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Let R(D) be the algebra generated in Sobolev space W (D) by the rational functions with poles

outside the unit disk D. In this paper, we study the similarity invariant of the multiplication
operators M, in £(R(ID)), when g is univalent analytic on D or M is strongly irreducible. And
the commutants of multiplication operators whose symbols are composite functions, univalent
analytic functions, or entire functions are studied.

1. Introduction

Let Q be an analytic Cauchy domain in the complex plane and let W?2(Q) denote the Sobolev
space,

B 3 2 _ the distributional partial derivatives of first
W) = {f €L(Q,dA): and second order of f belong to L?(Q,dA) |’ (1.1
dA denotes the planar Lebesgue measure. For f, g € W?(Q), we define
(f.8)=2, ID”’fD“gdA. (12)

Jar|<2
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Then W?(Q) is a Hilbert space and a Banach algebra with identity under an equivalent norm.
W?2(Q) can be continuously embedded in the space C (Q) of continuous functions on Q by
Sobolev embedding theorem.

Let R(Q) be the subalgebra generated by the rational functions with poles outside
Q. When Q = D, the unit disc, we call R(D) Sobolev disk algebra. For f € R(D), the
multiplication operator My on R(D) is defined by M((g) = fg, § € R(D). Then R(D) =
A (M)ep, where e is the identity in R(D) and & (M) is the algebra generated by M. and
identity. In fact, R(D) consists of all analytic functions in W??(ID). We have the following
properties of the space R(DD) and the multiplication operators on it.

Proposition 1.1 (see [1]). (i) Hilbert space R(D) has an orthogonal basis {e, },%, where

1/2
n+1
en = nznr n = , n=0,1,2,.... 1.3

p p [(3n4—n2+2n+1).7r] (13)

(ii) As a functional Hilbert space, R(D) has reproducing kernel which is

k(u,0) = Y pru"s". (1.4)
n=0
Then for zy € D,
ey = 5 (B2%) 2" (15)
n=0

(iii) I f(z) = 3% fuz" is analytic on D, then f(z) € R(D) if and only if 3% | fl*/ 3 <
+00.
(iv) The operator My admits the following matrix representation with respect to {ey},%:

[ @ )

Clg—? Co 0
Mf: ng_z Cl:g_l o . (1.6)
fo P P2
C3ﬂ3 C2ﬂ3 C1ﬁ3 Co

\ )

Note that R(D) is a subset of the disk algebra A(ID), hence a subset of H*. Because of
the special definition of the inner product and the complex behavior of the boundary value,
the structure of the space R(D) is much more complicated than H* or H?. For more details
about the Sobolev disk algebra, the reader refers to [1-3].
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Let # be a complex separable Hilbert space and £(#) denote the collection of
bounded linear operators on . One of the basic problems in operator theory is to determine
when two operators A and B in £(H) are similar. A quantity (quantities) or a property
(properties) P is similarity invariant (invariants) if A has P and A ~ B implies that B has
P [2]. From this point of view, one of the basic problems in operator theory mentioned
above is to determine the similarity invariants. There have already been a lot of results on
the similarity invariants of operators, especially that of nonadjoint operators, which can be
found in, for example, [4-6]. In [7], Wang et al. proved that in R(D), My is similar to M_» if
and only if f is an n-Blaschke product. In this paper, we study the similarity invariant of the
multiplication operators M, in £(R(ID)), when g is univalent analytic on D or My is strongly
irreducible.

It is well known that the commutant of a bounded linear operator or operators on
a complex, separable Hilbert space plays an important role in determining the structure of
this operator or these operators. The commutant of a multiplication operator on Sobolev
disk algebra has been studied in the literature (see [1-3]). In this paper, we describe the
commutant of the multiplication operator M ¢, when g is an n-Blaschke product. And by this
result, we generalize the result which is obtained by Liu and Wang in [3]. Moreover, we study
the commutants of the multiplication operators whose symbols are composite functions,
univalent analytic functions, or entire functions.

2. Similarity Invariant of Some Multiplication Operators

In this section, we will characterize the similarity invariant of some multiplication operators
on Sobolev disk algebra. Here, we briefly recall some background information.

For T in £(H), let o(T), 0,(T), and 0.(T) be the spectrum, point spectrum, and
essential spectrum of a bounded linearly operator T, respectively. An operator A in £(H)
is said to be a Cowen-Douglas operator with index n if there exists Q, a connected open
subset of complex plane C, and 7, a positive integer, such that

(i) Qco(A)={LeC:A-1\isnot invertible};

(ii) ran(A-\) = {y; (A-Mx =y, x e H} = H for L in Q;

(iii) nul(A - 1) := dim ker(A - 1) = n for A in Q;
(iv) Viker(A-1): 1 e Q} =X,
where (iv) is equivalent to (iv)’ ([8]);
(iv)' there exists Ag in Q, such that \/{ker(A — .}Lo)k k>1) =K.
B,(Q) denotes the collection of Cowen-Douglas operators with index n.
For T € £(H), the set of operators which commute with it is «#'(T). That is #'(T) =

{A € L(H) : AT = TA}. Operator T is strongly irreducible if there is no nontrivial idempotent
in #'(T) [8, 9]. Denote (SI) the set of all strongly irreducible operators on .

Definition 2.1. Let H be a Hilbert space and A, B be in £(H). Tap is said to be a Rosenblum
operator on £(H) if for arbitrary C € £(H), T4p(C) = AC - CB.

Lemma 2.2 (see [1]). Let f be in R(D), then

(i) o(My) = f(D);
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(ii) 0e(My) = f(0D), where O denotes the boundary of the unit disc D;

(iii) let zo € D and f(zo) & f(OD). Denote the component of ps_r(My) containing f(zo) as
Q, then M} € B, (£2), where n is the number of the zeros of f(z) — f(zo) in D.

Lemma 2.3 (see [10]). Set f € R(D) and B,(z) = (z—a)/(1 -az), a € D. Then My.p, ~ My.

Theorem 2.4. Let f and g be in R(D) and be univalent and analytic on D. Then My ~ My if and
only if f(D) = g(D).

Proof. “=": Set M; ~ M. By Lemma 2.2, we have
f(D) =o(My) =0(Mg) =g(D),  f(T) = 0e(My) = 0o(M) =g(T), (1)
where T is the unit circle. Since f and g are univalent and analytic on I, then
f(1) = 8f (D) = 8g(D) = g(T). (22)
Therefore,
f@) = £(D)\ £(T) = g(D) \ g(T) = g(®). (2.3)

“&": Set f(D) = g(D) = Q. Because g is univalent analytic fromDto Q, ¢! : Q — D
is also univalent analytic. Then ¢! o f is injective and surjective analytic function on D. If
g1 o f(z9) =0, there exists a Mobius transform ¢ with ¢, = (z—zo)/(1 - Zpz) and a complex
number ¢ with |c| = 1 such that g% o f(z) = cg, (see [11]). Therefore f(z) = g(cyps,(z)). By
Lemma 2.3, My ~ M. [

Lemma 2.5 (see [3]). Given f € R(D), the following are equivalent:
(i) M; € Bi(Q);
(if) ' (My) = {Mj : g € R(D));
(iii) My € (SI).

Theorem 2.6. Let f, g € R(D) and f is univalent analytic on D. My ~ My if and only if there exists
a function y = c¢((z — z0) /(1 — Zgz)) such that f = go x, where zg e Dand c € C, |c| = 1.

Proof. “=": Suppose that g is not univalent on . There exists some A € g(D) such that the
number of zeros of g(z) —A onDisn > 1. By Lemma 2.2, M € B, (€2) where Q is a connected
open subset of g(D). Since My ~ M, we have M} € B,(L2). This contradicts to My thatis a
strongly irreducible operator (see Lemma 2.5). So g is univalent analytic on . By the proof
of Theorem 2.4, there exists a function y = c((z — z9) /(1 — Zoz)) such that f = g o y, where
zop€Dand ceC, |c| =1.

“<”: By the conditions of the theorem, g is univalent analytic on . Since f(D) =
go x(D) = g(D), we have My ~ M, by Theorem 2.4. O

For any operator T on Hilbert space J and any integer n, 1 < n < oo, let T™ denote
the direct sum of n copies of Ton K™ = H & --- & H.
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Lemma 2.7 (see [2]). Let Ay, Ay be strongly irreducible Cowen-Douglas operators. Assume that

A1fAyand T = A;’”) ® A;’”), where ny, ny are natural numbers. Then for each maximal ideal 2 of
A'(T), 2 must be one of the following two forms:

In kerz m 4o
(i) 2= IR
ker Ty0m p J’<A£"2)>

(2.4)
(n1)
(i) 2= J/(Al 1 > kerTAgnp,A(an) ’
ker TA;nz),Ainl) sz
where J;; is a maximal ideal of J’(Af"i)), i=1,2.
Theorem 2.8. Let f, g € R(D) and My, Mg € (SI). The following statements are equivalent:
(1) Mf ~ Mg;
(ii) there exist X1,Xo,..., X, € ker TM;, M, and Y1,Y>,...,Y, € ker TM,, My such that
X1Y1 + X2Y2 + e+ XnYn = idR(D), Y1X1 + Y2X2 + o0+ Yan = idR(]D)), (25)

where idgwy denotes the identity operator of R(ID).

Proof. (i) = (ii) : Let My ~ M. Set X be invertible in £(R(D)) and M¢X = XM,. Then X
and X! are what we want.

(ii) = (i) : Since My and M, are in (SI), we have M} and M, that are strongly
irreducible and in B; (€2) by Lemma 2.5. Computations show

J'<M} EBM2> _ < J’(M}) kerTM},M;;)' (2.6)

ker My, M J’(M;)

Suppose that Mi# M. By Lemma 2.7, each maximal ideal 2 of J’(M} ® M) must be one of
the following two forms

k * * ! * * *
Py < Ju erTMf,Mg> or J= < A (Mf> kerTMf’M£>, 27)

l *
ker TMS,Mf A <Mg> ker TM;,,M} 922

where 211 and 2y, are the maximal ideals of J’(M}) and J’(M;), respectively. We can
assume that 2 admits the first form. Then

0 ¥ .
<le“ 0>€Q, i=1,2,...,n

0 YN0 Y\ _ (X 0,
x:r0)\xx 0)"\ 0o Xxv)°

(2.8)
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It follows that

n .
Y'X: 0 ) <zdR(D) 0 )
wyx | = . e 2.9
; ( 0 XY 0 idrm) (29)
This contradicts that 2 is a maximal ideal. So M;Z ~ MZ. and My ~ M. O

3. The Commutant Algebra of Multiplication Operator

In [3], Liu and Wang give the following proposition.
Proposition 3.1. Let f(z) = z"h(z) € R(D), h(z) #0,z € D. Then A (My) = A' (M)A (Mp,).

Let B,(z) = [1j1(z — ax)/(1 — axz), (lax| <1, k = 1,2,...,n) be n-Blaschke product.
Considering z" is a special n-Blaschke product, we study the commutant of My where f(z) =
B, (z)h(z). The following theorem is obtained, and by this result, the above proposition is
generalized.

Theorem 3.2. Let f = B,h € R(D) with h € R(ID) where h does not vanish on D. If there exists
0#A € Csuch that h — A can be divided by each (z — ax)/(1 — axz), then H#'(My) = H#'(Mp,) N
A'(Mp).

To prove the above theorem, we need the following lemmas.

Lemma 3.3 (see [7]). Given g € R(D), Mg ~ Mz (~ (M:)") if and only if g is an n-Blaschke
product.

Lemma 3.4 (see [12]). Let N be a nilpotent operator on H and let Xo = A+ N, 0#1 € C. If
B, Ay, Ai,... € B(H) satisfy || Akl < M (k=0,1,2,...) and AxXo = XoAr-1+B, (k=1,2,3...),
thenAo =A1 =A2 =,

Now we will prove Theorem 3.2.
Proof. From h € R(D), we have M} = MgnMZ' Then, from Lemma 3.3, there exists an
invertible operator X € £L(R(D), & R(ID)) such that XM’I;nX’1 = @] M. It follows that

A=XMpX ' XM; X" = (el M2)T, (3.1)
where T = XM; X € #'(&] M:). So we only need to prove
A (A) = A (8] ML) NA'(T). (3.2)
Since

OR(D) = ker(e}M:) @ [ker (2] M3)* - ker (e} M)

& [ker (e M)’ - ker (@TM;)Z] Q@ [ker (@’fM;)k —ker (@?M;)’H] @
(3.3)
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we have

Therefore,

efM: =

/G1 %Glz

0 G

Po
/O ﬂ_lIn 0 0

)

Po Po Po
Pe. PG, ... g
500 g, Cu B 1k
P P P
P, Play o Plg,
5o 5O By Ol
P2 P2
G PGn - g
1 g0 B 1k-2
Pr—
0 0 —0G
Pr 2
Po Po Po
—T13 =—T; —T;
pe g T B Lk
55} H B
—T1, =T; —T1
5 gt By Lkl
P2 P>
T —T R LI
1T B k-2
P2
0 0 —T;
By 12

A

(3.4)

(3.5)

(3.6)
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Set gk = (z—ax)/(1—axz), 1 <k <n,and B, = g1g - gn- Then for each g, there
exists ¢ € R(D) such that h — A = gxpi, 1 < k <m. So

T=XM;X™" = XMy XXMy, X + liderre) = Vi Sk + liderr(o), (3.7)

where Vi = XM;kX‘l, Sk = XM;:,kX‘l. Fork=1,2,3,...,n, j=1,2,3,...,n, M, and My,
pairwise commute. Hence, Vi, S; pairwise commute too. Since T} = T|ker(@;z Mz and

ker(efM}) = ker XM} X' =ker ViV, ---V,, (3.8)
for all x € ker(e M),

<T - Xide;?R(D))nx =Vi5:V,5,---V,, S, x =515,---S,ViVo--- V,x = 0. (3.9)

Therefore, Ty — I, is nilpotent operator. Now we set N =T — AL, thatis Ty = AL, + N. So

A=o"M:T
(o %(an + N> %le %:TB S [’;—ZTL,( S \
0 0 % (A, +N) %Tn e Z—;TL“
o 0 0 g—i(ﬁn +N) - g—i:rl,k_z - (3.10)
0 0 0 0 % (i +N)

\: z S

So we only need to prove that #'(A) C ' (¢ M3}). In fact, if Q € 4'(A) C H' (8] M3),

QA = AQ = QT (e} Mz) = T(#] M2)Q
= QT (efM:) =TQ(eyM2)
(3.11)
= (QT - TQ)(8}M2) =0

= (e] M.)(T"Q* - Q'T*) = 0.

It follows from ker(e]M;) = {0} that T*Q* = Q*T*. Namely, TQ = QT.
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We are now in need to prove that &#'(A) C /(¢ M}). Suppose that Q € <#'(A). Since
h does not vanish on D, ranM}, = R(D) and so ker T = {0}. Because A = (8] ML)T =T (e} M3),

ker A = ker(e"M:),  ker AF = ker (&7 M:)". (3.12)
It follows from QA = AQ that ker A and ker AF are both the invariant subspaces of Q. Since

©7R(D) =ker A® <1<erA2 ekerA) ® (kerA3 ekerA2> D@ (ker AF s ker Ak‘1> @,

(3.13)
A admits the matrix representation (3.5) with the above decomposition. So
Q1 Qu Qiz Qu -+
0 Q2 Qs Qu -
Q=10 0 Q; Qu - | (3.14)
From QA = AQ, we have
Po . /1~ Po e —
0 G (A1, +N) 5 QT+ Qo (W1, +N)
PiA (7
0 0 5 »(11, + N)
P 5 5 (3.15)
0 /T 0 /T 0
0 5 (A + N)Q> 5 (M + N)Qus + 5T -
- iy
0 0 5 (A + N)Qs
Comparing the (n,n + 1) entries of both sides, we have Q1 = Q; = Q3 = --- by Lemma 3.4.
Comparing the (n, n + 2) entries of QA and AQ, we have
Pra (XIn + N> Qnitn2 = 'B—nQn n+l <XIn + N) +(Q1T12 - T12Q1)- (3.16)
ﬂn ’ ﬂn—l ’
It follows from Lemma 3.4 that
%Qn+l,ﬂ+2 = [%Qn,m—l- (317)
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Setting Q}, = (f1/Po)Qi2, we have

B1Pn
ﬂO,Bn

,anl
Pr

Qn,n+1 = Ql2 = Q,u (318)

Inductively, if Qppik-1 = (Bn-1/ ﬂn+k_2)Q'1,k, where Q’Lk = (Pk-1/Po)Qik, we need to prove
Qunik = (Bu-1/ Prsk-1)Q] 1,,- Comparing the (1,1 + k +1) entries of QA and AQ, we have

ﬁn+k—1

‘% (XIn + N> Qnetneks1 = ﬁ Quinek <XIn * N> * <T12Ql1’k - Qll’kTu)
» 1 (3.19)

+ <T13Q'1,k,1 - Q'UHTB) oot (T Q1 — Q1T k).
Therefore, by Lemma 3.4,

@Qn+1,n+k+l = MQn,er- (3.20)
ﬂ" ﬁn—l

Computations show Qy n+k = (Bn-1/ ﬁn+k—1)Ql1,k .1~ Since Q is the form of (3.5), Q € #'(e] M3).
So ' (My) = HA'(Mp,) N HA'(Mp). O

Corollary 3.5. Let f = B,h € R(D) with h € R(D) where h does not vanish on D. If there exists
0# A\ € C that h— A can be divided by B, then H4'(My) = A4'(Mp,) N HA' (Mp,).

By the following lemma, we discuss the commutant of the multiplication operators
whose symbols are composite functions in R(ID).

Lemma 3.6. For T in £(R(D)) and f in R(D) the following are equivalent:
() T € o' (My);
(ii) foralla € D, T*ky L (f — f(a))R(D);
(iii) thereisaset ] C D such that 3,c;(1-|a|) = coand forall a € J, T*ky L (f - f(a))R(D).

Proof. (i) = (ii) Let T € &#'(My). For all g € R(D) and a € D, we have

((f = f(@)g Tka) = (TMyg ka > ~f(a) <Tg ka)
= (MfTg ka) = f(@)(Tg ka)
= f(@)(Tg) () - f(a)(Tg)(a)
=0.

(3.21)

(i) = (iii) Let J = D.
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(iii) = (i) Let T € £(R(D)) with T*k, L (f — f(a))R(D) for all « € J. For g € R(D) and
a € J, we have

0=((f-f(a)g T*ka)
= (TMsg)(a) - f(a)(Tg) (a) (3.22)
= (TMyg)(a) - (MfTg) ().

Since ] is not a Blaschke sequence, this means TM g = M(Tg. Therefore TMy = MT.
O

Lemma 3.7 (see [13]). Suppose f : G — Q is a surjective analytic function and for each ¢ € Q,
n(¢) is the number of points in f~*(Z). Then

f If'IZdA=f n@)dA(). (3.23)
G Q

Proposition 3.8. Let f be in R(D) and f is analytic on D. Suppose for each & € f(ID), there are n
points in f~1(&). Then for g € R(f (D)), we have #'(My) C H#'(Mgof).

Proof. By the Embedding Theory of Sobolev space, g o f € C(D). Therefore
[ lstrEFare < sl 62)
By Lemma 3.7,
[ s aam-[ 150l erac
=n f |¢'(w)|?dA(w) (3.25)
f(D)
< n”g”R(f(D))'
Since f is analyticon D, f'(z), f"(z) is bounded on D. Hence
[ 1gC@Pir@laae <ir@l, | 19 e@lirerdae

<n|l f D8l ki) (3.26)

[ Ig¢El1f@Paae < 1@l slo,



12 International Journal of Mathematics and Mathematical Sciences

Therefore,
ID |l(f (Z))]"|2dA(Z) < . (3.27)

By (3.24), (3.25), and (3.27), we have g o f € R(D).

Forall p € f(D), because ((g(z)-g(P))/(z—p)) € R(f (D)), ((go f(2)-P)/(f(2)-P)) €
R(D).Foralla e D

8(f(2) -g(f(@)
f(2) = f(a)

g(f(2) -g(f(m) = (f(2) - f(a)), (3.28)

so that
(8(f(2) -g(f(@)))R(D) c (f(2) - f(a))R(D). (3.29)

Set T € #'(My). By Lemma 3.6, for all a € D, T*k, L (f - f(a))R(D). Hence, T*k, L
(8(f(2)) - g(f(a)))R(D) and we have T € #'(Mgor). O

Corollary 3.9. If B, (z) = [Ti-,(z—ai)/ (1-a;z), (ai # aj, i#], |ail <1)and f € R(D), #'(Mp,) C
A (Mgop,).

Proposition 3.10. Let f be in R(D) and B, is an n-Blaschke product. If #4'(My) = H#'(M;) =
{Mg; g € R(D)}, then #'(Myop,) = H#'(Ms,).

Proof. From [3], we know that #'(M;) = {Mg; g € R(D)}. By Lemma 3.3, Mp, ~ & M..
Then there exists an invertible operator X in £Z(R(ID), ®fR(D)) such that XM g, X! = ey M.
Since Myop, = f(Mp,), we have XMyop, X~ = @M. Therefore, we will only prove that
A (®]My) = A (@ M.).Set T € H#' (8] My) and

T T -+ T\ R(D)
T=| T2 Tis -+ Ton | RD) (3.30)

Since

T Tha -+ Thn My 0
T(e!My) = Ty Tiz -+ T 0 My -
Do : 0

(3.31)
Mf 0 Tll T12 Tln

= (8"M{)T = 0 My - Ty Tiz -+ Ty
0 . . .

we have T;jM; = M;T;j fori,j = 1,2,....So Tjj € #'(My) = #'(M;) and ' (& My) C
A' (8] M;). Similarly, #' (& M) = H#' (& My). Hence #'(Mop,) = #'(Mp,). O



International Journal of Mathematics and Mathematical Sciences 13

Let f be an injective function in R(D) and Q = f(ID). Then for each z; € I, it is obvious
that f(zo) is not in f(T). Denote the component of ps_r(My) containing f(zo) as Q, then zg
is the only zero point of f(z) - f(zo) in D. By Lemma 2.2, M7 is a Cowen-Douglas operator
with index 1. By Lemma 2.5, we have o#'(My) = {My; f € R(D)} = &#'(M.). So the following
corollary is obtained.

Corollary 3.11. Let f be a univalent analytic function in R(D) and B, be an n-Blaschke product.
Then 4'(Mp,) = #'(Mfop,).

Lemma 3.6 shows if f is in R(D) and z is in DD, then
VAT ks : T € o (M)} C [(f - f(20)) RD)] " =ker M} . (3.32)

Easy examples show that ker M}_ fz) © V{T*ky, : T € H#'(My)} is not true. The following

proposition shows that if f(z) = z", \/{T*k;, : T € 4'(My)} = ker M}_f(ZO).

Lemma 3.12 (see [1]). Let f € R(D), M; € B,(Q), zo € Dy := f1(Q), and
f(2) - f(z0) = (z-z0)" (2= z1)" - (z— 2)" g, (2), (3.33)

where {zi}g=1 C Dy are pairwise distinct, Zﬁﬂ hi =n, g,,(z)#0, z € D. Choose k;i,...,kgj”_l €
R(D) such that

M:__ kL =key .o, ME_ KT = k072 (0 <i<l). (3.34)
Then there exists a linearly independent set
zo’ *

Ky = { ke koo R ey K7, (3.35)

such that ker M = V Kz,.

Let n > 2 and w be the nth root of 1, that is, w € C and w™ = 1. Let A,, denote the
Vandermonde determinant of order n:

1 1 1 1
1 w W e W't

A, = S . N (3.36)
i wr‘l—l w2(;1—1) w(r;—l)z

For 1 <1, j <n, the (i, j)-cofactor will be denoted by A;;.
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Lemma 3.13 (see [1]). A € #'(Mz») if and only if for all g € R(D) and z#0,
(48)(2) = D ai(2)g(w' '), (3.37)
i=1

where a;(z) = (27:1 Aij(hi/2I71))/ Ay, for some {h; }7:1 in R(D).
Proposition 3.14. Forall zg € D, \/{T*kz, : T € #'(M.n)} = [(z" - z!)R(D)]*.

Proof. By Lemma 3.6, \/{T*kz, : T € #' (M)} C [(z" - z(’)‘)R(]D))]l. Now we prove that [(z" —
zZDRD)]" C V(T ks, : T € A/ (M) ).
Since

z" -z = (z - 20)(z — wzp) - - - <z - w”_lz()), (3.38)
by Lemma 3.12,

n n 1l _ * _
[(z" - z§)R(D)]~ = ker Mzn—zg = \/{kZO, Keozos - - Kenizy }- (3.39)

Set f = arkz, + askez, + -+ - + Aykniz, € ker M:n—zg with ay, ay,...,a, € C. For all g € R(D),
we define an operator T : R(D) — R(D) as follows:

Tg(z) = @ig(z) + mg(wz) + -+ + Tg (w'2). (3.40)

By Lemma 3.13, T € o#'(M,»). Forall A € D,

T*kz,(A) = (T*kz,, k) = (kz,, Tky)
= <k20,a_1kA(Z) + @k (wz) +--- + a—nk)L(wn—lZ) >

(3.41)
= a1(ky(2), k) + ax(ky(wz), kz) + - + ap(ky (W 12), k2, )
= arky(zo) + azky(wzg) + -+ + anky (W™ zp).
For0<i<n-1,
ka(@zo) = Y pH(Y) (@izo)"
m=0
< 2 (T ym (3.42)
= Zﬂm(w’zo> A

0
wizg ()‘)

&3
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Therefore,

Tk (L) = arkz, (A) + aokz, (A) + -+ + apkn12,(A) = (L), (3.43)
thatis T*k,, = f. Then f € \/{T*k;, : T € H#'(Mz)} and we have [(z"—zg)R(]DD)]l C\V{T*ky, :
T e A (M)} O

Easy examples show that, in general, the converse of Proposition 3.8 is false. But the
following case is an exception. To prove it, we need the following lemma.

Lemma 3.15. Let f = h(z") be in R(D) and h, analytic on D. Then h is in R(D).

Proof. Since h is analytic on D, we have h(z) = >,°_, h,,z™, hence,

f(2) = h(z") = Y hwz"". (3.44)
m=0
From f being in R(ID), we have
© 2
Z@ < +co. (3.45)
m=0 Fnm

Because {f,} is monotonically decreasing, B, > Pnm for all m > 0. So

oo hm 2 0 hm 2
> | ﬁ2| <> |ﬂ2 | < 400, (3.46)
m=0 Fm m=0 Fnm

and this shows that h is in R(DD). O

Proposition 3.16. If f € R(D) and #' (M) C H'(My), then there exists h being in R(D) such
that f = h(z").

Proof. By Proposition 3.14, for all zy € D, we have
[(z" = z)RD)]" = \/{T*ks, : T € #' (M) )
c\/{T*kz, : T € A (My)} (3.47)
c [(f - f(z0)) RD]".

For each A € D, we can find zp € D such that zjj = A. We define h on D by h(A) = f(zo) and h
is well defined. Indeed, set z{} = zJ = A. Then

k., € [(z" = 2)RM)]" ¢ [(f - f(z0))RD)]*. (3.48)

Hence f(z1) = f(zo).
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For 0# Ay € D, we have zj #0. Therefore,

i B = RO _ L £(2) - f(z0)

A=A )L—)LO z—2zp Z"—Zg
_ lim {® /=) Sk (3.49)
2=z z-zy @ zZ"-Zz)
_ f'(=0)
nzg‘1 '
If A =0, zp = 0. Since
z"R(D) > (f - f(0))R(D), (3.50)
there exists g € R(D) such that f — f(0) = z"g. Hence,
[ BV =hO) _ L f(2) - £(0)
1-0 A-0 z—0 z"
~ im 283 (3.51)
z—0 z"
= 8(0).
So h is analytic on D. By Lemma 3.15, we have h € R(D) and f(z) = h(z"). O

For each f € R(D) and a ¢ f(0D), n(f(0D), a) denote the winding number of f(0D) at
a. Define

s = k(f) = inf{n(f(0D), a) : n(f (D), a) #0}. (352)

Proposition 3.17. If f € R(D) is a nonconstant entire function and s = k(f), then #4'(My) =
A (Mys).

Proof. By Theorem 1 in [14], there exists an entire function h such that f(z) = h(z°) and k(h) =
1. Since h is an entire function, h, ', and h" are all bounded and analytic on D.Soh e R(D).
By k(h) = 1, there is only one zero of h — A in D for some . By Lemma 2.2, M} € B;(Q). By
Proposition 3.10, #' (My) = #'(Mp(zs)) = A (M.s). O
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