0 2.2816 + i 0.9168 3.0000 + i 0.0000 1.8000 + i 0.0000

Table 2: Different values of complex frequencies for real wave numbers in the second axial mode of piezo-
composite Hollow cylinder.

Wave no Frequencies

(ε) With middle core LEMV
(N = 0.33) [24]

With middle core
CFRP-3 layer [4]

With middle core
CFRP-5 layer

0.1 0.3865 + i 0.0755 0.7015 + i 0.2708 0.3000 + i 0.0000

0.4 0.5392 + i 0.1051 0.7581 + i 0.0019 0.5000 + i 0.0000

0.8 0.7020 + i 0.0289 0.8230 + i 0.0083 0.6120 + i 0.0001

1.2 1.2581 + i 0.0000 1.1999 + i 0.0000 0.0728 + i 0.0004

1.6 1.4854 + i 0.0006 1.5999 + i 0.0000 0.8250 + i 0.0000

2.0 1.6464 + i 0.0015 1.9996 + i 0.0000 0.9280 + i 0.0000

2.4 2.0180 + i 0.5477 2.3986 + i 0.0002 1.1000 + i 0.0000

2.8 2.1510 + i 0.7166 2.7998 + i 0.0000 1.3000 + i 0.0001

3.0 2.5692 + i 0.0038 3.0524 + i 0.1521 1.4000 + i 0.0007

Ashby and Jones [28]. The elastic piezoelectric and dielectric constants of PZT4 are taken
from Brelincourt et al. [29]. The roots of the frequency equations are calculated usingMuller’s
method. The complex frequencies for the axisymmetric waves in the first and second modes
are given in Tables 1 and 2. The attenuation in the case of piezocomposite with LEMV (5-
layer Model) as the middle core is more when compared to CFRP (3 layer model) [27].
Piezocomposite with LEMV (when N = 0.33) [24] as core material. The dispersion curves
for the real part of frequency against the dimensionless wave numbers are plotted for the
first and second axisymmetric mode in Figure 2. The bold, discontinuous, and dotted lines
indicate the dispersion curves in the axisymmetric vibrations of the piezolaminated-LEMV
(5-layer model), piezolaminated-CFRP (3-Layer Model) [27] and piezolaminated-LEMV
(withN = 0.33) [24] cylinders.
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Figure 2: (a) Comparison of dispersion curves of piezocomposite hollow cylinders PZT4/LEMV/PZT4/
LEMV/PZT4 (Bold line), PZT4/CFRP/PZT4 (Discontinuous line), and PZT4/LEMV (N = 0.33)/PZT4
(Dotted line) in the first axial mode. (b) Comparison of dispersion curves of piezocomposite hollow
cylinders PZT4/LEMV/PZT4/LEMV/PZT4 (Bold line), PZT4/CFRP/PZT4 (Discontinuous line) and
PZT4/LEMV (N = 0.33)/PZT4 (Dotted line) in the second axial mode.

6. Conclusion

The frequency equation for free axisymmetric vibration of piezolaminated multilayer hollow
cylinder with isotropic CFRP bonding layers is derived. The numerical results are carried
out for PZT4/LEMV/PZT4/LEMV/PZT4 and are compared with piezolaminated-CFRP
multilayer (3-layer) [27] hollow cylinder and piezolaminated-LEMV (3-layer) (With N =
0.33) [24] cylinder. It is observed from the numerical data that the attenuation effect in the
present model with LEMV bonding layers is low when compared to the piezolaminated-
LEMV (3-layer) (WithN = 0.33) [24] cylinder and piezolaminated-CFRPmultilayer (3-layer)
[27] hollow cylinder. Also the damping effect in the present five-layered model is low when
compared with three-layered CFRP hollow Piezocomposite models.
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[16] T. E. Gómez, F. Montero De Espinosa, F. Levassort et al., “Ceramic powder-polymer piezocomposites
for electroacoustic transduction: modeling and design,” Ultrasonics, vol. 36, no. 9, pp. 907–923, 1998.

[17] K. Uchino, “Electrostrictive actuators: materials and applications,” American Ceramic Society Bulletin,
vol. 65, no. 4, pp. 647–652, 1986.

[18] S. R. Winzer, N. Shankar, and A. P. Ritter, “Designing cofired multilayer electrostrictive actuators for
reliability,” Journal of the American Ceramic Society, vol. 72, no. 12, pp. 2246–2257, 1989.

[19] K. Takagi, H. Sato, andM. Saigo, “Damage detection and gain-scheduled control of CFRP smart board
mounting the metal core assisted piezoelectric fiber,” in Smart Structures and Materials 2005: Modeling,
Signal Processing, and Control, vol. 5757, pp. 471–480, San Diego, Calif, USA, March 2005.

[20] T. Tanimoto, “Carbon-fiber reinforced plastic passive composite damper by use of piezoelectric
polymer/ceramic,” Japanese Journal of Applied Physics, Part 1, vol. 41, no. 11, pp. 7166–7169, 2002.

[21] H. S. Paul, “Vibrations of circular cylindrical shells of piezoelectric silver iodide crystals,” Journal of
the Acoustical Society of America, vol. 40, pp. 1077–1080, 1966.

[22] H. S. Paul and V. K. Nelson, “Axisymmetric vibration of piezoelectric composite cylinders,” in
Proceedings of the 3rd international congress on Air and Structure-borne Sound and Vibration, vol. 1, pp.
137–144, 1994.

[23] H. S. Paul and V. K. Nelson, “Wave propagation in piezocomposite plates,” Proceedings of the Indian
National Science Academy—Part A, pp. 221–228, 1995.

[24] H. S. Paul and V. K. Nelson, “Axisymmetric vibration of piezocomposite hollow circular cylinder,”
Acta Mechanica, vol. 116, pp. 213–222, 1996.

[25] H. S. Paul and V. K. Nelson, “Flexural vibration of piezoelectric composite hollow cylinder,” Journal
of the Acoustical Society of America, vol. 99, no. 1, pp. 309–313, 1996.



12 International Journal of Mathematics and Mathematical Sciences

[26] B. K. Sinha, T. J. Plona, S. Kostek, and S.-K. Chang, “Axisymmetric wave propagation in fluid-loaded
cylindrical shells. I: theory,” Journal of the Acoustical Society of America, vol. 92, no. 2, pp. 1132–1143,
1992.

[27] V. K. Nelson and E. S. Nehru, “Flexural vibration of piezolaminated multilayer solid cylinder,”
International Journal of Computational and Applied Mathematics, vol. 2, no. 2, pp. 75–85, 2007.

[28] M. F. Ashby and D. R. H. Jones, Engineering Materials 2, Pergamon Press, London, UK, 1986.
[29] D. A. Brelincourt, D. R. Curran, and H. Jafee, Physical Acoustics, vol. 1, Academic Press, New York,

NY, USA, 1964.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


