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We investigate the existence of positive or a negative solution of several classes of four-
point boundary-value problems for fourth-order ordinary differential equations. Although these
problems do not always admit a (positive) Green’s function, the obtained solution is still of definite
sign. Furthermore, we prove the existence of an entire continuum of solutions. Our technique relies
on the continuum property (connectedness and compactness) of the solutions funnel (Kneser’s
Theorem), combined with the corresponding vector field.

1. Introduction

In recent years, boundary-value problems for second and higher order differential equations
have been extensively studied. They are used to describe a large number of physical,
biological, and chemical phenomena. The work of Timoshenko [1] on elasticity, the
monograph by Soedel [2], the paper by Palamides [3] on deformation of elastic membrane,
and the work of Dulàcska [4] on the effects of soil settlement are rich sources of such
applications.

Pietramala [5] presented some results on the existence of multiple positive solutions
of a fourth-order differential equation subject to nonlocal and nonlinear boundary conditions
that models a particular stationary state of an elastic beam with nonlinear controllers.

In [6], Erbe and Wang by using a Green’s function and Krasnoselskii’s fixed point
theorem in a cone proved the existence of a positive solution of the following boundary value
problem:
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x′′(t) = f(t, x(t)), 0 ≤ t ≤ 1,

ax(0) − bx′(0) = 0, cx(1) + dx′(1) = 0,
(1.1)

under positivity and sub or superlinearity of the nonlinearity and moreover δ = ad+bc+ac >
0.

The literature for previous BVP is voluminous. Suggestively, we refer to [7–11] and
the references therein. The monograph of Agarwal et al. [12] contains excellent surveys of
known results.

Recently, an increasing interest in studying the existence of solutions and positive
solutions to boundary-value problems for higher order differential equations is observed,
see for example [13–17]. Especially, Graef and Yang [15] and Hao et al. [18] proved existence
results on nonlinear boundary-value problem for fourth-order equations.

Also, Ge and Bai [19] by using a fixed point theorem due to Krasnoselskii and Zabreiko
in [20] investigated the fourth-order nonlinear boundary value problem as

u(4)(t) = −f(t, u(t), u′′(t)
)
, 0 < t < 1,

u(0) = u(1) = 0,

au′′(ξ1) − bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0.

(1.2)

Precisely, they proved the next result.

Theorem 1.1. Assume that

(H1) a, b, c, and d are nonnegative constants satisfying ρ = ad+bc+ac(ξ2−ξ1)/= 0, b−aξ1 ≥ 0
and 0 ≤ ξ1 < ξ2 ≤ 1;

(H2) the nonlinearity can be separated as f(t, u, v) = p(t)g(u) + q(t)h(v), where g, h : R → R

are continuous;

lim
u→∞

g(u)
u

= λ, lim
v→∞

h(v)
v

= μ, (1.3)

and p, q ∈ C[0, 1]. Moreover, there exists some t0 ∈ [0, 1] such that p(t0)g(0) +
q(t0)h(0)/= 0, and there exists a continuous nonnegative function w : [0, 1] → R

+ such
that |p(s)| + |q(s)| ≤ w(s) for each s ∈ [0, 1];

(H3) max{|λ|, |μ|} < min{1/L1, 1/L2}, where Li (i = 1, 2) are constants depending on p(t)
and q(t). Then the BVP (1.2) admits at least one nontrivial solution u ∈ C2[0, 1].

Similarly Cui and Zou [21], on the base of a fixed point theorem, studied the BVP

x(4)(t) = p(t)f(x(t)), t ∈ (0, 1),

x(0) = x(1) = x′(0) = x′(1) = 0,
(1.4)
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to the case where f(x) is monotone and either superlinear or sublinear, mainly under the
assumption

∫1

0
p(s)f

(
s2(1 − s)2

)
ds < 1. (1.5)

Finally, Infante and Pietramala [22] proved some results on the existence of positive solutions
for some cantilever fourth-order differential equation subject to nonlocal and nonlinear
boundary conditions.

Restricting our consideration on the linear case, notice as far as the author is awake,
that only the conditions in (1.2) have been studied, where the constants a, b, c, and d are
nonnegative.

In a recent paper, Kelevedjev et al. [23] proved the existence of a positive and/or
a negative solution for the boundary value problem (1.2), mainly under superlinearity
conditions on the nonlinearity. Moreover, they exhibited existence results to the following
differential equation:

u(4)(t) = −f(t, u(t), u′′(t)
)
, 0 < t < 1, (1.6)

subject to the boundary conditions as

u(0) = u(1) = 0, au′′(ξ1) + bu′′′(ξ1) = 0, cu′′(ξ2) − du′′′(ξ2) = 0. (1.7)

Moreover, in an interesting paper [24], Anderson and Avery, by applying a generalization
of the Leggett-Williams fixed point theorem, proved the existence of at least three positive
solutions to the BVP as

x(4)(t) = −f(x(t)), 0 ≤ t ≤ 1,

x(0) = x′(q
)
= x′′(r) = x′′′(1) = 0, 0 < q < r < 1.

(1.8)

In this paper, we relax the assumptions in [23] and extend the above results to the case
where the constants c and d are not necessarily positive and the nonlinearity is asymptotically
linear and not necessarily separated, that is we study the BVP

u(4)(t) = f
(
t, u(t), u′′(t)

)
, 0 < t < 1,

u(0) = u(1) = 0, au′′(ξ1) + bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0,
(1.9)

with a, b, c, and d ≥ 0. Instead of the assumptions ρ = ad+bc+ac(ξ2−ξ1)/= 0 and/or b−aξ1 ≥ 0
in [20], we need only the condition

ρ∗ := ac(ξ2 − ξ1) + ad − bc > 0. (1.10)
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Also the constants μ and μ∗ (see the assumptions (B1)–
(
B∗

3

)
below) satisfy different (see (2.7))

inequalities than the following one:

μ >
48

(ξ2 − ξ1)
2
, (1.11)

in [23]. Moreover, the obtained solutions are of definite sign.
Similarly, we give existence results for several boundary value problems of type

u(4)(t) = ±f(t, u(t), u′′(t)
)
, 0 < t < 1,

u(0) = u(1) = 0, au′′(ξ1) + bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0,
(1.12)

where the constants a, b, c, and d ≥ 0 are chosen suitable positive. At these cases, we do not
use the related Green’s function. Thus, our approach is applicable in cases where we cannot
construct a Green’s function or at least it is not of definite sign. For example, instead of the
above linear boundary conditions, we could choose the following nonlinear one:

u(0) = u(1) = 0, au′′(ξ1) + b
[
u′′′(ξ1)

]5/8 = 0, cu′′(ξ2) + du′′′(ξ2) = 0. (1.13)

At such cases, the Krasnoselskii’s fixed point theorem in a cone seems not to be applicable.
Furthermore, we prove the existence of an entire continuum of solutions (Remark 2.3) and,
to the best of our knowledge, this is the first result of this type of multiplicity.

Remark 1.2. Assume the nonlinearity is nonnegative. The differential Equation (1.9) defines a
vector field, the properties of which will be crucial for our study. More specifically, assuming
that ad − bc > 0, we set v(t) = u′′(t). Let us now look (see the Figure 1, case “Th 2.2”) at the
(v, v′) phase quadrant {(v, v′) : v ≤ 0 and v′ ≥ 0}. By the sign condition on f , we obtain that
v′′ > 0. Thus any trajectory (v(t), v′(t)), t ≥ 0, crossing the semiline as

E0 :=
{(

v, v′) : av + bv′ = 0, v < 0
}
, (1.14)

at time t = ξ1, “evolutes” naturally, toward the negative semiline

E1 :=
{(

v, v′) : cv + dv′ = 0, v < 0
}
. (1.15)

Setting a certain growth rate on f (say superlinearity), we can control the vector field, so that
some trajectory reaches on E1 at the time t = ξ2. Whenever the nonlinearity is nonpositive
or/and the sign of constants different, trajectories have an analogous behavior.

The technique presented here is different to those in the above mentioned papers.
Actually, we rely on the above “properties of the vector field” and the Kneser’s property
(continuum) of the cross-sections of the solutions funnel. For completeness, we restate the
well-known Kneser’s theorem.
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Figure 1: Vector fields and Trajectories of BVP’s solutions.

Theorem 1.3 (see [25]). Consider a system (∗) x′ = f(t, x), (t, x) ∈ Ω := [a, b] × R
n, with f

continuous. Let Ê0 be a continuum (compact and connected) in Ω0 := {(t, x) ∈ Ω : t = a} and let
X(Ê0) be the family of all solutions of (∗) emanating from Ê0. If any solution x ∈ X(Ê0) is defined on
the interval [a, τ], then the set (cross-section)

X
(
τ ; Ê0

)
:=

{
x(τ) : x ∈ X

(
Ê0

)}
(1.16)

is a continuum in R
n.

2. Main Results

Consider the boundary value problem following:

u(4)(t) = f
(
t, u(t), u′′(t)

)
, 0 < t < 1, (E+)

u(0) = u(1) = 0,

au′′(ξ1) + bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0.
(C++)

Setting v(t) = u′′(t), the boundary value problem (E+)-(C++) reduces to

v′′(t) = f(t, u(t), v(t)), t ∈ [0, 1],

av(ξ1) + bv′(ξ1) = 0, cv(ξ2) + dv′(ξ2) = 0,
(2.1)
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where

u(t) =
∫ t

0
s(t − 1)v(s)ds +

∫1

t

t(s − 1)v(s)ds, 0 ≤ t ≤ 1. (2.2)

Remark 2.1. We note that for all t ∈ [0, 1], we have

−M ≤ v(t) ≤ 0 =⇒ 0 ≤ u(t) ≤ M

8
, v(t) ≤ −M =⇒ u(t) ≥ M

8
;

0 ≤ v(t) ≤ M =⇒ −M
8

≤ u(t) ≤ 0, v(t) ≥ M =⇒ u(t) ≤ −M
8
.

(2.3)

Moreover, whenever we are interested in nonnegative solutions, without loss of generality,
we may extend the nonlinearity as

f(t, u, v) = f(t, 0, 0), u ≤ 0, v ≥ 0, (2.4)

and if we are asking for nonpositive solutions, we may set

f(t, u, v) = f(t, 0, 0), u ≥ 0, v ≤ 0. (2.5)

We will use the following assumptions.
The nonlinearity is a continuous and positive function, that is,

f(t, u, v) ∈ C([0, 1] × (−∞, 0] × [0,+∞), [0,+∞)); (B1)

it is asymptotically linear at the origin and at infinity, that is,

f0 = lim
u→ 0−,v→ 0+

min0≤t≤1f(t, u, v)
v

= μ; (B2)

f∞ = lim
u→−∞,v→+∞

max0≤t≤1f(t, u, v)
−v = μ∗. (B3)

Similarly, f is a continuous and positive function, that is,

f(t, u, v) ∈ C([0, 1] × [0,+∞) × (−∞, 0], [0,+∞));
(
B∗

1

)
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it is asymptotically linear at the origin and at infinity, that is,

f0 = lim
u→ 0+,v→ 0−

max0≤t≤1f(t, u, v)
−v = μ;

(
B∗

2

)

f∞ = lim
u→+∞,v→−∞

max0≤t≤1f(t, u, v)
−v = μ∗.

(
B∗

3

)

Consider now the boundary value problem (E+)-(C++).

Theorem 2.2. Assume
(
B∗

1

)
–
(
B∗

3

)
hold and furthermore that

ac(ξ2 − ξ1) + ad − bc < 0. (2.6)

Then the boundary value problem (E+)-(C++) admits a positive and concave solution u(t), 0 ≤ t ≤ 1,
provided that

μ <
2(bc − ad) − 2ac(ξ2 − ξ1)
(2bd + bc(ξ2 − ξ1))(ξ2 − ξ1)

:= μ0, (2.7)

μ∗ > max
(

bc − ad

bd(ξ2 − ξ1)
,

8c(bc − ad)
bd2

)
:= μ∗

0. (2.8)

Furthermore,

u′′(t) ≤ 0, u′′′(t) ≥ 0, 0 ≤ t ≤ 1. (2.9)

Proof. By the asymptotic linearity of f(t, u, v) at v = 0 (see the assumption
(
B∗

2

)
) and (2.3)–

(2.7), for any λ ∈ (μ, μ0) there is an η > 0 such that

−η ≤ v < 0, 0 < u ≤ η

8
, imply max

0≤t≤1
f(t, u, v) < −λv. (2.10)

Consider any positive number ε, such that

ad + μbd(ξ2 − ξ1)
bc

< ε <
2b − (

μb(ξ2 − ξ1) + 2a
)
(ξ2 − ξ1)

2b
< 1, (2.11)

and choose a positive λ, where

λ < min

{
εbc − ad

bd(ξ2 − ξ1)
,

2

b(ξ2 − ξ1)
2 [b(1 − ε) − a(ξ2 − ξ1)]

}

. (2.12)

We assert that for P ∗
0 = (v0,−(a/b)v0) and any solution v ∈ X(P ∗

0 ), where v0 = −η, it follows
that

−η ≤ v(t) ≤ −εη, t ∈ [ξ1, ξ2]. (2.13)
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Indeed in view of Remark 1.2, let us assume that there exists t∗ ∈ (ξ1, ξ2] such that

−η ≤ v(t) ≤ −εη, v′(t) > 0, ξ1 ≤ t < t∗, v(t∗) = −εη. (2.14)

Then by the Taylor’s formula, (2.10) and (2.14), we get t ∈ (0, t∗), such that

−εη = v(t∗) = v0

[
1 − a

b
(t∗ − ξ1)

]
+
(t∗ − ξ1)

2

2!
f
(
t, u

(
t
)
, v

(
t
))

≤ − η

[
1 − a(t∗ − ξ1)

b

]
− (t∗ − ξ1)

2

2
λv

(
t
)
≤ −η

[
1 − a

b
(ξ2 − ξ1)

]
+
(ξ2 − ξ1)

2

2
λη.

(2.15)

Consequently,

λ ≥ 2

b(ξ2 − ξ1)
2 [b(1 − ε) − a(ξ2 − ξ1)], (2.16)

contrary to the choice of λ in (2.12). Hence, the assertion v(t) ≤ −εη, t ∈ [ξ1, ξ2] in (2.13) is
proved. Moreover, if there is t∗ ∈ (ξ1, ξ2) such that

aη

b
≤ v′(t) ≤ cεη

d
, ξ1 ≤ t < t∗, v′(t∗) =

cηε

d
, (2.17)

then

cηε

d
= v′(t∗) = −v0

a

b
+ (t∗ − ξ1)f

(
t, u

(
t
)
, v

(
t
))

≤ aη

b
− (t∗ − ξ1)λv

(
t
)

≤ aη

b
− (t∗ − ξ1)λv(ξ1) =

aη

b
+ (t∗ − ξ1)λη ≤ aη

b
+ (ξ2 − ξ1)λη,

(2.18)

a contradiction to (2.12). Thus

aη

b
≤ v′(t) ≤ cεη

d
, ξ1 ≤ t < ξ2. (2.19)

Consequently,

G∗(P ∗
0
)
= cv(ξ2) + dv′(ξ2) ≤ c

(−ηε) + d
cεη

d
= 0. (2.20)

On the other hand, in order to prove the opposite inequality, we assume on the
contrary that for every solution v ∈ X(P ∗

1 ), P
∗
1 = (−H, (a/b)H), we have

G∗(t;P ∗
0
)
= cv(t) + dv′(t) < 0, ξ1 ≤ t < ξ2. (2.21)
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Then,

v′(t) < − c

d
v(t), ξ1 ≤ t < ξ2. (2.22)

In view of the assumption
(
B∗

3

)
, we chose K > 0 and θ ∈ (0, 1) such that

max
{

bc − ad

bd(ξ2 − ξ1)θ
,

2c(bc − ad)
bd2(1 − θ)θ

}
< K < μ∗. (2.23)

Then, there exists H > 0, such that

f(t, u, v) > −Kv, v ≤ −θH. (2.24)

Assume that there is a solution v ∈ X(P ∗
1 ) and t∗ ∈ (ξ1, ξ2) such that

−H ≤ v(t) ≤ −θH, ξ1 ≤ t < t∗, v(t∗) = −θH. (2.25)

We assert first that

t∗ ≥ ξ1 +
d

c
(1 − θ). (2.26)

Indeed, by (2.22) and (2.25), we obtain

−θH = v(t∗) ≤ −H +
c

d
H(t∗ − ξ1), (2.27)

and then (2.26) follows.
By (2.24)-(2.25), we obtain

−θH = v(t∗) = −H +
a

b
H(t∗ − ξ1) +

(t∗ − ξ1)
2

2!
f
(
t, u

(
t
)
, v

(
t
))

≥ −H
[
1 − a

b
(t∗ − ξ1)

]
− (t∗ − ξ1)

2

2!
Kv

(
t
)

≥ −H
[
1 − a

b
(t∗ − ξ1)

]
+
(t∗ − ξ1)

2

2!
KθH.

(2.28)

Consequently, (2.26) yields

K ≤ 2[(1 − θ)/(t∗ − ξ1) − a/b]
(t∗ − ξ1)θ

<
2c(bc − ad)
bd2(1 − θ)θ

, (2.29)

a contradiction to the choice of K. Thus,

−H ≤ v(t) ≤ −θH, ξ1 ≤ t < ξ2. (2.30)
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Consequently, by the choice of K and (2.24), we get

v′(ξ2) =
a

b
H + (ξ2 − ξ1)f

(
t, u

(
t
)
, v

(
t
))

≥ a

b
H − (ξ2 − ξ1)Kv

(
t
)
≥ a

b
H + (ξ2 − ξ1)KHθ

≥ H

[
a

b
+ (ξ2 − ξ1)

bc − ad

bd(ξ2 − ξ1)

]
=

c

d
H.

(2.31)

Hence, we conclude that

G∗(P ∗
1

)
= cv(ξ2) + dv′(ξ2) ≥ c(−H) + d

c

d
H = 0, (2.32)

contrary to the assertion (2.21).
Finally, consider the segment (recall that v0 = −η0 and v1 = −H)

[
P ∗

0 , P
∗
1

]
:=

{(
v, v′) ∈ E0 : v0 ≤ v ≤ v1

}
, (2.33)

and furthermore the cross-section

X(
1;
[
P ∗

0 , P
∗
1

])
:=

{(
v(1), v′(1)

)
: v ∈ X(P), P ∈ [

P ∗
0 , P

∗
1

]}
(2.34)

of the solutions funnel emanating from the segment [P ∗
0 , P

∗
1 ]. By the definition of the function

G∗(P1) := cv(ξ2) + dv′(ξ2), (2.20), and (2.32), it is clear (recall that E1 := {(v, v′) : cv + dv′ =
0, v > 0}) that

E1 ∩ X(
1;
[
P ∗

0 , P
∗
1

])
/= ∅. (2.35)

This means that there is a point P ∈ [P ∗
0 , P

∗
1 ] such that G∗(P) = 0 and thus a solution v0(t) ∈

X(P) satisfying the second boundary condition in (C++).
Furthermore, by the above analysis, the obtained solution v0(t), ξ1 ≤ t ≤ ξ2 is negative.

We extend v0(t) on the entire interval as follows:

v(t) =

⎧
⎪⎪⎨

⎪⎪⎩

v0(ξ1), 0 ≤ t ≤ ξ1,

v0(t), ξ1 ≤ t ≤ ξ2,

v0(ξ2), ξ2 ≤ t ≤ 1.

(2.36)

Then, the function v(t), 0 ≤ t ≤ 1, is negative and continuous. In view of the transformation
v(t) = u′′(t), we consider the boundary value problem as

u′′ = v(t),

u(0) = 0 = u(1).
(2.37)
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It is well known that the Green function of it is

G(t, s) =

{
s(1 − t), 0 ≤ s ≤ t ≤ 1
t(1 − s), 0 ≤ t ≤ s ≤ 1.

(2.38)

Consequently (see (2.3)), the desired positive and concave solution of the boundary value
problem (E+)-(C++) is given by the formula as

u(t) =
∫1

0
G(t, s)v(s)ds = −

∫ t

0
s(t − 1)v(s)ds −

∫1

t

t(s − 1)v(s)ds, 0 ≤ t ≤ 1. (2.39)

Remark 2.3. Since we can extend the solution v0(t), ξ1 ≤ t ≤ ξ2 with infinite ways, we can
immediately obtain an entire continuum of solutions for the boundary value problem (E+)-
(C++).

Consider the boundary conditions

u(0) = u(1) = 0

au′′(ξ1) − bu′′′(ξ1) = 0, cu′′(ξ2) − du′′(ξ2) = 0.
(C−−)

Corollary 2.4. Assume
(
B∗

1

)
–
(
B∗

3

)
hold, where the interval [0, 1] is replaced by [−1, 0], and fur-

thermore

ac(ξ2 − ξ1) + bc − ad < 0. (2.40)

Then the boundary value problem (E+)–(C−−) has a positive and concave solution u(t), 0 ≤ t ≤ 1,
provided that

μ <
2(ad − bc) − 2ac(ξ2 − ξ1)
(2bd + bc(ξ2 − ξ1))(ξ2 − ξ1)

,

μ∗ > max
{

(ad − bc)
bd(ξ2 − ξ1)

,
8a(ad − bc)

db2

}
.

(2.41)

Furthermore,

u′′(t) ≤ 0, u′′′(t) ≤ 0, 0 ≤ t ≤ 1. (2.42)
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Proof. Consider the BVP

y(4)(t) = F
(
t, y(t), y′′(t)

)
, −1 < t < 0,

u(−1) = u(0) = 0,

cu′′(−ξ2) + du′′′(−ξ2) = 0, au′′(−ξ1) + bu′′(−ξ1) = 0,

(2.43)

where

F
(−t, u(t), u′′(t)

)
= f

(
t, u(t), u′′(t)

)
, (2.44)

and u(t), −1 ≤ t ≤ 0 is any real map.
Since f satisfies the conditions

(
B∗

1

)
–
(
B∗

3

)
, it is obvious that the same conditions are

fulfilled by F. Hence, in view of Theorem 2.2, the BVP (2.43) admits a positive and concave
solution y(t), −1 ≤ t ≤ 0. Thus, setting

u(t) = y(−t), 0 ≤ t ≤ 1, (2.45)

we get

u(4)(t) =
(
y(−t))(4) = F

(−t, y(−t), y′′(−t))

= F
(−t, u(t), u′′(t)

)
= f

(
t, u(t), u′′(t)

)
, 0 ≤ t ≤ 1.

(2.46)

Consequently, u(t), 0 ≤ t ≤ 1, is a solution of the differential equation (E+). Furthermore the
boundary conditions in (2.43) and the transformation u(t) = y(−t), 0 ≤ t ≤ 1 guarantee that
the boundary conditions (C−−) also hold. Hence, u(t) is the requite solution of (E+)–(C−−).

Remark 2.5. Obviously, we could give an analytical proof (similar to the one given at
Theorem 2.2) to the above Corollary 2.4, as well as to the following ones.

Consider now the differential equation as

u(4)(t) = −f(t, u(t), u′′(t)
)
, 0 < t < 1, (E−)

and then the boundary value problem (E−)–(C−−),

Corollary 2.6. Assume (B1)–(B3) hold and furthermore that

ac(ξ2 − ξ1) + bc − ad > 0. (2.47)

Then the boundary value problem (E−)–(C−−) admits a negative and convex solution u(t), 0 ≤ t ≤ 1,
provided that (2.7)-(2.8) holds. Furthermore,

u′′(t) ≥ 0, u′′′(t) ≥ 0, 0 ≤ t ≤ 1. (2.48)
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Proof. Consider the BVP

y(4)(t) = F
(
t, y(t), y′′(t)

)
, −1 ≤ t ≤ 0,

y(−1) = y(0) = 0,

cy′′(−ξ2) + dy′′′(−ξ2) = 0, ay′′(−ξ1) + by′′′(−ξ1) = 0,

(2.49)

where, for any real function u(t), 0 ≤ t ≤ 1,

F
(
t, u(t), u′′(t)

)
:= f

(−t,−u(−t),−u′′(−t)), −1 ≤ t ≤ 0. (2.50)

Then, since the conditions (B1)–(B3) are performed by f , F satisfies the assumptions
(
B∗

1

)
–(

B∗
3

)
(applied on the interval [−1, 0]). Hence, by Theorem 2.2, (2.49) admits a positive and

concave solution y(t), −1 ≤ t ≤ 0. We set

u(t) = −y(−t), 0 ≤ t ≤ 1. (2.51)

Then

u(4)(t) =
(−y(−t))(4) = −(y(−t))(4) = −F(−t, y(−t), y′′(−t))

= − F
(−t,−u(t),−u′′(t)

)
= −f(t, u(t), u′′(t)

)
, 0 ≤ t ≤ 1,

(2.52)

that is, the map u(t), 0 ≤ t ≤ 1, is a solution of (E−). Furthermore, since

0 = cy′′(−ξ2) + dy′′′(−ξ2) = −cu′′(ξ2) + du′′′(ξ2) = 0, (2.53)

(and similarly for the other) the boundary conditions in (C−−) are satisfied by the solution
u(t). Consequently, u(t) = −y(−t), 0 ≤ t ≤ 1 is the desired solution of the boundary value
problem (E−)–(C−−)

Remark 2.7. By the following formula:

y∗(t) = −
∫1

0
G(t, s)v(s)ds =

∫ t

0
s(t − 1)v(s)ds +

∫1

t

t(s − 1)v(s)ds, 0 ≤ t ≤ 1, (2.54)

it is clear that the map u∗(t), 0 ≤ t ≤ 1, is a negative solution of the BVP (2.49). Hence we get
also the positive solution as

u∗(t) = −y∗(−t), 0 ≤ t ≤ 1, (2.55)
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of the boundary value problem (E−)–(C−−). The same reasoning folds for all the following
results.

Consider the BVP (E+)–(C++).

Corollary 2.8. Assume (B1)–(B3) hold, and furthermore that

ac(ξ2 − ξ1) + ad − bc < 0. (2.56)

Then the boundary value problem (E+)–(C++) admits a negative and convex solution u(t), 0 ≤ t ≤ 1,
provided that (2.7)-(2.8) holds. Furthermore,

u′′(t) ≥ 0, u′′′(t) ≤ 0, 0 ≤ t ≤ 1. (2.57)

Proof. Consider the BVP

y(4)(t) = F
(
t, y(t), y′′(t)

)
, 0 ≤ t ≤ 1,

y(0) = y(1) = 0,

ay′′(ξ1) + by′′(ξ1) = 0, cy′′(ξ2) + dy′′′(ξ2) = 0,

(2.58)

where

F(t, u, v) = −f(t,−u,−v), u ≥ 0, v ≤ 0. (2.59)

Then, since the conditions (B1)–(B3) are performed by f , F satisfies the assumptions
(
B∗

1

)
–(

B∗
3

)
of Theorem 2.2. Hence, that BVP admits a positive and concave solution y(t), 0 ≤ t ≤ 1.

We set

u(t) = −y(t), 0 ≤ t ≤ 1. (2.60)

Then

(−u(t))(4) = y(4)(t) = F
(
t, y(t), y′′(t)

)
= −f(t,−y(t),−y′′(t)

)
= −f(t, u(t), u′′(t)

)
, (2.61)

that is, the map u(t), 0 ≤ t ≤ 1, is a solution of (E+). Furthermore, since

0 = ay′′(ξ1) + by′′(ξ1) = −au′′(ξ1) − bu′′′(ξ1) = 0, (2.62)
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the first (and similar the other) of the boundary conditions in (C++) is satisfied. Consequently,
u(t) = −y(t), 0 ≤ t ≤ 1, is the desired solution of the boundary value problem (E+)–(C++).

Consider now the boundary value problem (E−)–(C++).

Corollary 2.9. Assume
(
B∗

1

)
–
(
B∗

3

)
hold and furthermore that ac(ξ2 − ξ1) + ad − bc < 0. Then the

boundary value problem (E−)–(C++) admits a positive and concave solution u(t), 0 ≤ t ≤ 1, provided
that (2.41) holds. Furthermore,

u′′(t) ≥ 0, u′′′(t) ≤ 0, 0 ≤ t ≤ 1. (2.63)

Proof. Consider any function u(t), 0 ≤ t ≤ 1. We define a map f∗ by

f
(
t, u(t), u′′(t)

)
= −f∗(ξ1 + ξ2 − t, u(ξ1 + ξ2 − t), u′′(ξ1 + ξ2 − t)

)
, t ∈ [0, 1], u ≥ 0, v ≤ 0.

(2.64)

Since f satisfies the conditions
(
B∗

1

)
–
(
B∗

3

)
, we easily check that f∗ suits the same conditions.

In view of Theorem 2.2, consider a solution u∗(t), ξ1 +ξ2 −1 ≤ t ≤ ξ1 +ξ2, of the following BVP:

(u∗)(4)(t) = f∗
(
t, u∗(t), u∗′′(t)

)
, (2.65)

u∗(0) = u∗(1) = 0,

cu∗′′(ξ1) + du∗′′′(ξ1) = 0, au∗′′(ξ2) + bu∗′′′(ξ2) = 0.
(2.66)

We notice that ξ1 + ξ2 − 1 ≤ ξ1 < ξ2 ≤ ξ1 + ξ2 and set

u(t) ≡ u∗(ξ1 + ξ2 − t), 0 ≤ t ≤ 1. (2.67)

Then, we obtain

(u(t))(4) = (u∗(ξ1 + ξ2 − t))(4)

= f∗(ξ1 + ξ2 − t, u∗(ξ1 + ξ2 − t), u∗′′(ξ1 + ξ2 − t)
)
= −f(t, u(t), v(t)),

(2.68)

that is, the function u(t), 0 ≤ t ≤ 1 is a solution of the differential equation (E−). Moreover,
the boundary conditions (C++) are satisfied by the function u(t), since the solution u∗(t) fulfils
the boundary conditions (2.66). Consequently, u(t) is the requite solution of (E−)–(C++).

Corollary 2.10. Assume (B1)–(B3) hold and furthermore that ac(ξ2 − ξ1) + ad − bc < 0. Then the
boundary value problem (E−)–(C++) admits a positive and concave solution u(t), 0 ≤ t ≤ 1, provided
that (2.41) holds. Furthermore,

u′′(t) ≥ 0, u′′′(t) ≤ 0, 0 ≤ t ≤ 1. (2.69)
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Proof. It follows by Corollary 2.9, via the following transformation:

u(t) = y(−t), 0 ≤ t ≤ 1. (2.70)

Here y(t), −1 ≤ t ≤ 0, is a positive solution of the BVP as

y(4)(t) = F
(
t, y(t), y′′(t)

)
, −1 ≤ t ≤ 0,

u(0) = u(1) = 0,

cu′′(−ξ2) + du′′′(−ξ2) = 0, au′′(−ξ1) + bu′′(−ξ1) = 0,

(2.71)

where

F
(
t, u(−t), u′′(−t)) = −f(−t, u(t), u′′(t)

)
, −1 ≤ t ≤ 0. (2.72)

Indeed, for t ∈ [0, 1],

u(4)(t) =
(
y(−t))(4) = F

(−t, y(−t), y′′(−t)) = F
(−t, u(t), u′′(t)

)
= −f(t, u(t), u′′(t)

)
, (2.73)

that is, u(t), t ∈ [0, 1], is a solution of differential equation (E−). Finally, u(t) = y(−t), −1 ≤
t ≤ 0, is a desired solution of BVP (E−)-(C−−).

Similarly, we may prove the next results.

Corollary 2.11. Assume (B1)–(B3) hold and furthermore,

ac(ξ2 − ξ1) + bc − ad < 0. (2.74)

Then the boundary value problem (E+)–(C−−) has a negative and convex solution u(t), 0 ≤ t ≤ 1,
provided that (2.7)-(2.8) holds. Furthermore,

u′′(t) ≥ 0, u′′′(t) ≥ 0, 0 ≤ t ≤ 1. (2.75)

Corollary 2.12. Assume (B1)–(B3) hold and furthermore

ac(ξ2 − ξ1) + bc − ad < 0. (2.76)

Then the boundary value problem (E−)–(C++) has a negative and convex solution u(t), 0 ≤ t ≤ 1,
provided that (2.41) holds. Furthermore,

u′′(t) ≥ 0, u′′′(t) ≤ 0, 0 ≤ t ≤ 1. (2.77)
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Corollary 2.13. Assume (B1)–(B3) hold and furthermore

ac(ξ2 − ξ1) + ad − bc < 0. (2.78)

Then the boundary value problem (E−)–(C−−) has a negative and convex solution u(t), 0 ≤ t ≤ 1,
provided that (2.7)-(2.8) holds. Furthermore,

u′′(t) ≥ 0, u′′′(t) ≥ 0, 0 ≤ t ≤ 1. (2.79)

Corollary 2.14. Assume that
(
B∗

1

)
holds and the nonlinearity is a sublinear map, that is, μ = 0,

μ∗ = +∞. Then, the boundary value problem (E+)-(C++) admits a positive and concave solution.

Proof. Obviously,
(
B∗

1

)
–
(
B∗

3

)
are fulfilled. Thus, Theorem 2.2, yields the result.

Remark 2.15. It is obvious that the results of all Corollaries, given above, still hold, under a
sublinearity assumption of the nonlinearity (see [23]).

Remark 2.16. We could replace the following lines (initial and terminal points):

E0 :=
{(

v, v′) : av + bv′ = 0, v > 0
}
, E1 :=

{(
v, v′) : cv + dv′ = 0, v > 0

}
, (2.80)

with any suitable continuum K0 and K1, respectively. At such a case, the existence of the
related Green’s function is uncertain. For example, we may consider the following boundary
conditions:

a
(
u′′(ξ1)

)3 + bu′′′(ξ1) = 0, c
(
u′′(ξ2)

)1/3 + bu′′′(ξ2) = 0. (2.81)

Then, the proof can be carried out word perfect.
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