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It is our purpose, in this paper, to prove strong convergence of Halpern-Ishikawa iteration method
to a common fixed point of finite family of Lipschitz pseudocontractive mappings. There is no
compactness assumption imposed either on C or on T. The results obtained in this paper improve
most of the results that have been proved for this class of nonlinear mappings.

1. Introduction

Let C be a nonempty subset of a real Hilbert space H. The mapping T : C → H is called
Lipschitz if there exists L ≥ 0 such that

∥
∥Tx − Ty

∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ C. (1.1)

If L = 1, then T is called nonexpansive, and if L < 1, then T is called a contraction. It
follows from (1.1) that every contraction mapping is nonexpansive and every nonexpansive
mapping is Lipschitz.

A mapping T : C → H is called α-strictly pseudocontractive [1] if for all x, y ∈ C there
exists α ∈ [0, 1) such that

〈

x − y, Tx − Ty
〉 ≤ ∥

∥x − y
∥
∥
2 − α

∥
∥(I − T)x − (I − T)y

∥
∥
2
. (1.2)

A mapping T is called pseudocontractive if

〈

x − y, Tx − Ty
〉 ≤ ∥

∥x − y
∥
∥
2
, ∀x, y ∈ C. (1.3)
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We note that (1.2) and (1.3) can be equivalently written as

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + α

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.4)

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 +

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C, (1.5)

respectively.
We observe from (1.4) and (1.5) that every nonexpansive mapping is α-strict pseu-

docontractive mapping and every α-strict pseudocontractive mapping is pseudocontractive
mapping, and hence class of pseudocontractive mappings is a more general class of
mappings. Furthermore, pseudocontractive mappings are related with the important class
of nonlinear monotonemappings, where a mapping Awith domain D(A) and range R(A) in
H is called monotone if the inequality

〈

x − y,Ax −Ay
〉 ≥ 0, (1.6)

holds for every x, y ∈ D(A). We note that T is pseudocontractive if and only if A := I − T
is monotone, and hence a fixed point of T , F(T) := {x ∈ D(T) : Tx = x} is a zero of A,
N(A) := {x ∈ D(A) : Ax = 0}. It is now well known (see, e.g., [2]) that if A is monotone,
then the solutions of the equation Ax = 0 correspond to the equilibrium points of some
evolution systems. Consequently, many researchers have made efforts to obtain iterative
methods for approximating fixed points of T , when T is pseudocontractive (see, e.g., [3–10]
and the references contained therein).

Let C be a closed subset of a Hilbert spaceH, and let T : C → C be a contraction. Then
the Picard iteration method given by

x0 ∈ C, xn+1 = Txn, n ≥ 1, (1.7)

converges to the unique fixed point of T . However, this Picard iteration method may not
always converge to a fixed point of T , when T is nonexpansive mapping. We can take, for
example, T to be the anticlockwise rotation of the unit disk in R

2 (with the Euclidean norm)
about the origin of coordinate of an angle, say, θ.

The scheme that has been used to approximate fixed points of nonexpansive mappings
is the Mann iteration method [5] given by

x0 ∈ C, xn+1 = (1 − αn)xn + αnTxn, n ≥ 0, (1.8)

where {αn} is a real sequence in the interval (0, 1) satisfying certain conditions. But it is worth
mentioning that the Mann iteration process does not always converge strongly to a fixed
point of nonexpansive mapping T . One has to impose compactness assumption on C (e.g.,
C is compact) or on T (e.g., T is semicompact) to get strong convergence of Mann iteration
method to a fixed point of nonexpansive self-map T (see, e.g., [11, 12]).

We also note that efforts to approximate a fixed point of a Lipschitz pseudocontractive
mapping defined even on a compact convex subset of a Hilbert space by Mann iteration
method proved abortive. One can see an example of a Lipschitz pseudocontractive self-map
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of a compact convex subset of a Hilbert space with a unique fixed point for which no Mann
sequence converges by Chidume andMutangadura [13]. This leads now to our next concern.

Can we construct an iterative sequence for approximating fixed point of the Lipschitz
pseudocontractive mappings?

In 1974, Ishikawa [14] introduced an iteration process which converges to a fixed point
of Lipschitz pseudocontractive self-map T of C, when C is compact. In fact, he proved the
following theorem.

Theorem I. If C is a compact convex subset of a Hilbert space H,T : C �→ C is a Lipschitz
pseudocontractive mapping and x0 is any point of C, then the sequence {xn}n≥0 converges strongly to
a fixed point of T , where {xn} is defined iteratively for each integer n ≥ 0 by

xn+1 = (1 − αn)xn + αnTyn, yn =
(

1 − βn
)

xn + βnTxn, (1.9)

here {αn}, {βn} are sequences of positive numbers satisfying the conditions

(i) 0 ≤ αn ≤ βn < 1, (ii) lim
n→∞

βn = 0, (iii)
∑

n≥0
αnβn = ∞. (1.10)

We observe that Theorem I imposes compactness assumption on C, and it is still an
open problemwhether or not scheme (1.9), known as the Ishikawa iterative method, can be used
to approximate fixed points of Lipschitz pseudocontractive mappings without compactness
assumption on C or on T .

In order to obtain a strong convergence theorem for pseudocontractive mappings
without the compactness assumption, Zhou [15] established the hybrid Ishikawa algorithm
for Lipschitz pseudocontractive mappings as follows:

yn = (1 − αn)xn + αnTxn,

zn =
(

1 − βn
)

xn + βnTyn,

Cn =
{

z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2

− αnβn
(

1 − 2αn − L2αn
2
)

‖xn − Txn‖2
}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ≥ 1.

(1.11)

He proved that the sequence {xn} defined by (1.11) converges strongly to PF(T)x0,
where PC is the metric projection fromH into C.

Recently, several authors (see, e.g., [16–18]) also used the hybrid Mann and hybrid
Ishikawa algorithm methods to obtain strong convergence to a fixed point of Lipschitz
pseudocontractive mappings. But it is worth mentioning that the hybrid schemes are not easy
to compute. They involve computation of Cn and Qn for each n ≥ 1.

Another iteration scheme was introduced and studied by Chidume and Zegeye [19]
with which they approximated fixed point of Lipschitz pseudocontractive mapping in a more
general real Banach space.
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Let K be a convex nonempty subset of real Banach space E, and let T : K → K be a
mapping. From arbitrary x1 ∈ K, define {xn}n≥1 by

xn+1 = (1 − λn)xn + λnTxn − λnθn(xn − x1), n ∈ N, (1.12)

where {λn}n≥1 and {θn}n≥1 are real sequences in (0, 1) satisfying the following conditions:
(i) limn→∞θn = 0; (ii) λn = o(θn); (iii)

∑∞
n=1 λnθn = ∞; (iv) limn→∞((θn−1/θn −

1)/λnθn) = 0, λn(1 + θn) < 1. Examples of real sequences which satisfy these conditions
are λn = 1/(n + 1)a and θn = 1 /(n + 1)b, where 0 < b < a and a + b < 1. They proved the
following theorem.

Theorem CZ. Let C be a nonempty closed convex subset of a reflexive real Banach space E with a
uniformly Gâteaux differentiable norm. Let T : C → C be a Lipschitz pseudocontractive mapping
with Lipschitz constant L > 0 and F(T)/= ∅. Suppose every closed convex and bounded subset of
K has the fixed point property for nonexpansive self-mappings. Let a sequence {xn}n≥1 be generated
iteratively by (1.12). Then {xn}n≥1 converges strongly to a fixed point of T .

Theorem CZ solves the open problem of approximating fixed point of Lipschitz
pseudocontractive mappings that has been in the air for many years. However, it is still
an open problem whether or not this scheme can be used to approximate a common fixed
point of a family of Lipschitz pseudocontractive mappings. Moreover, we observe that the
conditions on the real sequences {θn} and {λn} excluded the natural choice, θn = 1/(n + 1)
and λn = 1/(n + 1).

Our concern now is the following: can we construct an iterative sequence for a common
fixed point of a family of Lipschitz pseudocontractive mappings?

For a sequence {αn} of real numbers in [0, 1] and an arbitrary u ∈ C, let the sequence
{xn} in C be iteratively defined by x0 ∈ C :

xn+1 = αnu + (1 − αn)Txn, n ≥ 1. (1.13)

The recursion formula (1.13) known as Halpern scheme was first introduced in 1967 by
Halpern [20] in the framework of Hilbert spaces. He proved that {xn} convergs strongly
to a fixed point of nonexpansive self-mapping T of C.

Recently, considerable research efforts have been devoted to developing iterative
methods for approximating a common fixed point of a family of several nonlinear mappings
(see, e.g., [4, 21, 22]). In 1996, Bauschke [3] introduced the following Halpern-type iterative
process for approximating a common fixed point for a finite family of N nonexpansive self-
mappings. In fact, he proved the following theorem.

Theorem B. Let C be a nonempty closed convex subset of a Hilbert space H, and let T1, T2, . . . , TN
be a finite family of nonexpansive mappings of C into itself with F := F(T1TN · · · T2) = · · · =
F(TN−2 · · · T1TN)/= ∅. Let {αn} be a real sequence in [0, 1] which satisfies certain mild conditions.
Given points, x0 ∈ C, let {xn} be generated by

xn+1 = αn+1u + (1 − αn+1)Tn+1xn, n ≥ 0, (1.14)
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where Tn = Tn( mod N). Then {xn} converges strongly to PFu, where PFu : H → F is the metric
projection.

But it is worth mentioning that it is still an open problem whether or not this
scheme can be used to approximate a common fixed points of Lipschitz pseudocontractive
mappings?

In 2008, Zhou [22] studied weak convergence of an implicit scheme to a common fixed
point of finite family of pseudocontractive mappings. More precisely, he proved the following
theorem.

Theorem Z. Let E be a real uniformly convex Banach space with a Frêchet differentiable norm. Let
C be a closed convex subset of E, and let {Ti}ri=1 be a finite family of Lipschitzian pseudocontractive
self-mappings of C such that F := ∩r

i=1F(Ti)/= ∅. Let {xn} be defined by

xn = αnxn−1 + (1 − αn)Tnxn, n ≥ 1, (1.15)

where Tn = Tn( mod r). If {αn} is chosen so that αn ∈ (0, 1) with lim supn→∞αn < 1, then {xn}
converges weakly to a common fixed point of the family { Ti}ri=1.

Here, we remark that the scheme in Theorem Z is implicit, and the convergence is weak
convergence.

More recently, Zegeye et al. [23] proved the following strong convergence of Ishikawa
iterative process for a common fixed point of finite family of Lipschitz pseudocontractive
mappings.

Theorem ZSA (see [23]). Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let Ti : C → C, i = 1, 2, . . . ,N, be a finite family of Lipschitz pseudocontractive mappings with
Lipschitzian constants Li, for i = 1, 2, . . . ,N, respectively. Assume that the interior of F := ∩n

i=1F(Ti)
is nonempty. Let {xn} be a sequence generated from an arbitrary x0 ∈ E by

yn =
(

1 − βn
)

xn + βnTnxn,

xn+1 = (1 − αn)xn + αnTnyn, n ≥ 1,
(1.16)

where Tn := Tn( mod N) and {αn}, {βn} ⊂ (0, 1) satisfying certain appropriate conditions. Then, {xn}
converges strongly to a common fixed point of {T1, T2, . . . , TN}.

From Theorem ZSA, we observe that the assumption that the interior of F(T) is
nonempty is severe restriction.

Motivated by Halpern [20] and Zegeye et al. [23], it is our purpose, in this paper,
to prove strong convergence of Halpern-Ishikawa algorithm (3.3) to a common fixed point
of a finite family of Lipschitz pseudocontractive mappings. No compactness assumption is
imposed either on one of the mappings or on C. The assumption that interior of F(T) is
nonempty is dispensed with. Moreover, computation of closed and convex set Cn for each
n ≥ 1 is not required. The results obtained in this paper improve and extend the results of
Theorems I and ZSA, Zhou [15], Yao et al. [17], and Tang et al. [16].
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2. Preliminaries

In what follows we will make use of the following lemmas.

Lemma 2.1. Let H be a real Hilbert space. Then for any given x, y ∈ E, the following inequality
holds:

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, x + y
〉

. (2.1)

Lemma 2.2 (see [24]). LetC be a convex subset of a real Hilbert spaceH. Let x ∈ H. Then x0 = PCx
if and only if

〈z − x0, x − x0〉 ≤ 0, ∀z ∈ C. (2.2)

Lemma 2.3 (see [25]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤
(

1 − βn
)

an + βnδn, n ≥ n0, (2.3)

where {βn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: limn→∞βn = 0,
∑∞

n=1 βn = ∞,
and lim supn→∞δn ≤ 0. Then, limn→∞an = 0.

Lemma 2.4 (see [18]). Let H be a real Hilbert space, let C be a closed convex subset of H, and let
T : C → C be a continuous pseudocontractive mapping; then

(i) F(T) is closed convex subset of C;

(ii) (I − T) is demiclosed at zero; that is, if {xn} is a sequence in C such that xn ⇀ x and
Txn − xn → 0, as n → ∞, then x = T(x).

Lemma 2.5 (see [26]). Let {an} be sequences of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N
such thatmk → ∞,and the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1, ak ≤ amk+1. (2.4)

In fact,mk = max{j ≤ k : aj < aj+1}.

Lemma 2.6 (see [27]). Let H be a real Hilbert space. Then for all xi ∈ H and αi ∈ [0, 1] for
i = 1, 2, . . . , n such that α1 + α2 + · · · + αn = 1 the following equality holds:

‖α0x0 + α1x1 + · · · + αnxn‖2 =
n∑

i=0

αi‖xi‖2 −
∑

0≤i,j≤n
αiαj

∥
∥xi − xj

∥
∥
2
. (2.5)

3. Main Result

We now prove the following lemma and theorems.
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Lemma 3.1. Let C be a nonempty convex subset of a real Hilbert space H. Let Ti : C → C, i =
1, 2, . . . ,N, be a finite family of Lipschitz pseudocontractive mappings with constants Li, respectively.
Let S = θ1T1 +θ2T2 + · · ·+θNTN , where θ1 +θ2 + · · ·+θN = 1. Then S is Lipschitz pseudocontractive
mapping on C.

Proof. Let x, y ∈ C. Then

〈

Sx − Sy, x − y
〉

= θ1
〈

T1x − T1y, x − y
〉

+ θ2
〈

T2x − T2y, x − y
〉

+ · · · + θN
〈

TNx − TNy, x − y
〉

≤ θ1
∥
∥x − y

∥
∥
2 + θ2

∥
∥x − y

∥
∥
2 + · · · + θN

∥
∥x − y

∥
∥
2

=
∥
∥x − y

∥
∥
2
.

(3.1)

Hence S is pseudocontractive. Moreover, since

∥
∥Sx − Sy

∥
∥ =

∥
∥(θ1T1 + θ2T2 + · · · + θNTN)x − (θ1T1 + θ2T2 + · · · + θNTN)y

∥
∥

≤ θ1
∥
∥T1x − T1y

∥
∥ + θ2

∥
∥T2x − T2y

∥
∥ + · · · + θN

∥
∥TNx − TNy

∥
∥

≤ L
∥
∥x − y

∥
∥,

(3.2)

where L := max{Li : i = 1, 2, . . . ,N}, we get that S is L-Lipschitz. The proof is complete.

Let {Ti : i = 1, 2, . . . ,N} be a finite family of pseudocontractive mappings. The family
is said to satisfy condition (H) if 〈Tix − x, Tjx − x〉 ≥ 0, for i, j ∈ {1, 2, . . . ,N}.

Theorem 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert spaceH. Let Ti : C →
C, i = 1, 2, . . . ,N be a finite family of Lipschitz pseudocontractive mappings with Lipschitz constants
Li, respectively, satisfying condition (H). Assume that F :=

⋂N
i=1 F(Ti) is nonempty. Let a sequence

{xn} be a sequence generated from an arbitrary x1 = w ∈ C by

yn =
(

1 − βn
)

xn + βnSnxn,

xn+1 = αnw + (1 − αn)
(

γnSnyn +
(

1 − γn
)

xn

)

,
(3.3)

where Sn := θn,1T1+θn,2T2+· · ·+θn,NTN , for {θn,i} ⊆ [a, b] ⊂ (0, 1) such that θn,1+θn,2+· · ·+θn,N = 1,
for all n ≥ 1 and {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions: (i) 0 ≤ αn ≤ c < 1, for
all n ≥ 1 such that limn→∞αn = 0 and

∑
αn = ∞; (ii) 0 < α ≤ γn ≤ βn ≤ β < 1/[

√

(1 + L2) + 1], for
all n ≥ 1, for L := max{Li : i = 1, 2, . . . ,N}. Then, {xn} converges strongly to a common fixed point
of {T1, T2, . . . TN} nearest to x1 = w.
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Proof. Let p = PFw. Then from (3.3), Lemma 2.6, (1.5), and Lemma 3.1 we have the following:

∥
∥xn+1 − p

∥
∥
2 =

∥
∥αnw + (1 − αn)

(

γnSnyn +
(

1 − γn
)

xn

) − p
∥
∥
2

≤ αn

∥
∥w − p

∥
∥
2 + (1 − αn)

∥
∥γnSnyn +

(

1 − γn
)

xn − p
∥
∥
2

= αn

∥
∥w − p

∥
∥
2 + (1 − αn)

[

γn
∥
∥Snyn − p

∥
∥
2

+
(

1 − γn
)∥
∥xn − p

∥
∥
2 − γn

(

1 − γn
)∥
∥Snyn − xn

∥
∥
2
]

= αn

∥
∥w − p

∥
∥
2 + (1 − αn)γn

∥
∥Snyn − p

∥
∥
2

≤ αn

∥
∥w − p

∥
∥
2 + (1 − αn)γn

+
(
∥
∥yn − p

∥
∥
2 +

∥
∥yn − Snyn

∥
∥
2
)

+ (1 − αn)
(

1 − γn
)∥
∥xn − p

∥
∥
2

− γn
(

1 − γn
)

(1 − αn)
∥
∥Snyn − xn

∥
∥
2

= αn

∥
∥w − p

∥
∥
2 + (1 − αn)γn

∥
∥yn − p

∥
∥
2 + (1 − αn)γn

∥
∥yn − Snyn

∥
∥
2

+ (1 − αn)
(

1 − γn
)∥
∥xn − p

∥
∥
2 − γn

(

1 − γn
)

(1 − αn)
∥
∥Snyn − xn

∥
∥
2

+ (1 − αn)
(

1 − γn
)∥
∥xn − p

∥
∥
2 − γn(1 − αn)

(

1 − γn
)∥
∥Snyn − xn

∥
∥
2
.

(3.4)

In addition, we have that

∥
∥yn − Snyn

∥
∥
2 =

∥
∥
(

1 − βn
)(

xn − Snyn

)

+ βn
(

Snxn − Snyn

)∥
∥
2

=
(

1 − βn
)∥
∥xn − Snyn

∥
∥
2 + βn

∥
∥Snxn − Snyn

∥
∥
2

− βn
(

1 − βn
)‖xn − Snxn‖2

≤ (

1 − βn
)∥
∥xn − Snyn

∥
∥
2 + βnL

2∥∥xn − yn

∥
∥
2

− βn
(

1 − βn
)‖xn − Snxn‖2

=
(

1 − βn
)∥
∥xn − Snyn

∥
∥
2 + β3nL

2‖xn − Snxn‖2

− βn
(

1 − βn
)‖xn − Snxn‖2

=
(

1 − βn
)∥
∥xn − Snyn

∥
∥
2 + βn

(

L2β2n + βn − 1
)

‖xn − Snxn‖2,

(3.5)

||yn − p||2 = ∥
∥
(

1 − βn
)(

xn − p
)

+ βn
(

Snxn − p
)∥
∥
2

=
(

1 − βn
)∥
∥xn − p

∥
∥
2 + βn

∥
∥Snxn − p

∥
∥
2 − βn

(

1 − βn
)‖xn − Snxn‖2

≤ (

1 − βn
)∥
∥xn − p

∥
∥
2 + βn

[∥
∥xn − p

∥
∥
2+‖xn − Snxn‖2

]

− βn
(

1 − βn
)‖xn − Snxn‖2

=
∥
∥xn − p

∥
∥
2 + β2n‖xn − Snxn‖2.

(3.6)
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Substituting (3.5) and (3.6) into (3.4) we obtain that

∥
∥xn+1 − p

∥
∥
2 ≤ αn

∥
∥w − p

∥
∥
2 + (1 − αn)γn

[∥
∥xn − p

∥
∥
2 + β2n‖xn − Snxn‖2

]

+ (1 − αn)γn
[(

1 − βn
)∥
∥xn − Snyn

∥
∥
2 + βn

(

L2β2n + βn − 1
)

× ‖xn − Snxn‖2
]

+ (1 − αn)
(

1 − γn
)∥
∥xn − p

∥
∥
2

− γn
(

1 − γn
)

(1 − αn)
∥
∥Snyn − xn

∥
∥
2

+ (1 − αn)γnβ2n‖xn − Snxn‖2 + (1 − αn)γnβn
(

L2β2n + βn − 1
)

× ‖xn − Snxn‖2 +
[

(1 − αn)
(

1 − βn
)

γn − (1 − αn)
(

1 − γn
)

γn
]

× ∥
∥xn − Snyn

∥
∥
2

= αn

∥
∥w − p

∥
∥
2 + (1 − αn)

∥
∥xn − p

∥
∥
2 − (1 − αn)γnβn

(

1 − 2βn − L2β2n

)

× ‖xn − Snxn‖2 + (1 − αn)γn
(

γn − βn
)∥
∥xn − Snyn

∥
∥
2

= αn

∥
∥w − p

∥
∥
2 +

[

(1 − αn)γn + (1 − αn)
(

1 − γn
)]∥
∥xn − p

∥
∥
2
.

(3.7)

Since from (ii), we have that (γn − βn) ≤ 0 and 1 − 2βn − L2β2n ≥ 1 − 2β − L2β2 > 0 for all n ≥ 1,
(3.7) implies that

∥
∥xn+1 − p

∥
∥
2 ≤ αn

∥
∥w − p

∥
∥
2 + (1 − αn)

∥
∥xn − p

∥
∥
2

− (1 − αn)γnβn
(

1 − 2β − L2β2
)

‖xn − Snxn‖2

≤ αn

∥
∥w − p

∥
∥
2 + (1 − αn)

∥
∥xn − p

∥
∥
2
.

(3.8)

Thus, by induction,

∥
∥xn+1 − p

∥
∥
2 ≤ max

{∥
∥x1 − p

∥
∥
2
,
∥
∥w − p

∥
∥
2
}

, ∀n ≥ 1, (3.9)

which implies that {xn} and hence {yn} are bounded.
Furthermore, from (3.3), Lemma 2.1, and following the methods used in (3.7) we get

that

∥
∥xn+1 − p

∥
∥
2 =

∥
∥αn

(

w − p
)

+ (1 − αn)
[

γnSnyn +
(

1 − γn
)

xn − p
]∥
∥
2

≤ (1 − αn)
∥
∥γnSnyn +

(

1 − γn
)

xn − p
∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

= (1 − αn)γn
∥
∥Snyn − p

∥
∥
2 + (1 − αn)

(

1 − γn
)∥
∥xn − p

∥
∥
2

− γn
(

1 − γn
)

(1 − αn)
∥
∥Snyn − xn

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉
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≤ (1 − αn)γn
[∥
∥yn − p

∥
∥
2 +

∥
∥yn − Snyn

∥
∥
2
]

+ (1 − αn )
(

1 − γn
)∥
∥xn − p

∥
∥
2

− γn
(

1 − γn
)

(1 − αn)
∥
∥Snyn − xn

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

= (1 − αn)γn
∥
∥yn − p

∥
∥
2 + (1 − αn)γn

∥
∥yn − Snyn

∥
∥
2

+ (1 − αn)
(

1 − γn
)∥
∥xn − p

∥
∥
2 − γn

(

1 − γn
)

(1 − αn)
∥
∥Snyn − xn

∥
∥
2

≤ (1 − αn)γn
[∥
∥xn − p

∥
∥
2 + β2n‖xn − Snxn‖2

]

+ (1 − αn)γn

×
[(

1 − βn
)∥
∥xn − Snyn

∥
∥
2 + βn

(

L2β2n + βn − 1
)

‖xn − Snxn‖2
]

+ (1 − αn)
(

1 − γn
)∥
∥xn − p

∥
∥
2 − γn

(

1 − γn
)

(1 − αn)
∥
∥Snyn − xn

∥
∥
2

+ 2αn

〈

w − p, xn+1 − p
〉

≤ (1 − αn)
∥
∥xn − p

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

− (1 − αn)γnβn
(

1 − 2βn − β2nL
2
)∥
∥Snyn − xn

∥
∥
2

≤ (1 − αn)
∥
∥xn − p

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

− (1 − c)α2
(

1 − 2β − β2L2
)

‖Snxn − xn‖2

+ 2αn

〈

w − p, xn+1 − p
〉

.

(3.10)

On the other hand, using Lemma 2.6 and condition (H), we get that

||xn − Snxn||2 = ‖xn − (θn,1T1 + θn,2T2 + · · · + θn,NTN) xn‖2

= ‖θn,1(xn − T1xn) + θn,2(xn − T2xn) + · · · + θn,N(xn − TNxn)‖2

= θn,1‖xn − T1xn‖2 + θn,2‖xn − T2xn‖2 + · · · + θn,N‖xn − TNxn‖2

−
∑

1≤i,j≤N
θn,iθn,j

∥
∥Tixn − Tjxn

∥
∥
2

−
∑

1≤i,j≤N,i /= j

θn,iθn,j
[

‖Tixn − xn‖2 +
∥
∥xn − Tjxn

∥
∥
2
]

= θn,1[1 − θn,2 − θn,3 − · · · − θn,N]‖xn − T1xn‖2

+ θn,2[1 − θn,1 − θn,3 − θn,4 − · · · − θn,N]‖xn − T2xn‖2 . . .

+ θn,N[1 − θn,1 − θn,2 − θn,4 − · · · − θn,N]‖xn − TNxn‖2

≥ θn,1‖xn − T1xn‖2 + θn,2‖xn − T2xn‖2 + · · · + θn,N‖xn − TNxn‖2.

(3.11)
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Thus, substituting (3.11) into (3.10)we obtain that

∥
∥xn+1 − p

∥
∥
2 ≤ (1 − αn)

∥
∥xn − p

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

− (1 − c)α2
(

1 − 2β − β2L2
)

×
[

θn,1(1 − θn,2 − θn,3 − · · · − θn,N)‖xn − T1xn‖2

+ θn,2(1 − θn,1 − θn,3 − θn,4 − · · · − θn,N)‖xn − T2xn‖2 . . .

+ θn,N(1 − θn,1 − θn,2 − θn,4 − · · · − θn,N−1)‖xn − TNxn‖2
]

(3.12)

≤ (1 − αn)
∥
∥xn − p

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

. (3.13)

Now, we consider the following two cases.

Case 1. Suppose that there exists n0 ∈ N such that {||xn − p||} is nonincreasing. Then, we get
that {||xn − p||)} is convergent. Thus, from (3.12) and the fact that αn → 0, as n → ∞, we
have that

xn − Tixn −→ 0, as n −→ ∞, (3.14)

for each i = 1, 2, . . . ,N. Let zn = γnSnyn + (1 − γn)xn. Then from (3.3)we obtain that

xn+1 − zn = αn(w − zn) −→ 0, as n −→ ∞ . (3.15)

Furthermore, from (3.3) and (3.14)we get that

∥
∥yn − xn

∥
∥ =

∥
∥βn(Snxn − xn)

∥
∥ ≤ ‖Snxn − xn‖

≤ θn,1‖T1xn − xn‖ + θn,2‖T2xn − xn‖ + · · · + θn,N‖TNxn − xn‖ −→ 0,
(3.16)

as n → ∞, and hence (3.16) and the fact that Sn is L-Lipschitz imply that

‖zn − xn‖ =
∥
∥γn

(

Snyn − xn

)∥
∥ =

∥
∥γn

(

Snyn − Snxn

)

+ γn(Snxn − xn)
∥
∥

≤ γnL
∥
∥yn − xn

∥
∥ + γn‖Snxn − xn‖ −→ 0, as n −→ ∞.

(3.17)

Now, (3.15) and (3.17) imply that

xn+1 − xn −→ 0, as n −→ ∞ . (3.18)

Moreover, since {xn} is bounded and E is reflexive, we choose a subsequence {xni+1}
of {xn} such that xni+1 ⇀ z and lim supn→∞〈w − p, xn+1 − p〉 = limi→∞〈w − p, xni+1 − p〉. This
implies from (3.18) that xni ⇀ z. Then, from (3.14) and Lemma 2.4 we have that z ∈ F(Ti),



12 International Journal of Mathematics and Mathematical Sciences

for each i = 1, 2, . . . ,N. Hence, z ∈ ∩N
i=1F(Ti). Therefore, by Lemma 2.2, we immediately obtain

that

lim sup
n−→∞

〈

w − p, xn+1 − p
〉

= lim
i→∞

〈

w − p, xni+1 − p
〉

=
〈

w − p, z − p
〉 ≤ 0.

(3.19)

Then, since from (3.13) we have that

∥
∥xn+1 − p

∥
∥
2 ≤ (1 − αn)

∥
∥xn − p

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

. (3.20)

It follows from (3.20), (3.19), and Lemma 2.3 that ||xn − p|| → 0, as n → ∞.
Consequently, xn → p.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

∥
∥xni − p

∥
∥ <

∥
∥xni+1 − p

∥
∥, (3.21)

for all i ∈ N. Then, by Lemma 2.5, there exists a nondecreasing sequence {mk} ⊂ N such that
mk → ∞, ||xmk − p|| ≤ ||xmk+1 − p|| and ||xk − p|| ≤ ||xmk+1 − p|| for all k ∈ N. Now, from (3.12)
and the fact that αn → 0, we get that xmk − Tixmk → 0, as k → ∞, for each i = 1, 2, . . . ,N.
Thus, as in Case 1, we obtain that xmk+1 − xmk → 0 and that

lim sup
k→∞

〈

w − p, xmk+1 − p
〉 ≤ 0. (3.22)

Now, from (3.13) we have that

∥
∥xmk+1 − p

∥
∥
2 ≤ (1 − αmk)

∥
∥xmk − p

∥
∥
2 + 2αmk

〈

w − p, xmk+1 − p
〉

, (3.23)

and hence, since ‖xmk − p‖2 ≤ ‖xmk+1 − p‖2, (3.23) implies that

αmk

∥
∥xmk − p

∥
∥
2 ≤ ∥

∥xmk − p
∥
∥
2 − ∥

∥xmk+1 − p
∥
∥
2 + 2αmk

〈

w − p, xmk+1 − p
〉

≤ 2αmk

〈

w − p, xmk+1 − p
〉

.
(3.24)

But noting that αmk > 0, we obtain that

∥
∥xmk − p

∥
∥
2 ≤ 2

〈

w − p, xmk+1 − p
〉

. (3.25)

Then, from (3.22)we get that ||xmk −p|| → 0, as k → ∞. This together with (3.23) gives
that ||xmk+1 − p|| → 0, as k → ∞. But ||xk − p|| ≤ ||xmk+1 − p||, for all k ∈ N; thus we obtain
that xk → p. Therefore, from the previous two cases, we can conclude that {xn} converges
strongly to an element of F, and the proof is complete.

If, in Theorem 3.2, we consider single Lipschitz pseudocontractive mapping, then the
assumption of condition (H) is not required. In fact, we have the following corollary.
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Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let T :
C → C be a Lipschitz pseudocontractive mapping with Lipschitz constants L. Assume that F(T) is
nonempty. Let a sequence {xn} be a sequence generated from an arbitrary x1 = w ∈ C by

yn =
(

1 − βn
)

xn + βnTxn,

xn+1 = αnw + (1 − αn)
(

γnTyn +
(

1 − γn
)

xn

)

,
(3.26)

where {αn}, {βn} ⊂ (0, 1) satisfying the following conditions: (i) 0 < αn ≤ c < 1, for all n ≥ 1 such
that limn→∞αn = 0 and

∑
αn = ∞; (ii) 0 < α ≤ γn ≤ βn ≤ β < 1/[

√

(1 + L2 ) + 1], for all n ≥ 1.
Then, {xn} converges strongly to a fixed point of T nearest to x1 = w.

Proof. Putting Sn := T in (3.3) the scheme reduces to scheme (3.26), and following the method
of proof of Theorem 3.2 we get that (see, (3.10))

∥
∥xn+1 − p

∥
∥
2 ≤ (1 − αn)

∥
∥xn − p

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

− (1 − αn)γnβn
(

1 − 2β − β2L2
)

‖Txn − xn‖2

≤ (1 − αn)
∥
∥xn − p

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

− (1 − c)γnβn
(

1 − 2β − β2L2
)

‖Txn − xn‖2

≤ (1 − αn)
∥
∥xn − p

∥
∥
2 + 2αn

〈

w − p, xn+1 − p
〉

.

(3.27)

Now, considering cases as in the proof of Theorem 3.2 we obtain the required result.
We now state and prove a convergence theorem for a common zero of finite family of

monotone mappings.

Corollary 3.4. Let H be a real Hilbert space. Let Ai : H → H, i = 1, 2, . . . ,N be a finite family
of Lipschitz monotone mappings with Lipschitz constants Li, respectively, satisfying 〈Aix,Ajx〉 ≥ 0,
for all i, j ∈ {1, 2, . . . ,N}.

Assume that F :=
⋂N

i=1 N(Ai) is nonempty. Let a sequence {xn} be generated from an arbitrary
x1 ∈ H by

yn = xn − βnAnxn,

xn+1 = αnw + (1 − αn)
(

xn − γnAnyn

)

,
(3.28)

whereAn := θn,1A1+θn,2A2+· · ·+θn,NAN , for {θn,i} ⊆ [a, b] ⊂ (0, 1) such that θn,1+θn,2+· · ·+θn,N =
1, for all n ≥ 1 and {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions: (i) 0 < αn ≤ c < 1,
for all n ≥ 0 such that limn→∞αn = 0 and

∑
αn = ∞; (ii) 0 < α ≤ γn ≤ βn ≤ β < 1/[

√

(1 + L2 )+1],
for all n ≥ 1, for L := max{(1 + Li) : i = 1, 2, . . . ,N}. Then, {xn} converges strongly to a common
zero point of {A1, A2, . . . AN} nearest to x1 = w.

Proof . Let Tix := (I − Ai)x, for i = 1, 2, . . . ,N. Then we get that every Ti for all i ∈ {1,
2, . . . ,N} is Lipschitz pseudocontractive mapping with Lipschitz constants L′

i := (1 + Li) and
∩N
i=1F(Ti) = ∩N

i=1(Ai)/= ∅. Moreover, whenAn is replaced with (I−Tn), for each i ∈ {1, 2, . . . ,N},
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we get that scheme (3.28) reduces to scheme (3.3), and hence the conclusion follows from
Theorem 3.2.

If, in Corollary 3.4 we consider a single Lipschitz monotone mapping, then we obtain
the following corollary.

Corollary 3.5. Let H be a real Hilbert space. Let A : H → H be Lipschitz monotone mappings
with Lipschitz constant L. Assume thatN(A) is nonempty. Let a sequence {xn} be generated from an
arbitrary x1 ∈ H by

yn = xn − βnAxn,

xn+1 = αnw + (1 − αn)
(

xn − γnAyn

)

,
(3.29)

where {αn}, {βn}, {γn} ⊂ (0, 1) satisfying the following conditions: (i) 0 < αn ≤ c < 1, for all n ≥ 1
such that limn→∞αn = 0 and

∑
αn = ∞; (ii) 0 < α ≤ γn ≤ βn ≤ β < 1/[

√

(1 + L2 ) + 1],
for all n ≥ 1. Then, {xn} converges strongly to a zero point of A nearest to x1 = w.

We now give examples of Lipschitz pseudocontractive mappings satisfying condition
(H). Let X := R and C := [−24, 3] ⊂ R. Let T1, T2 := C → C be defined by

T1x :=

{

x, x ∈ [−24, 0),
x − x3, x ∈ [0, 3],

T2x :=

{

x, x ∈ [−24, 2),
3x − x2, x ∈ [2, 3].

(3.30)

Then we observe that F(T1) = [−24, 0],and F(T2) = [−24, 2], and hence common
fixed point of T1 and T2 is [−24, 0] which is nonempty. Now, we show that T1 and T2 are
pseudocontractive mappings. But, since

A1x := (I − T1)x =

{

0, x ∈ [−24, 0),
x3, x ∈ [0, 3],

A2x := (I − T2)x =

{

0, x ∈ [−24, 2),
−2x + x2, x ∈ [2, 3]

(3.31)

are monotone, we have that T1 and T2 are pseudocontractive mappings.
Now, we show that T1 and T2 are Lipschitzian mappings. First, we show that T1 is

Lipschitzian with constant L = 28. Let C1 = [−24, 0), C2 = [0, 3]. If x, y ∈ C1, then we have
that

∣
∣T1x − T1y

∣
∣ =

∣
∣x − y

∣
∣ ≤ 28

∣
∣x − y

∣
∣. (3.32)
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If x, y ∈ C2,then we have that

∣
∣T1x − T1y

∣
∣ =

∣
∣
∣x − x3 −

(

y − y3
)∣
∣
∣ ≤

∣
∣x − y

∣
∣ +

∣
∣
∣x3 − y3

∣
∣
∣

=
∣
∣x − y

∣
∣ +

∣
∣x − y

∣
∣

∣
∣
∣x2 + xy + y2

∣
∣
∣

=
(

1 +
∣
∣
∣x2 + xy + y2

∣
∣
∣

)∣
∣x − y

∣
∣ ≤ 28

∣
∣x − y

∣
∣.

(3.33)

If x ∈ C1 and y ∈ C2, then we get that

∣
∣T1x − T1y

∣
∣ =

∣
∣
∣x −

(

y − y3
)∣
∣
∣ ≤

∣
∣x − y

∣
∣ +

∣
∣
∣y3

∣
∣
∣ =

∣
∣x − y

∣
∣ + y2∣∣y

∣
∣

≤ ∣
∣x − y

∣
∣ + y2∣∣y − x

∣
∣ =

(

y2 + 1
)∣
∣x − y

∣
∣

≤ 10
∣
∣x − y

∣
∣ ≤ 28

∣
∣x − y

∣
∣.

(3.34)

Therefore, from (3.32), (3.33), and (3.34), we obtain that T1 is Lipschitz.
Next, we show that T2 is Lipschitz with constant L = 9.
Let D1 = [−24, 2), D2 = [2, 3]. If x, y ∈ D1, then we have that

∣
∣T2x − T2y

∣
∣ =

∣
∣x − y

∣
∣ ≤ 9

∣
∣x − y

∣
∣. (3.35)

If x, y ∈ D2,then we get that

∣
∣T2x − T2y

∣
∣ =

∣
∣
∣3x − x2 −

(

3y − y2
)∣
∣
∣ ≤ 3

∣
∣x − y

∣
∣ +

∣
∣
∣x2 − y2

∣
∣
∣

= 3
∣
∣x − y

∣
∣ +

∣
∣x − y

∣
∣
∣
∣x + y

∣
∣

≤ (

3 +
∣
∣x + y

∣
∣
)∣
∣x − y

∣
∣ ≤ 9

∣
∣x − y

∣
∣.

(3.36)

If x ∈ D1 and y ∈ D2 then we have that

∣
∣T2x − T2y

∣
∣ =

∣
∣
∣x −

(

3y − y2
)∣
∣
∣ ≤

∣
∣x − y

∣
∣ +

∣
∣
∣y2 − 2y

∣
∣
∣ (3.37)

and for x ∈ [0, 2) (3.37) implies that

∣
∣T2x − T2y

∣
∣ ≤ ∣

∣x − y
∣
∣ +

∣
∣
∣y2 − 2y −

(

x2 − 2x
)∣
∣
∣

≤ ∣
∣x − y

∣
∣ + 2

∣
∣x − y

∣
∣ +

∣
∣x − y

∣
∣
∣
∣x + y

∣
∣

≤ (

3 +
∣
∣x + y

∣
∣
)∣
∣x − y

∣
∣ ≤ 9

∣
∣x − y

∣
∣.

(3.38)
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For x ∈ [−24, 0) inequality (3.37) gives that

∣
∣T2x − T2y

∣
∣ ≤ ∣

∣x − y
∣
∣ +

∣
∣y − 2

∣
∣
∣
∣y

∣
∣,

≤ ∣
∣x − y

∣
∣ +

∣
∣y − 2

∣
∣
∣
∣y − x

∣
∣

=
(

1 +
∣
∣y − 2

∣
∣
)∣
∣x − y

∣
∣

≤ 2
∣
∣x − y

∣
∣ ≤ 9

∣
∣x − y

∣
∣.

(3.39)

Therefore, from (3.35), (3.36), and (3.39) we obtain that T2 is Lipschitz. Furthermore,
we show that T1 and T2 satisfy condition (H). If x ∈ D1,thenwe have that 〈T1x−x, T2x−x〉 = 0,
and if x ∈ D2 we get that 〈T1x − x, T2x − x〉 = 〈x − x3 − x, (3x − x2) − x〉 = 〈−x3, 2x − x2〉 =
−x3(2x − x2) ≥ 0. Therefore, T1 and T1 satisfy property (H).

Remark 3.6. Theorem 3.2 provides convergence sequence to a common fixed point of
finite family of Lipschitzian pseudocontractive mappings whereas Corollary 3.4 provides
convergence sequence to a common zero of finite family of monotone mappings in Hilbert
spaces. No compactness assumption is imposed either on T or C. This provides affirmative
answer to the question raised.

Remark 3.7. Theorem 3.2 improves Theorem I, Theorem 3.1 of Zhou [15], Theorem 3.1 of Yao
et al. [17], and Theorem 3.1 of Tang et al. [16] in the sense that either our convergence does
not require compactness of T or computation of Cn+1 from Cn for each n ≥ 1.

Remark 3.8. Theorem 3.2 improves Theorems I and ZSA in the sense that our convergence is
for a fixed point of a finite family of Lipschitz pseudocontractive mappings. The condition
that interior of F(T) is nonempty is dispensed with.
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