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Aging as the process in which the built-in entropy decreasing function worsens as internal time
passes. Thus comes our definition, “life is a one way flow along the intrinsic time axis toward the
ultimate heat death, of denumerably manymetabolic reactions, each at local equilibrium in view of
homeostasis”. However, our disposition is not of reductionismic as have been most of approaches,
but it is to the effect that such a complicated dynamic system as lives are not feasible for modelling
or reducing to minor fragments, but rather belongs to the whole-ism. Here mathematics can play
some essential role because of its freedom from practical and immediate phenomena under its own
nose. This paper is an outcome of hard trial of mathematizing scientific disciplines which would
allow description of life in terms of traditional means of mathematica, physics. chemistry, biology
etc. In the paper, we shall give three basic math-phys-chem approaches to life phenomena, entropy,
molecular orbital method and formal language theory, all at molecular levels. They correspond to
three mathematical dsciplines—probability, linear algebra and free groups, respectively. We shall
give some basics for the Rényi (α)-entropy, Chebyshev polynomials and the notion of free groups
inrespective places. Toward the end of the paper, we give some of our speculations on life and
entropy increase principle therein. Molecular level would be a good starting point for constructing
plausible math-phys-chem models.

1. Introduction

Life science seems to have been prevailing the modern science, which incorporates a great
number of relevant subjects ranging from molecular biology to medicine, all of which seem
to belong to “reductionism,” that is, “the whole is the totality of its parts.” Molecular biology
presupposes, “genotype determines phenotype,” namely, that the gene codes (codons for
amino acids) preserved in DNAdetermine all the phenomenal aspects of the living organisms
which are designed by these codes. A traditional way that biology has been tracking is
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that of “classifying” creatures according to their “species” and molecular biology has been
classifying the ingredients in the same spirit but at much smaller, ultramicroscopic level.

Classification is one of themost effective powers of mathematics. This is because one of
themain objectives of mathematics is tomake a classification of objects of study by sorting out
some common features—structures, symmetries—from them to classify them, thereby use is
made of neglecting irrelevant specificities and extracting the properties uplifted to absolute
abstraction.

In extracting common features of a class of objects of study, mathematicians often
appeal to analogy. This reminds us of a seemingly forgotten way of thinking in [1] of making
equivalent transformations between similar systems. We tacitly appeal to this principle in the
paper.

The description of roles of disciplines stated in [2, page 140] with some modifications
would serve as initiation. It says that math treats electromagnetic energy, light, and heat in
the Big Bang Era which is also treated independently by phys. The latter goes on to treating
the Material Domain consisting of macromolecules, molecules, and atoms in common with
chemistry which is the main character in this domain. Then molecular biology comes in
and starts treating the Life Domain with chemistry and biology. The domain consists of
multicelled creatures, eukaryotic cells, flagella, and bacteria. Then biology deals with the
Spirit and Culture Domain with psychology and neuroscience. The domain comprises of
mammals and humans. Finally, the Higher Spirit Domain consisting of metahumans is dealt
with by philosophy, literature, religion, and art. The author says that this is the scheme
of evolution at cosmos level and in that order, entropy decreases, while fittestness and
orderliness increase with acceleration. But this ordering would be very much disputable and
we just adhere the bottom to the top to make it circular, so that in our modified new scheme,
mathematics is among those literary subjects, which is the case, as Goethe said mathematics
is frozen music!

In this paper, we will confine ourselves to a few selected constituents of living
organisms. As one of main objects of study, one may take up cells and their functions. The
reason can be given plenty. They are first of all still visible by microscopes and can be studied
as manifestation of reductionism. There are 7 thousand billion cells in the human body and
cell membranes play essential roles in maintaining life. The cells have internal and external
membranes mainly made of lipids, polysaccharides, proteins, and so forth. Among these
ingredients, wewill bemost interested in lipids and proteins, the first because the oxidation of
lipidswould lead tomalfunction of the cells and the second because the proteins are polymers
consisting of 20 basic amino acids joined by peptide bonds and it has been made clear that the
production and properties of amino acids are dependent on the codons which are used (see
e.g., [3]). Our main mathematical motivation is from [4] where a rather geometrical study
is made on molecular biology. The following manifestation is noteworthy of the similarity
principle between DNA and (linear) proteins [4, pages 13, 23].

An amino acid is a compound consisting of two parts—constant and variable, where
the constant part comprises of ACH, an amino group, a carboxyl group, and a hydrogen atom,
while the variable part consists of a side chain which appears in 20 flavors, thus yielding 20
basic amino acids.

A heteropolymer is an assemblage of several kinds of standard molecules—
monomers—building a connected chemically homogeneous backbone with short branches
attached to each monomer of the backbone.

We may summarize this in Table 1.
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Table 1

Polymers Alphabets Backbone Branches Bond
Polynucleotide
(single-stranded
DNA)

A, T,G,C
Sugar-

phosphate Bases Phosphate
covalent

Polypeptide
(linear protein)

Codons
(triplets) ACH Side chains Peptide

Motivated by the way in which the three important factors are treated, that is, circular
and linear DNA strings [4, page 19] and in [5, page 741], entropy [4, page 55], coupled
with a rather speculative definition of life in [6, pages 124–128] as information preserved
by natural selection, we will dwell on the following mathematical stuff which correspond to
the respective notions.

In Section 2, we adopt Renyi’s theory of incomplete probability distribution to be
compatible with and match the real status of life, expounding the notion of entropy in, and
evolution-theoretic aspects of, life.

In Sections 3 and 4.2, we will outline the theory of energy levels of carbon hydrides
based on the theory of Chebyshëv polynomials as developed in [7, Chapter 1] comparing
the levels of polygonal and circular carbon hydrides. It is hoped this analysis will shed some
light on the corresponding problem of linear and circular DNA. In Section 5, we provide some
unique exposition of the Chebyshëv polynomials to such an extent that will be sufficient for
applications.

In Section 6, we state mere basics of free groups as opposed to direct (i.e., Cartesian)
products [4, page 44] of many copies of an attractor.

In Section 7, we assemble some meaningful definitions of life from varied disciplines.
One of the objectives of this paper is to show freedom as well as power of mathematics

for treating seemingly irrelevant disciplines. It is freed from realistic restrictions which always
show their effect on researches in other akin science, physics, chemistry, and so forth.We hope
we have shown that the more complicated the situation is as life, the more feasible for it is
mathematics.

2. Shannon’s Entropy

In [8], Shannon developed mathematical theory of communication. Suppose, we have a set
of possible events whose occurring probabilities are p1, . . . , pn, 0 < pk < 1 with

n∑

k=1

pk = 1, (2.1)

that is, P = {p1, . . . , pn} is a finite discrete probability distribution. We are to find a measure
S = S(p1, . . . , pn) satisfying

(i) S = S(p1, p2, . . . , pn) is a symmetric function in pk for n = 2, 3, . . .,

(ii) S(p, 1 − p) is a continuous function in p, 0 ≤ p ≤ 1,
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(iii) If a choice is broken down into two successive choices, then the original S should
be the weighted sum of the individual values of S:

S
(
tp1, (1 − t)p1, p2, . . . , pn

)
= S
(
p1, p2, . . . , pn

)
+ p1S(t, 1 − t), (2.2)

for any 0 ≤ t ≤ 1 and any distribution P,

(iv) S(1/2, 1/2) = 1.

Theorem 2.1 ([8, Theorem 2]). The only S satisfying the conditions (i)–(iii) is of the form

S = −K
n∑

k=1

pk log pk, (2.3)

where K > 0 is a constant. Under the normality condition (iv), (2.3) amounts to

S = −
n∑

k=1

pklog2pk. (2.4)

We note that simultaneously with and independently of, Shannon, the same result was
obtained byN.Wiener. It was Fadeev [9]who formulated Shannon’s theorem in the axiomatic
way as above. The base 2 is preferred because they were interested in the switching circuit,
on and off. For postulate (iii), c.f. (2.36) below and Remark 2.7, (i).

The proof of a more general theorem of Rényi (Theorem 2.5 below) as well as this
theorem is easy except for one intriguing number-theoretic result originally due to Erdös
[10]. We give a proof slightly modified yet in the spirit of Rényi’s well-known proof in the
case of additive functions.

Definition 2.2. An arithmetic function, that is, a function defined on the set of natural numbers
with complex values, is called an additive function if it satisfies

f(mn) = f(m) + f(n), (2.5)

for all relatively prime pairs m,n, that is, the gcd of m and n, denoted by gcd(m,n) is 1. If f
satisfies (2.5) for all m,n, it is called a completely additive function.

By the fundamental theorem in arithmetic it is clear that an additive function is
completely determined by its values at prime power arguments, and a completely additive
function by its values at prime arguments. Indeed, if n = pα1

1 · · · pαk

k
is the canonical

decomposition into prime powers of n, then we have

f(n) =
k∑

r=1

f
(
pαr
r

)
, (2.6)

in the case of an additive function. In the case of completely additive functions, f(pαr
r ) further

decompose into αrf(pr). Let Δ denote the difference operator, Δf(n) = f(n + 1) − f(n). Note
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that Δ logn = log(1 + 1/n) → 0. We may now state Erdös theorem, which states that this
limiting condition characterizes the logarithm function among additive arithmetic functions.

Theorem 2.3 (Erdös). If an additive arithmetic functions f satisfies the condition

lim
n→∞

Δf(n) = 0, (2.7)

then one must has

f(n) = c logn, (2.8)

for some constant c.

Proof. It suffices to prove (2.8) for n a prime power, that is,

f
(
pk
)
= c log pk, (2.9)

for all prime powers pk. We fix pk and prove that

g(n)
logn

=
f(n)
logn

− f
(
pk
)

log pk
−→ 0, (2.10)

as n → ∞, where we set

g(n) = f(n) − f
(
pk
)
logn

log pk
. (2.11)

Since Δg(n) = Δf(n) − (f(pk)/ log pk) log(1 + (1/n)), (2.8) for g also holds true by (2.8) for
f . Further, g vanishes at n = pk:g(pk) = 0.

We construct the strictly decreasing sequence {qj} of successive quotients of n divided
by pkj . By the Euclidean division,

qj = pkqj+1 + rj , 0 ≤ rj < pk, (2.12)

starting from j = 0 with n = q0, where qj+1 = [qj/pk]. Let r denote the greatest integer such
that pk(r−1) ≤ n. Then solving this inequality, we get r ≤ [logn/ log pk]+1, with [y] indicating
the integral part of y, that is, the greatest integer not exceeding y. Then qr < pk. From this
sequence q = [n/pk]rj=0 we construct a sequence all of whose terms are relatively prime to pk

or p by subtracting a fixed positive integer a < p from the quotient; nj = qj −a = [nj−1/pk]−a
if p | qj . Then by the way of construction we have

nj = pknj+1 + rj , 0 ≤ rj < (a + 1)pk, j = 1, . . . , r − 1. (2.13)
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By the additivity of g and gcd(nj, p
k) = 1, we obtain

g
(
pknj+1

)
= g
(
pk
)
+ g
(
nj+1
)
= g
(
nj+1
)
, (2.14)

by the vanishingness condition. Hence, noting that

g
(
nj

)
= g
(
nj

)
+ g
(
nj+1
) − g

(
pknj+1

)
= g
(
nj+1
)
+ g
(
nj

) − g
(
pknj

)
, (2.15)

and that

g
(
nj

) − g
(
pknj+1

)
= g
(
nj

) − g
(
nj − 1

)
+ g
(
nj − 1

) − g
(
pknj+1

)

=
nj−1∑

i=pknj+1

Δg(i),
(2.16)

we may express g(nj) − g(nj+1) as a telescoping series

g
(
nj

) − g
(
nj+1
)
=

nj−1∑

i=pknj+1

Δg(i). (2.17)

By the same telescoping technique, we obtain

g(n) = g(n0) =
r−1∑

j=0

(
g
(
nj

) − g
(
nj+1
))

+ g(nr), (2.18)

whence substituting (2.17), we deduce that

g(n) = g(nr) +
r−1∑

j=0

nj−1∑

i=pknj+1

Δg(i). (2.19)

Now the double sum on the right of (2.19) may be written as
∑Nr

k=1 Δg(mk) with the
increasing labels {mk},m1 = nrp

k,mNr = n − 1.
In view of (2.8) and regularity of the (C, 1)-mean, it follows that

lim
n→∞

1
Nr

Nr∑

k=1

Δg(mk) = 0. (2.20)
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Also the number Nr of terms is estimated by

r−1∑

j=0

nj−1∑

i=pknj+1

1 ≤ r max
0≤j≤r−1

rj ≤
(

logn
log pk

+ 1

)
(a + 1)pk ≤ c logn, (2.21)

with a constant c > 0, by (2.13) and the estimate on r.
It remains to estimate (2.19) divided by logn, thereby we note that since nr < pk,

|g(nr)| ≤ max1≤j≤pk |g(i)| =: C, say. Hence it follows that

0 ≤
∣∣g(n)

∣∣

logn
≤ C

logn
+

1
Nr

Nr∑

k=1

∣∣Δg(mk)
∣∣ −→ 0, (2.22)

as n → ∞, thereby proving (2.10). Hence it follows that limn→∞(f(n)/ logn) = c, say, must
exist and be equal to f(pk)/ log pk, that is, (2.9) follows, completing the proof.

Definition 2.4. A finite discrete generalized probability distribution P is a sequence P =
{p1, . . . , pn}, 0 ≤ pkwith weight

W(P) =
n∑

k=1

pk, (2.23)

satisfying

0 < W(P) ≤ 1. (2.24)

Let Δ denote the set of all finite discrete generalized probability distributions P. For P, Q in
Δ, define their Cartesian product and union by

P × Q =
{
pjqk

}
, P ∪ Q =

{
pj , qk

}
, (2.25)

the latter defined for W(P) +W(Q) < 1 only.

We will characterize the entropy (of order 1) S = S(P) by the following 4 postulates:

(i) S(P) is a symmetric function of the elements of P,

(ii) if {p} indicates the singleton, that is, the generalized probability distribution with
the single probability p, then S({p}) is a continuous function in p in the interval
0 < p ≤ 1,

(iii) for P,Q ∈ Δ, we have

S(P × Q) = S(P) + S(Q), (2.26)
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(iv) if P ∪ Q = {pj , qk} and W(P) +W(Q) < 1, then we have

S(P ∪ Q) =
W(P)S(P) +W(Q)S(Q)

W(P) +W(Q)
, (2.27)

or

S(P1 ∪ · · · ∪ Pn) =
∑n

k=1 W(Pk)S(Pk)∑n
k=1 W(Pk)

. (2.28)

Theorem 2.5 (Rényi). The only S(P) defined for all P = {p1, . . . , pn} ∈ Δ and satisfying the above
postulates is S(P) = cS1(P), where c is a constant and

S1(P) =
∑n

k=1 pk log
(
1/pk

)

W(P)
(2.29)

is the order 1 entropy of Shannon. If one imposes the normality condition

(v) S({1/2}) = 1,

then the only function satisfying the postulates is (2.37).

Proof. Let f(n) = S({1/n, . . . , 1/n}), which is = S({1/n}) in view of Postulate (iv), where {p}
indicates the singleton distribution. Then by Postulate (iii), f satisfies (2.8).

To prove (2.7) is rather involved and depends on (2.33) and Postulate (ii). Since a
detailed proof of a very much related result is given [11, pages 548–553], we refer to it and
omit the proof here.

Thus by Theorem 2.3, f(n) = c logn, so that

S
({
p
})

= c log
1
p
. (2.30)

Corollary 2.6. For an ordinary distribution, Theorem 2.5 reduces to Theorem 2.3.

Proof. It suffices to deduce (iii) in Theorem 2.3 under (2.23). Apparently, it will be enough to
treat S(tp1, (1 − t)p1, p2) in the case p1 + p2 = 1, 0 ≤ t ≤ 1. Since W(p) = p and

{
tp1, (1 − t)p1, p2

}
=
{
tp1, (1 − t)p1

} ∪ {p2
}

=
{({t(1 − t)} × {p1

}) ∪ {p2
}}

,
(2.31)

it follows from Postulate (iv) that

S
(
tp1, (1 − t)p1, p2

)
=

(
tp1 + (1 − t)p1

)
S
(
tp1, (1 − t)p1, p2

)
+ p2S

(
p2
)

tp1 + (1 − t)p1 + p2

= p1S(t, 1 − t) + p1S
(
p1
)
+ p2S

(
p2
)
,

(2.32)
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by Postulate (iii). Since the last two summands on the right of (2.32) amount to S(p1, p2) in
view of Postulate (iv), we arrive at Condition (iii) in Theorem 2.3, completing the proof.

Remark 2.7. (i)We note that (2.2) is equivocal to

S
(
p1, p2, p3

)
= S
(
p1 + p2, p3

)
+
(
p1 + p2

)
S

(
p1

p1 + p2
,

p2
p1 + p2

)
. (2.33)

Indeed, writing p̂1 = tp1, p̂2 = (1 − t)p1, whence p̂1 + p̂2 = p1, we may rewrite (2.2) as

S
(
p̂1, p̂2, p3

)
= S
(
p1, p3

)
+ p1S

(
tp1
p1

, 1 − tp1
p1

)

= S
(
p̂1 + p̂2, p3

)
+
(
p̂1 + p̂2

)
S

(
p̂1

p̂1 + p̂2
, 1 − p̂1

p̂1 + p̂2

)
,

(2.34)

which is (2.33).
(ii) As stated in [12, page 503], one of the advantages of the notion of entropy of

incomplete probability distribution is that as indicated by (2.30), the factor log pk in (2.4)
may be regarded as the entropy of the singleton {pk}, and so (2.4) or for that matter, (2.37)
withW(P) = 1 is the mean entropy (average).

(iii) Definition 2.4 is to be stated in a mathematical way as follows. Let Ω denote the
set of elementary events, B the set of events, that is, a σ-algebra of subsets of Ω containing
Ω, and P a probability measure, that is, a nonnegative, additive set function with P(Ω) = 1.
The triplet (Ω,B, P) then is called a probability space and a function ξ = ξ(ω) defined on
Ω and measurable with respect to B is called a random variable. What Rényi introduced is
an incomplete random variable, that is, taking a subset Ω1 of Ω, he introduced ξ = ξ(ω)
defined on Ω1 such that 0 < P(Ω1) < 1. An incomplete random variable may be interpreted
as a quantity describing the results of an experiment depending on a chance, all of which are
not observable. We use the notion of incomplete random variable to describe the results of
evolution, the capricious experiment by the Goddess of Nature, in which not all species are
observable since the species which we now see are those which have been chosen by natural
selection.

2.1. Rényi’s α-Entropy

It would look natural to extend the arithmetic mean in (2.37) by other more general mean
values. Let g be an arbitrary strictly monotone and continuous function with its inverse
function g−1. General mean values of {xl, . . . , xn} are described as

S(xl, . . . , xn) = g−1
(
∑

wkg(xk)

)
, (2.35)

in which case g is called the Kolmogorov-Nagumo functions associated with (2.35).
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We may replace Postulate (iv) above by (iv’) IfW(P1) + · · ·+W(Pn) < 1, then we have

Hα(P1 ∪ · · · ∪ Pn) = g−1
(∑n

k=1 W(Pk)g(Pk)∑n
k=1 W(Pk)

)
. (2.36)

Theorem 2.8 (Rényi). The only S(P) defined for all P = {p1, . . . , pn} ∈ Δ and satisfying the
Postulates (i), (ii), (iii), (iv’) with g(x) = 2(α−1)x and (v) is S(P) = Sα(P), where

Sα(P) =
1

1 − α
log

(∑n
k=1 p

α
k∑n

k=1 pk

)
(2.37)

is the order α entropy of Rényi.

Since limα→ 1Sα(P) = Sα(P) = S1(P), order α entropy of Rényi would suit a measure
for the incomplete random variables and would be in conformity with Carbone-Gromov
notion of dynamical time of variable fractal dimension in Section 8.

A complete characterization of S in Theorem 2.8 with general g was made by Daróczy
in 1963 to the effect that the only admissible g are linear functions and linear functions of the
exponential function (see e.g., [13, page 313]).

As is stated in [14, page 552] [11], the most significant order α information of Rényi is
the “gain of information,” which would also work in comparing the microstates of the body.
We hope to return to this in the near future.

2.2. Thermodynamic Intermission a là Boltzmann

Quantities of the form

S = S
(
p1, . . . , pn

)
= −

n∑

k=1

pk log pk (2.38)

or any analogue thereof, played a central role in Boltzmann’s statistical mechanics much
earlier than the information entropy. In Boltzmann’s formulation of thermodynamics, pk is
the probability of the system to be in the cell k of its phase space. See also the heuristic
argument of [15, page 18] below.

We now give a brief description of elements of thermodynamics from Boltzmann’s
standpoint (see e.g., [16]).

2.2.1. Entropy Increase Principle

All the natural phenomena have the propensity of transforming into the state with higher
probability, that is, to the state with higher entropy. This is often recognized as the entropy
increase principle.
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Let v = (vx, vy, vz) denote the velocity of molecules (of the same kind) and let f(v, t) =
f(vx, vy, vz, t) denote the velocity distribution function. Then the total number N of molecules
is given by

N =
∫

R3
f(v, t)dv. (2.39)

Boltzmann introduced the Boltzmann H-function

H = H(t) =
∫

R3
f(v, t) log f(v, t)dv. (2.40)

The S in (2.38) may be regarded as −1 times the Boltzmann H-function: S = −H. For
wemay view S as a Stieltjes integral which in turnmay be thought of as −H. See Theorem 2.10
below.

He proved.

Theorem 2.9 (The Boltzmann H-theorem, 1872).

dH
dt

≤ 0, (2.41)

that is,H decreases as time elapses.

We state a heuristic argument [15, page 18] toward the natural introduction of the
H-function.

In statistical mechanics, macrostates (properties of large number of particles such as
temperature T , volume V , pressure P) are contrasted with microstates (properties of each
particle such as position x, momentum M, velocity v). Given a macrostate Σ, there are N
microstates σr corresponding to Σ: Σ ↔ ∪N

r=1σr . Then the entropy S of Σ is defined as

S = k logN, (2.42)

where k = kB > 0 is the Boltzmann constant.
Suppose that the rth microstate σr occurs with probability pr . Consider the system Σv

consisting of a very large number v of copies (v-dimensional Cartesian product) of Σ. Then
on average there will be vr = ‖vpr‖ copies (vr-dimensional Cartesian product) of σr in Σv,
where the norm symbol ‖ · ‖ indicates the nearest integer to “·”. Hence for the total number
Nv of microstates corresponding to Σ in Σv it follows that

Nv =
v!

v1! · · ·vr !
. (2.43)

Applying the Stirling formula [7, (2.1), page 24]:

n! ∼
√
2πn

(
n

e

)n

, n −→ ∞, (2.44)
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we find that

Nv ∼
√
2πv

(
v

e

)v N∏

r=1

√
2πvr

−1
(
vr

e

)−vr

, (2.45)

or for the entropy Sv of the system Σv

k−1Sv = logNv ∼ log
√
2πv + v log

(
v

e

)
−

N∑

r=1

log
√
2πvpr −

N∑

r=1

vpr log
(
vpr
e

)
. (2.46)

Under the normality condition
∑N

r=1 pr = 1, (2.43) simplifies to

logNv ∼ −v
N∑

r=1

pr log pr. (2.47)

Since Smay be regarded as the arithmetic mean of Sv’s, it follows from (2.47) that

S = v−1Sv = kv−1 logNv ∼ −k
N∑

r=1

pr log pr. (2.48)

The first law of thermodynamics or the law of conservation of energy is one of the most
universal laws that governs our space. We consider an isolated thermodynamical system,
where isolated means that the system does not give or receive heat from outside sources:

(i) Q means the heat,

(ii) T means the absolute temperature,

(iii) S = Q/T means the entropy,

Boltzmann proved.

Theorem 2.10. We have the relation:

S = −kBH, (2.49)

where kB > 0 is the Boltzmann constant.

Theorems 2.9 and 2.10 together imply that entropy increases, which is the second law of
thermodynamics.

Proposition 2.11. The maximum of the entropy (2.38) for a probability distribution of (an infor-
mation system) {p1, . . . , pn}, 0 < pk < 1 is attained for

p1 = · · · = pn =
1
n
, (2.50)

with maximum logn.
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Proof. Since we have the constraint

n∑

k=1

pk − 1 = 0, (2.51)

we apply the Lagrange multiplier method. Let

L
(
p1, . . . , pn, λ

)
= S
(
p1, . . . , pn

)
+ λ

(
n∑

k=1

pk − 1

)
, (2.52)

where λ is a parameter. We may find the extremal points of L among stationary points which
are the solutions to the equation ∇L = o:

∇L =
(

∂L

∂p1
, . . . ,

∂L

∂pn
,
∂L

∂λ

)

=

(
− log p1 − 1 + λ, . . . ,− log pn − 1 + λ,

n∑

k=1

pk − 1

)
,

(2.53)

that is, they are the solutions of the system of equations

− log pk − 1 + λ =
∂L

∂pk
= 0, 1 ≤ k ≤ n. (2.54)

From (2.52), we have pk = ek−1. Substituting these in (2.23), we conclude that the stationary
point is (1/n, . . . , 1/n). Since the entropy always increases, we conclude that it is attained for
(2.50).

Equation (2.50) is in conformity with our intuition that the entropy becomes the
maximum when all the variables have the same value. Consider, for example, the case “The
dice is cast.”

3. Molecular Orbitals

This section is devoted to a clear-cut exposition of energy levels of molecular orbitals of
hydrocarbons (carbon-hydrides) and is an expansion of [7, Section 1.4].

We will consider the difference between energy levels of molecular orbitals (MOs) of
a chain-shaped polyene (e.g., 1,3-butadiene) and a ring-shaped polyene (e.g., cyclopentadi-
enylanion) in Section 4.1 in contrast to the chain-shaped 1,3,5-hexatriene and the ring-shaped
benzene treated in Section 4.2.

In quantum mechanics, one assumes that the totality of all states of a system form
a normed C-vector space V and that all (quantum) mechanical quantities are expressed as
hermitian operatorsA : V → V . For a Hermitian operatorA, the eigenvectors v belonging to
its eigenvalue λ (∈R) are viewed as the quantum state whose mechanical quantity is equal to
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λ. The Hermitian operator H expressing the energy of a system is called the Hamiltonian and
its quantum state v = v(t) varies with time variable t according to the Schrödinger equation

iħ
d
dt

v(t) = Hv(t), (3.1)

where ħ = h/2π and h > 0 is called the Planck constant. If Hv(t) = Ev(t), E being real and
called the energy levels of the system, the solution is given by v(t) = e−iEt/ħv(0) and is called
the stationary state on the ground that its expectation does not change with time. The energy
level means the values of the energy which the stationary state can assume.

Example 3.1. We deduce the secular determinant for the molecular orbital Ψ consisting of n
atomic orbitals:

Ψ =
n∑

k=1

ckφk, (3.2)

where φk are atomic orbitals and ck are (complex) coefficients. LetH denote the Hamiltonian
of the molecule and let

E =

∫
Rn ΨHΨdτ
∫
Rn Ψ2 dτ

, (3.3)

where, in general, Ψ is to be treated as a complex vector, in which case ΨHΨ respectively Ψ2

are to be regarded as ΨHΨ respectively |Ψ|2 and the integrals are over C
n. We write

Hij = Hji =
∫

Rn

φiHφj dτ, Sij = Sji =
∫

Rn

φiφj dτ, (3.4)

and refer toHij and Sij as the overlapping integral and the resonance integral between φi and φj ,
respectively. Then

E =

∑n
i,j=1 Hijcicj
∑n

i,j=1 Sijcicj
=

Hiic
2
i + 2ci

∑n
k=1, k /= i Hkick

Siic
2
i + 2ci

∑n
k=1, k /= i Skick

, (3.5)

for each i, 1 ≤ i ≤ n. Applying the differentiation rule for the quotient in the form

(
f

g

)′
=

f ′

g
− f

g

g ′

g
, (3.6)

we deduce that

∂E

∂ci
=

2Hiici + 2
∑n

k=1,k /= i Hkick

Siic
2
i + 2ci

∑n
k=1,k /= i Skick

− E
2Siici + 2

∑n
k=1, k /= i Skick

Siic
2
i + 2ci

∑n
k=1, k /= i Skick

, (3.7)
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whence

2Hiici + 2
n∑

k /= i

Hkick − 2ESiici + 2
n∑

k /= i

Skick = 0, (3.8)

that is, the system of linear equations

(Hii − SiiE)ci +
n∑

k /= i

(Hki − Ski)ck = 0, 1 ≤ i ≤ n. (3.9)

For (3.9) to have a nontrivial solution ci, the coefficient matrix must be singular, so that

∣∣∣∣∣∣∣∣∣∣

H11 − S11E H12 − S12 · · · H1n − S1n

H21 − S21 H22 − S22E · · · H2n − S2n
...

...
...

...
Hn1 − Sn1 Hn2 − Sn2 · · · Hnn − SnnE

∣∣∣∣∣∣∣∣∣∣

= 0. (3.10)

We apply the simple LCAO (linear combination of atomic orbitals) method with the
overlapping integrals Sij = δij , where δij is the Kronecker delta, that is, Sij = 0 for i /= i and
Sii = 1, so that (3.10) reduces to

∣∣∣∣∣∣∣∣∣∣

H11 − E H12 · · · H1n

H21 H22 − E · · · H2n
...

...
...

...
Hn1 Hn2 · · · Hnn − E

∣∣∣∣∣∣∣∣∣∣

= 0, (3.11)

which is the secular determinant for Ψ.

Hereby we also incorporate the simple Hückel method with the Coulomb integral of the
carbon atom in the 2p orbit be α, and the resonance integral Hij between neighboring C–C
atoms in the 2p orbit be β, and others are 0.

Theorem 3.2. With all above simplifications incorporated, the secular determinant reads

∣∣∣∣∣∣∣∣∣∣

α − ε β 0 · · · H1n

β α − ε β · · · 0
...

...
...

...
...

Hn1 0 · · · β α − ε

∣∣∣∣∣∣∣∣∣∣

= 0, (3.12)

whereH1n = Hn1 = 0 or β according as the molecule is chain-shaped or ring-shaped.
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4. Concrete Examples of Energy Levels of MOs

In Section 4.1, we dwell on 1,3-butadiene and cyclopentadienylanion in [21, Section 3] while in
Section 4.2, we mention 1,3,5-hexatriene and a ring-shaped benzene treated in [7, Chapter 1].

4.1. Golden Ratio in Molecular Orbitals

This section is an extract from [17, Section 3], referring to the golden ratio in the context of
molecular orbitals. We will use the notation therein. Let τ = (1 +

√
5)/2 = 1.618 · · · be the

golden ratio. In [17, Section 3], we considered the relation between Fibonacci sequence {Fn}
and the golden ratio, known as Binet’s formula:

Fn =
1√
5

(
τn −

(
−τ−1

)n)
. (4.1)

There is enormous amount of literature on the golden ratio and the Fibonacci sequence
most of which are speculative. We mention a somewhat more plausible and persuasive
statement in [18] referred to as an aesthetic theorem in [17], where it is divided into two
descriptive statements.

Theorem 4.1 (The hierarchical over-structure theorem). Living organisms, and a fortiori, their
descriptions in various media such as paintings, sculptures, and so forth are to be inscribed into
pentagons, which are the governing frame of living organisms and which control their structure as
a hierarchical overstructure and, as a result, the golden ratio appears as the intrinsic lower structure
wherever there are pentagons.

By Theorem 3.2, the secular determinant of the 1,3-butadiene is

∣∣∣∣∣∣∣∣

α − ε β 0 0
β α − ε β 0
0 β α − ε β
0 0 β α − ε

∣∣∣∣∣∣∣∣
= 0. (4.2)

On the other hand, the secular determinant of cyclopentadienylanion is

∣∣∣∣∣∣∣∣∣∣∣

α − ε β 0 0 β
β α − ε β 0 0
0 β α − ε β 0
0 0 β α − ε β
β 0 0 β α − ε

∣∣∣∣∣∣∣∣∣∣∣

= 0. (4.3)

Putting

−λ =
α − ε

β
, (4.4)
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(4.12) and (4.13) become

f4(λ) : =

∣∣∣∣∣∣∣∣

−λ 1 0 0
1 −λ 1 0
0 1 −λ 1
0 0 1 −λ

∣∣∣∣∣∣∣∣
= 0,

g5(λ) : =

∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 0 1
1 −λ 1 0 0
0 1 −λ 1 0
0 0 1 −λ 1
1 0 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣

= 0,

(4.6′)

respectively.
By Theorem 4.2 it follows that

f4(λ) = U4

(
−λ
2

)
, (4.5)

and that the zeros of U4(x) occur if and only if

x = cos θ = cos
k

5
π, 1 ≤ k ≤ 4. (4.6)

Hence, f4(λ) = 0 occurs if and only if

λ = −2 cos θ = −2 cos k
5
π, 1 ≤ k ≤ 4. (4.7)

Hence, substituting these in −λ = (α − ε)/β, we see that the energy levels of 1,3-butadiene
with 4π electrons are

ε = α + 2β cos
k

5
π, 1 ≤ k ≤ 4. (4.8)

As we will see in Section 5, 2 cos(π/5) = τ . Indeed, these λ-values are the roots of the
polynomial f4(λ) = λ4 − 3λ2 + 1 (= U4(−λ/2), See (5.14)), and we obtain λ = ±(±1 +

√
5)/2,

where we note that (−1 +√
5)/2 = τ−1.

Hence numerical values of energy levels are

ε = α ± 1.1618 · · · β, α ± 0.1618 · · · β (4.9)
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on substituting

λ = ±±1 +
√
5

2
= ±3.236 · · ·

2
, ±1.236 · · ·

2
= ±1.1618 · · · , ±0.1618 · · · . (4.10)

On the other hand, to find energy levels of molecular orbitals of the cyclopenta-
dienylanion, direct computation is possible, but we prefer to apply the theory of circular
matrices as in Section 4.2. By Theorem 4.7, the eigenvalues are 2Re 1, 2Reω, . . ., 2Reωn−1 = 2,
2 cos(2π/n), . . ., 2 cos(2(n − 1)π/n). For n = 5, the energy levels of the π electrons of the
cyclopentadienylanion are

2, 2 cos
2π
5
, 2 cos

4π
5
, 2 cos

6π
5
, 2 cos

8π
5
. (4.11)

Thus the golden ratio appears in this context. It would be just natural that it appears for the
pentagonal molecule but it is remarkable that the golden ratio appears for 4 carbon atoms
case for a chain-shaped hydrocarbons. For the ring-shaped 1,3-cyclobutadiene see the end of
Section 4.2.

4.2. Linear and Hexagonal MOs

By Theorem 3.2, the secular determinant of the 1,3,5-hexatriene is

∣∣∣∣∣∣∣∣∣∣∣∣∣

α − ε β 0 0 0 0
β α − ε β 0 0 0
0 β α − ε β 0 0
0 0 β α − ε β 0
0 0 0 β α − ε β
0 0 0 0 β α − ε

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (4.12)

On the other hand, the secular determinant of benzene is

∣∣∣∣∣∣∣∣∣∣∣∣∣

α − ε β 0 0 0 β
β α − ε β 0 0 0
0 β α − ε β 0 0
0 0 β α − ε β 0
0 0 0 β α − ε β
β 0 0 0 β α − ε

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (4.13)
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As in Section 4.1, by the change of variables (4.4), (4.12), (4.13) become

f6(λ) : =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 0 0 0
1 −λ 1 0 0 0
0 1 −λ 1 0 0
0 0 1 −λ 1 0
0 0 0 1 −λ 1
0 0 0 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

g6(λ) : =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 0 0 1
1 −λ 1 0 0 0
0 1 −λ 1 0 0
0 0 1 −λ 1 0
0 0 0 1 −λ 1
1 0 0 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(4.6′)

respectively. By the standard technique, we immediately obtain

g6(λ) = (λ − 2)(λ + 2)(λ − 1)2(λ + 1)2, (4.14)

to find the eigenvalues ±2, ±1, ±1. Then wemay find the eigenspaces (molecular orbitals) by
solving the system of homogeneous linear equations. Instead of an ad hoc method, we have
a universal method using circulant matrices.

Regarding f6(λ), we apply the recurrence (4.20) and substitute f2(λ) = λ2 − 1, f1(λ) =
−λ to arrive at

f6(λ) = λ6 − 5λ4 + 6λ2 − 1, (4.15)

which is extremely difficult to decompose.
Thus we appeal to the following theorem making use of Chebysëv polynomials.

Theorem 4.2. Let fn(λ) be the determinant of degree n with the first row, second row, and so forth

(−λ, 1, 0, . . . , 0), (1,−λ, 1, 0, . . . , 0), (0, 1,−λ, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1,−λ), (4.16)

respectively. Then one has

fn(λ) = Un

(
−λ
2

)
, (4.17)

where Un(x) is the Chebyshëv polynomial of the second kind of degree n + 1 (cf. Section 5), and
fn(λ) = 0 occurs if and only if

λ = −2 cos θ = −2 cos k

n + 1
π, 1 ≤ k ≤ n. (4.18)
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Substituting in −λ = (α − ε)/β, one sees that the energy levels of a chain-shaped toluene are

ε = α + 2β cos
k

n + 1
π, 1 ≤ k ≤ n. (4.19)

Proof. By standard technique,we may deduce the recurrence

fn+1(λ) = −λfn(λ) − fn−1(λ). (4.20)

Since by (5.3), Un(−λ/2) also satisfies (4.20), we conclude (4.17). The zeros are found from
Remark 5.2, completing the proof.

Example 4.3. For n = 3, we have ε = α + 2β cos(kπ/4) = α − √
2β, α, α +

√
2β. This of course

immediately comes from f3(λ) = −λ(λ2 − 2).
In the case of n = 4, we have 1,3-butadiene with 4π electrons treated in Section 4.1.

Example 4.4. In the case of n = 6, we have

ε = α + 2β cos
kπ

7

= α − 2β cos
π

7
, α − 2β cos

2π
7
, α − 2β cos

3π
7
, α + 2β cos

3π
7
, α + 2β cos

2π
7
, α + 2β cos

π

7
.

(4.21)

In this case we need to appeal to a computer or a table to find that cos 0.4 = 0.92106, cos 0.45 =
0.90045. Then to find cos(π/7) = cos 0.44879 · · · , we apply the proportional allotment to get
((0.45 − 0.44879)/(0.45 − 0.4))(0.9216 − 0.90045) + 0.90045 = 0.901064.

Hence it follows that ε = α + 2β cos(kπ/7) = α − 1.80212β, . . .. Other cases are similar.

On the other hand, to find molecular orbitals of the benzene, we may apply the theory
of circulant matrices.

Definition 4.5. For γ = (c1, . . . , cN) ∈ C
N, one calls

C = circ γ = circ(c1, . . . , cN) =

⎛
⎜⎜⎜⎝

c1 c2 · · · cN
cN c1 · · · cN−1
...

...
...

...
c2 c3 · · · c1

⎞
⎟⎟⎟⎠, (4.22)

a circulant matrix (or a circulant). Also, putting

π =

⎛
⎜⎜⎜⎝

e′2
e′3
...
e′1

⎞
⎟⎟⎟⎠, (4.23)
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one calls it the shift forward matrix (which plays a fundamental role in the theory of
circulant matrices), where e′

k
= (δk,1, . . . , δk,n) with δk,� denoting the Kronekcer symbol, are

fundamental unit vectors (π is for push). Using this, we conclude that C = c1 + c2π + · · · +
cNπN−1. Viewing this as a polynomial, one calls

pγ(z) = c1 + c2z + · · · + cNzN−1 (4.24)

a representor of C.

Note that n × n circulant matrices are matrix representations of the group ring over C

or GF(q) as the case may be, of the underlying cyclic group [19, 20]. For example, {π,π2, I}
is the matrix representation of the group ring C[〈r〉], where

π =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠, (4.25)

and r =
(
1 2 3
2 3 1

)
is the rotation by π/3.

Letting

ω = exp
(
2πi
n

)
(4.26)

be the piervot’ny primitive nth root of 1, we define a Fourier matrix F by means of its
conjugate transpose F∗:

F∗ =
1√
n

(
ω(i−1)(j−1)

)
=

1√
n

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 ω · · · ωn−1
...

...
...

...
1 ωn−1 · · · ω(n−1)(n−1)

⎞
⎟⎟⎟⎠. (4.27)

Theorem 4.6 (Davis [21]). Any circulant matrix C can be diagonalized as C = F∗ΛF by a Fourier
matrix F, where

Λ = ΛC =

⎛
⎜⎜⎜⎝

pγ(1) 0 · · · 0
0 pγ(ω) · · · 0
...

...
...

...
0 · · · 0 pγ

(
ωn−1)

⎞
⎟⎟⎟⎠. (4.28)

Thus, in particular, the eigenvalues of C are pγ(1), pγ(ω), . . ., pγ(ωn−1), whereω is defined by (4.26).

Theorem 4.7. Letting gn(λ) be the determinant of degree n whose first row, second row, and so forth
are

(−λ, 1, 0, . . . , 0, 1), (1,−λ, 1, 0, 0, . . .), (0, 1,−λ, 1, 0, 0, . . .), . . . , (1, 0, . . . , 0, 1,−λ), (4.29)
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respectively, then gn(λ) = 0 are the eigenvalues of π + π−1 (= 2M1). Since γ = (0, 1, 0, . . . , 0, 1),
it follows that pγ(z) = z + zn−1 = z + z−1 = 2Re z. Hence the eigenvalues are
2Re 1, 2Reω, . . ., 2Reωn−1 = 2, 2 cos(2π/n), . . ., 2 cos(2(n − 1)π/n).

For n = 4, the energy levels of the π electrons of 1,3-cyclobutadiene are

2, 2 cos
2π
4
, 2 cosπ, 2 cos

6π
4

= 2, 0,−2, 0,

2, 2 cos
2π
6
, 2 cos

4π
6
, 2 cosπ, 2 cos

8π
6
, 2 cos

10π
6

= 2, 1,−1,−2,−1, 1.
(4.30)

Remark 4.8. In deducing Theorem 4.7, full force of Theorem 4.6 is not used. It may also be
used in another setting to give a few-lines-proof of the celebrated Blahut theorem in coding
theory to the effect that the Hamming weight of a code is the rank of its Fourier matrix (cf.
[22]).

5. Chebyshëv Polynomials

In this section we assemble some basics on the Chebyshëv polynomials to an extent for
enabling to understand the computations in Section 3 Chebyshëv polynomials may most
easily be introduced by the de Moivre formula

cosnθ + i sinnθ = einθ = (cos θ + i sin θ)n. (5.1)

Definition 5.1. If cos θ = x, then cosnθ is a polynomial in x of degree n and is known as the
Chebyshëv polynomial of the first kind and denoted by Tn(x). Similarly, sin(n + 1)θ/ sin θ is a
polynomial Un(x) in x of degree n known as the Chebyshëv polynomial of the second kind:

Tn(x) = cosn(arccosx), Un(x) =
sin((n + 1)arccosx)

sin(arccosx)
. (5.2)

The notation is after Tchebyshef (or Tschebyscheff) who first introduced them, proper
transcription being C̆ebyšëv. Tn(x) and Un(x) satisfy the recurrences by which they may be
also so defined.

Tn+1(x) = 2xTn(x) − Tn−1(x), Un+1(x) = 2xUn(x) −Un−1(x), (5.3)

respectively, with initial values

T0(x) = 1, T1(x) = x, U0(x) = 1, U1(x) = 2x. (5.4)

We point out that most of the identities for the Chebyshev polynomials are rephrases
of the well-known trigonometric identities. For example, the second recurrence in (5.3) is a
consequence of the trigonometric identity

sin(n + 2)x = 2 sin(n + 1)x cosx − sinnx. (5.5)
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As an important case, we rephrase the identity (which follows from addition theorem)

sin(n + 1)θ = sin(n − 1)θ + cosnθ sin θ. (5.6)

Dividing this by sin θ, we obtain

2Tn(x) = Un(x) −Un−2(x). (5.7)

Thus, all the results onUn may be transferred to Tn through (5.7), which fact will show
its effect in elucidating the coefficients in (5.8).

Since it turns out that it is usually easier to work with Un(x), we will mainly treat the
second kind. The reason, which is not made clear in the preceding literature, is that the sine
function (corresponding to Un) is set on basis as the fundamental wave which vanishes at
the origin, and “cosine” is its counterpart (cosine, corresponding to Tn) (cf. (5.12) below).

We note that although (5.8) are initially obtained for x ∈ (−1, 1), they are valid for all
values of x ∈ C by analytic continuation. If in the substitution cos θ = x, we regard cos θ
as a complex analytic function, there is no range restriction, but then we need to take into
account the multivaluedness of the inverse cosine. It is instructive to consider the situation as
a limiting case of the mapping w = (1/2)(z + 1/z).

(i) We have the following concrete expressions:

Un(x) =
[n/2]∑

l=0

(−1)l
[n/2]∑

k=l

(
n + 1
2k + 1

)(
k
l

)
xn−2l,

Tn(x) := cos(n arccosx) =
[n/2]∑

l=0

(−1)l
[n/2]∑

k=l

(
n
2k

)(
k
l

)
xn−2l.

(5.8)

(ii) If n is odd, then sinnz is a polynomial P(·) in sin z and if n is even, then sinnz/ cos z
is a polynomial in sin z.

In the case n = 2m + 1,

sin(2m + 1)θ = sin θ
m∑

l=0

(−1)m−l
m∑

r=l

(
2m + 1
2r

)(
r
l

)
sin2m−2lθ. (5.9)

(iii) Wefind the values of sin(π/5) and cos(π/5). We apply the pentatonic formula (5.9)
for sin θ:

sin 5θ = sin θ
(
16 sin4θ − 20 sin2θ + 5

)
, (5.10)

whence

P4(x) := 16x4 − 20x2 + 5, sin θ = x. (5.11)



24 International Journal of Mathematics and Mathematical Sciences

Solving the equation P4(x) = 16x4 − 20x2 + 5 = 0, we immediately find

sin
π

5
=

√
10 − 2

√
5

4
, (5.12)

whence

cos
π

5
=

√
5 + 1
4

=
τ

2
. (5.13)

We have a companion formula to (5.10):

U4(x) =
sin 5θ
sin θ

= 16x4 − 12x2 + 1, cos θ = x. (5.14)

Here is a point that distinguishes Un from Tn:

U4

(
cos

π

5

)
= 0. (5.15)

Equation (5.15) suggests the following remark which is essential in Section 4.2.

Remark 5.2. Un(x) = 0 occurs if and only if

(n + 1)θ = kπ, 1 ≤ k ≤ n, (5.16)

that is, if and only if

x = cos θ = cos
k

n + 1
π, 1 ≤ k ≤ n. (5.17)

Since the coefficients in (5.8) are rather involved, it is natural to seek for more concise
form for them. The easiest method is to use the DE satisfied by Un and Tn, which is widely
known. But, since the Chebyshev polynomials are special cases of Gegenbauer polynomials,
which in turn are special cases of hypergeometric functions, we are to work with the last to
apply the method of undetermined coefficients.

In [17] we appealed to the generatingfunctionology as stated in Comtet [23, page 87].
proving that if we assume the second recurrence formula in (5.3) with the second initial
condition (5.4), then we may deduce a universal expression for Un(x).

6. Free Groups versus Formal Language Theory

As opposed to the familiar Cartesian product, the free product is the most general construc-
tion from a given family of sets. It is indeed a dual concept of the direct product in case of
groups.
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Let A be a given nonempty set, called alphabets. We call any finite sequence
a1, a2, . . . , an a word w (or a string): written w = a1a2 · · ·an, where we also call the void
sequence a void word, written ∅. Let W denote the set of all words on A. On W there is a
concatenation operation, that is, given two words w = a1 · · ·an, w

′ = a′
1 · · ·a′

m we catenate
them to get a newwordww′ = a1 · · ·ana

′
1 · · ·a′

m. Since the associative law holds true,W forms
a monoid with ∅ the identity.

In the case of codons, we haveA = {A, T,G,C} andW is the set of all (single-stranded)
DNAs. We refer for example, to [5], where the difference between circular and linear DNAs
is remarked and also that the present language theory deal with linear strings. Therefore, the
codons are treated in pairs.

Now we go on to the notion of free groups. Given a family of groups {Gλ}λ∈Λ, A
is the disjoint union of Gλ’s and W is the set of all words on A. W is a monoid as above.
To introduce the group structure, we define the relation w → w′ if either (i) the word has
successive members a, b in the same group Gλ andw′ is obtained fromw by replacing a, b by
their product, or (ii) some members of w is an identity and w′ is obtained by deleting them.
For two words w,w′ we write w ≡ w′ if there is a finite sequence w = w0, . . . , wn = w′ such
that for each j, 1 ≤ j ≤ n, either wj → wj−1 or wj−1 → wj holds. Then we may prove that
this relation is an equivalence relation and so we may construct the quotient set G = W/ ≡ on
which we may define the multiplication and G becomes a group, the free product of Gλ’s.

Thus, as stated in [24, page 13], in order to multiply the word w by another
word w′, we write them down in juxtaposition and carry out the necessary cancellations
(multiplications in a group) and contractions (deleting identities).

On [4, page 20, page 56, etc.], one finds some interesting arguments on the single-
stranded DNAs as words in the free group F2 generated by two alphabets A and G with
T = A−1, C = G−1. The ablianized group F2/[F2, F2], where the modulus is the commutator
group, is isomorphic to Z

2, an infinite cyclic group and would result in excessive cancellation
(hybridization). In addition to these 4 natural alphabets, there are synthesized ones including
X,Y . It would be an interesting problem to find the reasonwhy creatures use only 4 alphabets.
We may need to use formal language theory developed so that it can treat both circular and
linear strings to consider such a problem and we hope to return to this at another occasion.

7. Definition of Life

A penetrating definition is essential to describing the whole realm of a discipline. We may
recall the first passage from Pauling [25].

The universe is composed of substances (forms of matter) and radiant energy.
As in [6, page 71], since the beginning of time at the Big Bang singularity to the present,

there has been only finite amount of entropy generated, most of which is in the form of
cosmic background radiation. Thus in the sense of classical physics, this is a comprehensive
definition.

It may be true, however, that the passage is to be modified according to the modern
20th century physics that matter and energy are verbatim—fermions and add information—
bosons to rephrase it:

The universe is composed of energy and information,
Still the first passage helps to have a grasp of the whole picture.
The ultimate objective of all sciences would be attaining “immortality” or at the

very least “longevity in good health.” To achieve this, it is necessary to know what life
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(process) is. In this section we will try to formulate a proper enlightening definition of life
by incorporating several ones claimed before.

We first state rather virtual and speculative definition in [6, pages 124–128], though
we intend to pursue longevity in vivo.

A “living being” is any entity which codes information (in the physics sense of this
word) with the information coded being preserved by natural selection. Thus life is a form
of information processing, and the human mind—and the human soul—is a very complex
computer program. Specifically, a “person” is defined to be a computer program which can
pass the Turing test.

This is rather against the classical definition of life as a complex process based on the
chemistry of carbon atoms. In [26] it is suggested that the first living beings—our ultimate
ancestors—were self-replicating patterns of defects in the metallic crystals, not carbon. Over
time, the pattern persisted and transferred to carbon molecules. Thus, one key feature of life
is a dynamic pattern that persists over time, the persistence being due to a feedback with their
environment: the information coded in the pattern continually varies, but the variation is
constrained to a narrow range by this feedback. Thus:

Life is information preserved by natural selection.
As to the classical definition in terms of carbon atoms, it would be quite natural to go

on to the booklet of Carbone and Gromov [4] as carbon is one of the main constituents of the
living organisms and the first author’s name is Carbone, meaning carbon. We are particularly
interested in [4, pages 12–14]. On [4, page 12] “Crick’s dogma” is stated to which we will
return later. As part of definition of life, [4, ll. 1–3, page 13]may be taken into account, which
reads:

“The dynamics of the cell is a continuous flow of small molecules channeled by the
interaction with macromolecules: DNA, RNA and proteins. The behavior of small molecules
obeys the statistical rules of chemical kinetics,. . . .”

As mentioned in Abstract, we adopt the notion of entropy to view it, incorporating the
ideas of Schoenheimer of “dynamic state of body constituents” [27], where a simile is given
of a military regime and an adult body.

On [28, page 107] the author elaborates on Schoenheimer’s definition of life and states
Life is a flow in dynamic equilibrium.
This definition resembles the Carbone-Gromov definition of cell dynamics in that both

refer to “flow.” It gives, however, an impression that equilibrium is already attained and
it should mean local equilibrium. We need to incorporate the ultimate equilibrium, death,
which could be compared to heat death [6, pages 66∼73].

However, we have a much better and penetrating metaphor in beautiful prose by a
Japanese hermit-essayist in the 16th century. It reads:

The river never ceases to flow, its elements never remaining the same.
The foams that it forms appear and disappear constantly and never be stable.
As such are the life and its vessel.
The river is a human adult body with water supply corresponding to food supply. The

foams correspond to various chemical reactions that take place in the body: regeneration and
degradation. Only oxidation part is missing which is replaced by intensity of flow generated
by themass of water. Although this prose originally was to express the frailty of life, it literally
describes the life process as seen by Schoenheimer.

Thus comes our definition of life:
Life is a constant irreversible flow, along the axis of internal time, of resistance against

the entropy increase leading to the ultimate heat death, in terms of homeostasis to keep the
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local equilibrium which works to balance the regeneration and degradation of molecules
using the energy produced by oxidating the intake material, where the synthesis is conducted
according to the complementarity principle. Or more physically speaking,

Life is a dynamic system with which the negentropy is supplied by degrading and
regenerating its components and excreting the waste before they could be damaged by
disturbances from outside, making the inner entropy increases.

We will explain why we have come to this definition which incorporates many
ingredients scattered around in the literature.

Internal time clock idea came from [29] and this explains the difference between
biological and chronological ages.

In [30], although the notion of entropy is introduced to interpret aging, the mechanism
is not elucidated as to how life in vivo can continue much longer than the experiments in vitro,
which is the notion of dynamic state of constituents first invented by Schoenheimer as alluded
to above.

Life is an irreversible flow of dynamically integrated aggregates of local equilibria
maintained by homeostasis.

Aging is a malfunction of homeostasis caused by the elapses of internal time.
We do hope by elucidating life activities to get the process of aging back, that is, our

wishful definition of life is the following.
Life is a one-way flow of dynamically integrated aggregates of local equilibria

maintained by homeostasis, the flow being slowed down by due care of body and mental
health.

To formulate “replicative stability of dynamical systems” a slightly modified Carbone-
Gromov suggestion [4, page 44] would be suitable. Different internal time-clocks might use
dynamical time of variable fractal dimension taking into account the number of population
in the species. See Section 8.

There is criticism about the evolution theory that it is a tautology saying that those
which are likely to survive, or those which survived are judged to be the most fitting.
However, it seems that those which are likely to occur, that is, with higher occurrence
probability occur more frequently than those which are less likely to occur (with lower
probability). When there are several events which are equally likely to occur, then it will
be the most natural that all events occur in the long run. The more the events, the more the
choices, or uncertainty, whence if there is means of measuring the tendency of occurrence of
events, then it is to be an increasing functions of the number of events. Shannon [8] proved a
uniqueness theorem for such a measure to the effect that those measures which satisfy some
more conditions must be of the form of an entropy (times a constant, cf. Theorem 2.1).

On [31, page 199] some more important notion is mentioned, that is, assimilation and
dissimilation.

8. Entropy Increase Principle in Life Activities

We adopt the standpoint of [30, pages 105–116, 213–215] to interpret aging as the increase
of entropy in the body. As is stated in earlier sections, in all autonomous systems, the
reaction proceeds in the direction of entropy increase. In living organisms—human bodies
in particular, there may be internal time which is governed by the amount of entropy as
opposed to outer time. With lower entropy the body can remain young irrespectively of the
outer time that elapses. This may explain the big difference between biological and chronological
age. There may be the difference up to one generation—25 years among individuals.
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We take in food—material of smaller entropy—in our bodies to burn (oxidize, oxidate)
it to produce energy. Here a remark is due on the entropy description. Food is material of
smaller entropy for the sources it come from, but for our body it may be a big noise and
therefore, our oxidation system oxidizes it to produce material of bigger entropy which is to
be excreted from the body. For example, glucose (of lower entropy) is absorbed through cell
membranes and will get oxidized to become carbon dioxide (CO2)which is to be excreted as
substance of bigger entropy.

In [30] the understanding is that when entropy attains its maximum, the reaction
stops and the system comes to equilibrium; in a living organism, it means the death of that
individual. Thus there must be a function which makes the inner entropy lower, called
“Homeostasis”which controls the amount of entropy to be lower.When one ages, the functions
stops working well and then entropy starts increasing to come to the end of the living
reaction. With insight of Schoenheimer, the process may be refined as follows.

A biological system represents one big cycle of closely linked chemical reactions.
After death, when the oxidative systems disappear, the synthetic systems also cease,

and the unbalanced degenerative reactions lead to the collapse of the “thermodynamically
unstable structure elements.”

Thus wemay duly call the ultimate death “heat death” and understand the life process
as a flow of many chemical reactions in local equilibrium.

Thus aging is to mean the malfunction of homeostasis.
There may be many causes that give rise to the malfunction of the homeostasis. One

typical example is the attacks of free radicals, to which we hope to return at another occasion
(cf. [32]).
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