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Iteration is involved in the fields of dynamical systems and numerical computation and so forth.
The computation of iteration is difficult for general functions (even for some simple functions such
as linear fractional functions). In this paper, we discuss fractional polynomial function and use the
method of conjugate similitude to obtain its expression of general iterate of order n under two
different conditions. Furthermore, we also give iterative roots of order n for the function under
two different conditions.

1. Introduction

Iteration is a repetition of the same operation. Given a nonempty setX and a self-mapping f :
X → X, define f0(x) = x, f1(x) = f(x), fn(x) = f ◦ fn−1(x), where n ∈ Z

+ and ◦ denotes the
composition of mappings. fn is called the nth iterate of f , and n is the iterate index of fn

concerning f . Iteration is often observed in mathematics, science, engineering, and daily life,
but the computation of iteration of some elementary functions is very complicated and some-
times rather difficult (see [1–7]), such as linear fractional functions f(x) = (ax + b)/(x + c),
where a, b, c ∈ R, ac − b /= 0. Using the numerical computation method, we only make some
partitions on the defined interval of x to obtain pointwise data and approximately curves of
fn. Although computer algebra system such as Maple provided the symbol computational
tool, we still need to calculate the nth iterate of f for a given n, and the expression of iteration
is complicated even for n = 12 (see [8]). However, using the method of conjugate similar, we
can effectively calculate its iteration of order n (see the following (∗)). This example shows
that computer is not universal, and we need to find good mathematical method.

Given mapping f and g, if there exists invertible mapping h such that f = h−1 ◦ g ◦ h,
then f is conjugating to g. Obviously, if f = h−1 ◦ g ◦ h, then fn = h−1 ◦ gn ◦ h. We usually use
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this method to turn iteration of complicated function into iteration of simple function which
is easy to get general iteration. We call it as the method of conjugation. For example, using
the method of conjugation in reference [9], fractional linear function is conjugated to a linear
function by conjugation function h(x) = 1/(x − s), where s is a root of the equation s2 − (a −
c)s − b = 0. Thus, the nth iterate of the fractional linear function f is

fn(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s +
(a − s)n(x − s)

(
(a − s)n − (s + c)n

)
x0(x − s) + (s + c)n

,

(
a − c

2

)2

+ b /= 0,

s +
(a − s)(x − s)

nx + a − (n + 1)s
,

(
a − c

2

)2

+ b = 0,

(∗)

where x0 = 1/(a− c− 2s). By the same method, in reference [10], Jin et al. discuss that the nth
iterate of polynomial function

f(x) = a0x
m + a1x

m−1 + · · · + am, (1.1)

where m ∈ Z, m ≥ 2, ai ∈ C, i = 0, 1, . . . , m, under the conditions that ai = a0C
i
m(a1/ma0)

i,
(i = 2, 3, . . . , m − 1), am = (a1/ma0)[a0(a1/ma0)

m−1 − 1], and a0 /= 0, is

fn(x) = a
(mn−1)/(m−1)
0

(

x +
a1

ma0

)mn

− a1

ma0
, (1.2)

where Ci
m denotes the number of combination, that is, Ci

m = m!/i!(m − i)!.
Given a nonempty set I and an integer n > 0, an iterative root of order n of a given

self-mapping f : I → I is a self-mapping ϕ : I → I such that

ϕn(x) = f(x), ∀ x ∈ I, n ∈ Z
+, (1.3)

where ϕn denotes the nth iterate of ϕ, that is, ϕn = ϕ ◦ ϕn−1. The problem of iterative roots of
mapping is an important problem in the iteration theory (see [9, 11–13]). It was studied early
from the 19th century, but great advances have been made since 1950s, most of which were
given for monotone self-mappings on compact interval. For nonmonotonic cases, there are
also some progress in references (see [14–19]).

In this paper, we study iteration and iterative roots of the fractional polynomial
function

f(x) =
akx

k + ak−1xk−1 + ak−2xk−2 + · · · + a1x + a0

bkxk + bk−1xk−1 + bk−2xk−2 + · · · + b1x + b0
, (1.4)

where k ∈ Z, k ≥ 1, ai, bi ∈ R, i = 0, 1, . . . , k. It can be treated as a nonmonotonic mapping on
R. Using the method of conjugation, we get the expression of fn and iterative roots of order
n of f under some conditions.
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2. Iteration of Fractional Polynomial Functions

Theorem 2.1. Let either a0 /= 0 when k is odd or a0 > 0 when k is even. Suppose that the fractional
polynomial function f defined by (1.4) satisfies ai = Ci

k(
k
√
a0)

k−i, (i = 0, 1, . . . , k), bj = −aj/ k
√
a0,

(j = 0, 1, . . . , k − 1), then

fn(x) =
1

−1/ k
√
a0 −

[
b(− k

√
a0)−k

](1−(−k)n)/(1+k)
(−1/x − 1/ k

√
a0)

(−k)n
, (2.1)

where b = −1/ k
√
a0 − bk, when k = 1, k

√
a0 := a0; n ∈ Z

+.

Proof. On the basis of what f satisfies, the fractional polynomial function f defined by (1.4)
transforms into

f(x)

=
xk + Ck−1

k ( k
√
a0)xk−1 + Ck−2

k ( k
√
a0)2xk−2 + · · · + C1

k(
k
√
a0)k−1x + C0

k(
k
√
a0)k

−Axk −ACk−1
k ( k

√
a0)xk−1 −ACk−2

k ( k
√
a0)2xk−2 − · · · − AC1

k(
k
√
a0)k−1x −AC0

k(
k
√
a0)k − bxk

=
(x + k

√
a0)k

−A(x + k
√
a0)k − bxk

,

(2.2)

whereA denotes (1/ k
√
a0). Set h1(x) = 1 − 1/x, then the inverse of h1 is h−1

1 (x) = 1/(1 − x), it
follows that

h1 ◦ f ◦ h−1
1 (x) = h1

(
f
(
h−1
1 (x)

))
= h1

(

f

(
1

1 − x

))

= h1

(
(1 + k

√
a0 − k

√
a0x)k

(− k
√
a0)−1(1 + k

√
a0 − k

√
a0x)k − b

)

=
k
√
a0 + 1
k
√
a0

+
b

(− k
√
a0)k

(

x − 1 + k
√
a0

k
√
a0

)−k
:= g(x).

(2.3)

Set h2(x) = x − (1+ k
√
a0)/ k

√
a0, then the inverse of h2 is h−1

2 (x) = x + (1+ k
√
a0)/ k

√
a0, it follows

that

h2 ◦ g ◦ h−1
2 (x) = h2

(
g
(
h−1
2 (x)

))
= h2

(

g

(

x +
1 + k

√
a0

k
√
a0

))

= h2

(
b

(− k
√
a0)k

x−k +
k
√
a0 + 1
k
√
a0

)

=
b

(− k
√
a0)k

x−k := G(x).
(2.4)

By induction, we obtain easily

Gn(x) =

[
b

(− k
√
a0)

k

](1−(−k)n)/(1+k)
x(−k)n . (2.5)
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By (2.4) and (2.5), we have

gn(x) = h−1
2 ◦Gn ◦ h2(x) =

[
b

(− k
√
a0)

k

](1−(−k)n)/(1+k)(
x − 1 + k

√
a0

k
√
a0

)(−k)n

+
1 + k

√
a0

k
√
a0

. (2.6)

By (2.3) and (2.6), we get

fn(x) = h−1
1 ◦ gn ◦ h1(x) =

1

−1/ k
√
a0 −

[
b(− k

√
a0)−k

](1−(−k)n)/(1+k)
(−1/x − 1/ k

√
a0)

(−k)n
. (2.7)

This completes the proof.

Theorem 2.2. Let either b0 /= 0 when k is odd or b0 > 0 when k is even. Suppose that the

fractional polynomial function f defined by (1.4) satisfies bi = Ci
k(

k
√
b0)

k−i
(i = 0, 1, 2, . . . , k), aj =

(− k
√
b0)bj(j = 1, 2, . . . , k), then

fn(x) = d(1−(−k)n)/(1+k)
(
x + k
√
b0
)(−k)n − k

√
b0, (2.8)

where d = a0 + b0
k
√
b0; when k = 1, k

√
b0 := b0, n ∈ Z

+.

Proof. On the basis of what f satisfies, the fractional polynomial function f defined by (1.4)
transforms into

f(x)

=
− k
√
b0x

k− k
√
b0C

k−1
k

(
k
√
b0
)
xk−1− k

√
b0C

k−2
k

(
k
√
b0
)2
xk−2 − · · · − k

√
b0C

1
k

(
k
√
b0
)k−1

x + d−b0 k
√
b0

xk + Ck−1
k

(
k
√
b0
)
xk−1 + Ck−2

k

(
k
√
b0
)2
xk−2 + · · · + C1

k

(
k
√
b0
)k−1

x + C0
k

(
k
√
b0
)k

=
− k
√
b0

[

xk + Ck−1
k

(
k
√
b0
)
xk−1 + Ck−2

k

(
k
√
b0
)2
xk−2 + · · · + C1

k

(
k
√
b0
)k−1

x + b0

]

+ d

(
x + k
√
b0
)k

=
− k
√
b0
(
x + k
√
b0
)k

+ d

(
x + k
√
b0
)k

.

(2.9)

Set h(x) = x + k
√
b0, then the inverse of h is h−1(x) = x − k

√
b0, it follows that

h ◦ f ◦ h−1(x) = h
(
f
(
h−1(x)

))
= h
(
f
(
x − k
√
b0
))

= h

(
− k
√
b0x

k + d

xk

)

= h
(
− k
√
b0 + dx−k

)
= dx−k := g(x).

(2.10)
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By induction, we obtain easily

gn(x) = d(1−(−k)n)/(1+k)x(−k)n . (2.11)

By (2.10) and (2.11), we get

fn(x) = h−1 ◦ gn ◦ h(x) = d(1−(−k)n)/(1+k)
(
x + k
√
b0
)(−k)n − k

√
b0. (2.12)

This completes the proof.

3. Iterative Roots of Fractional Polynomial Functions

We first give some useful lemmas.

Lemma 3.1. If f(x) = l(x + c)k − c, where l, k, c ∈ R, lk /= 0, then

fn(x) =

{
lnx + lnc − c, k = 1,
l(1−k

n)/(1−k)(x + c)k
n − c, k /= 1,

(3.1)

where n ∈ Z
+.

Proof. Set h(x) = x + c, then the inverse of h is h−1(x) = x − c, it follows that

h ◦ f ◦ h−1(x) = h
(
f
(
h−1(x)

))
= h
(
f(x − c)

)
= h
(
lxk − c

)
= lxk := g(x). (3.2)

By induction, we obtain that the nth iterate of g is

gn(x) =

{
lnx, k = 1,
l(1−k

n)/(1−k)xkn
, k /= 1.

(3.3)

By (3.2) and (3.3), we get

fn(x) = h−1 ◦ gn ◦ h(x) =
{
lnx + lnc − c, k = 1,
l(1−k

n)/(1−k)(x + c)k
n − c, k /= 1.

(3.4)

This completes the proof.

Lemma 3.2. If f(x) = xk/(axk − b(x − c)k), where a, b, c, k ∈ R, abck /= 0, k /= 1, satisfies ac = 1,
then

fn(x) =
1

1/c − (bck)(1−kn)/(1−k)(−1/x + 1/c)k
n , (3.5)

where n ∈ Z
+.
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Proof. Set h(x) = 1 − 1/x, then the inverse of h is h−1(x) = 1/(1 − x), it follows that

h ◦ f ◦ h−1(x) = h
(
f
(
h−1(x)

))
= h

(

f

(
1

1 − x

))

= h

(
1

a − b(1 − c + cx)k

)

= 1 − a + b(1 − c + cx)k = bck
(

x +
1 − c

c

)k

+ 1 − a := g(x).

(3.6)

By Lemma 3.1, when (1 − c)/c = a − 1, that is, when ac = 1, we get that the nth iterate of g is

gn(x) =
(
bck
)(1−kn)/(1−k)(

x +
1 − c

c

)kn

− 1 − c

c
. (3.7)

By (3.6) and (3.7), we get

fn(x) = h−1 ◦ gn ◦ h(x) = 1

1/c − (bck)(1−kn)/(1−k)(−1/x + 1/c)k
n
. (3.8)

This completes the proof.

In Theorems 2.1 and 2.2, we get the expression of fn of the fractional polynomial
function (1.4) under different conditions, they can be treated as a mapping which involves
parameter n, then n is extended from Z to Q, we can obtain the iterative roots. For example,
we can get the iterative roots of the fractional polynomial function (1.4) by extending the
results of Theorems 2.1 and 2.2.

Theorem 3.3. Suppose that the fractional polynomial function f defined by (1.4) satisfies conditions
in Theorem 2.1, then f has iterative roots of any odd order n:

ϕ(x) =
1

−1/ k
√
a0 −

[
b(− k

√
a0)−k

](1−(−k)1/n)/(1+k)
(−1/x − 1/ k

√
a0)

(−k)1/n
, (3.9)

where n ∈ Z
+.

Proof. In what follows, we only need to prove that ϕn(x) = f(x) holds under the case that f
satisfies the conditions in Theorem 2.1 and n is positive odd.

In fact, suppose that the fractional polynomial functions f defined by (1.4) satisfy the
conditions in Theorem 2.1, then we have

f(x)

=
xk + Ck−1

k ( k
√
a0)xk−1 + Ck−2

k ( k
√
a0)2xk−2 + · · · + C1

k(
k
√
a0)k−1x + C0

k(
k
√
a0)k

−Axk −ACk−1
k ( k

√
a0)xk−1 −ACk−2

k ( k
√
a0)2xk−2 − · · · − AC1

k(
k
√
a0)k−1x −AC0

k(
k
√
a0)k − bxk

=
(x + k

√
a0)k

−A(x + k
√
a0)k − bxk

,

(3.10)

where A denotes (1/ k
√
a0) .
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Because

ϕ(x) =
1

(−1/ k
√
a0) −

[
b(− k

√
a0)−k

](1−(−k)1/n)/(1+k)
(−1/x − 1/ k

√
a0)

(−k)1/n

=
x(−k)1/n

−1/ k
√
a0x(−k)1/n −

[
b(− k

√
a0)−k

] (1−(−k)1/n)/(1+k)
(− k

√
a0)−(−k)

1/n

(x + k
√
a0)(−k)

1/n
,

(3.11)

when n is positive odd, by Lemma 3.2, we have

ϕn(x)

=
1

−1/ k
√
a0−
[(

b(− k
√
a0)−k

)(1+k1/n)/(1+k)
(− k
√
a0)k

1/n
(− k
√
a0)−k

1/n
](1−(−k1/n)n)/(1+k1/n)

(−1/x−1/ k
√
a0)

(−k1/n)n

=
1

−1/ k
√
a0 −

(
b/(− k

√
a0)k

)
(−1/x − 1/ k

√
a0)

−k
=

(x + k
√
a0)k

−(1/ k
√
a0)(x + k

√
a0)k − bxk

= f(x).

(3.12)

Thus, f has iterative roots of any odd order n:

ϕ(x) =
1

−1/ k
√
a0 −

[
b(− k

√
a0)−k

](1−(−k)1/n)/(1+k)
(−1/x − 1/ k

√
a0)

(−k)1/n
, (3.13)

This completes the proof.

Remark 3.4. When n is positive even, the above ϕ(x) is not well defined, thus, under the
condition in Theorem 3.3, f has no iterative roots of any order n in the form of ϕ(x).

By Theorems 2.1 and 3.3, we are easy to get the following corollary.

Corollary 3.5. Let f(x) = (x + a0)/(b1x − 1) and a0 /= 0, then

(1) the expression of fn is

fn(x) =
1

−1/a0 −
[
1/a2

0 + b1/a0
](1−(−1)n)/2(−1/x − 1/a0)

(−1)n
, (n ∈ Z

+) (3.14)

(2) f has iterative roots f of any odd order n, that is, fn = f , where n = 2m − 1, m ∈ Z
+.

Theorem 3.6. Suppose that the fractional polynomial function f defined by (1.4) satisfies conditions
in Theorem 2.2, then f has iterative roots of any odd order n:

F(x) = d(1−(−k)1/n)/(1+k)
(
x + k
√
b0
)(−k)1/n − k

√
b0, (3.15)

where n ∈ Z
+.
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Proof. In what follows, we only need to prove that Fn(x) = f(x) holds under the case that f
satisfies the conditions in Theorem 2.2 and n is positive odd.

In fact, suppose that the fractional polynomial functions f defined by (1.4) satisfy the
conditions in Theorem 2.2, then we have

f(x)

=
− k
√
b0x

k− k
√
b0C

k−1
k

(
k
√
b0
)
xk−1− k

√
b0C

k−2
k

(
k
√
b0
)2
xk−2−· · ·− k

√
b0C

1
k

(
k
√
b0
)k−1

x+d−b0 k
√
b0

xk + Ck−1
k

(
k
√
b0
)
xk−1 + Ck−2

k

(
k
√
b0
)2
xk−2 + · · · + C1

k

(
k
√
b0
)k−1

x + C0
k

(
k
√
b0
)k

=
− k
√
b0

[

xk + Ck−1
k

(
k
√
b0
)
xk−1 + Ck−2

k

(
k
√
b0
)2
xk−2 + · · · + C1

k

(
k
√
b0
)k−1

x + b0

]

+ d

(
x + k
√
b0
)k

=
− k
√
b0
(
x + k
√
b0
)k

+ d

(
x + k
√
b0
)k

.

(3.16)

When n is positive odd, by Lemma 3.1, we have

Fn(x) =
[
d(1−(−k)1/n)/(1+k)

](1−[(−k)1/n]n)/(1−(−k)1/n)(
x + k
√
b0
)[(−k)1/n]n − k

√
b0

= d
(
x + k
√
b0
)−k − k

√
b0 =

− k
√
b0
(
x + k
√
b0
)k

+ d

(
x + k
√
b0
)k

= f(x).
(3.17)

Thus, f has iterative roots of any odd order n:

F(x) = d(1−(−k)1/n)/(1+k)
(
x + k
√
b0
)(−k)1/n − k

√
b0. (3.18)

This completes the proof.

Remark 3.7. When n is positive even, the above F(x) is not well defined, thus, under the
conditions in Theorem 3.6, f has no iterative roots of any order n in the form of F(x).

By Theorems 2.2 and 3.6, we are easy to get the following corollary.

Corollary 3.8. Let f(x) = (a1x + a0)/(x − a1) and a0 + a2
1 /= 0, then

(1) the expression of fn is

fn(x) =
(
a0 + a2

1

)(1−(−1)n)/2
(x − a1)(−1)

n

+ a1, (n ∈ Z
+) (3.19)

(2) f has iterative roots f of any odd order n, that is, fn = f , where n = 2m − 1, m ∈ Z
+.
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4. Examples

We demonstrate our theorems with the following examples.

Example 4.1. Consider the fractional polynomial function f(x) = (x3+6x2+12x+8)/((9/2)x3−
3x2 − 6x − 4), by Theorem 2.1, we know k = 3, a0 = 8, b = −5, thus iteration of order n of the
fractional polynomial functions f :

fn(x) =
1

−1/2 − (5/8)(1−(−3)
n)/4(−1/2 − 1/x)(−3)

n . (4.1)

By Theorem 3.3, we know f has iterative roots of any odd order n:

ϕ(x) =
1

−1/2 − (5/8)(1−(−3)
1/n)/4(−1/2 − 1/x)(−3)

1/n
, (4.2)

where n ∈ Z
+.

Example 4.2. Consider the fractional polynomial function f(x) = (x2 + 2x + 1)/(−2x − 1),
by Theorem 2.1, we know k = 2, a0 = 1, b = −1, thus iteration of order n of the fractional
polynomial functions f :

fn(x) =
1

−1 − (−1)(1−(−2)n)/3(−1 − 1/x)(−2)
n . (4.3)

By Theorem 3.3, we know f has iterative roots of any odd order n:

ϕ(x) =
1

−1 − (−1)(1−(−2)1/n)/3(−1 − 1/x)(−2)
1/n

, (4.4)

where n ∈ Z
+.

Example 4.3. Consider the fractional polynomial function f(x) = (2x3 −12x2 +24x−13)/(x3 −
6x2 + 12x − 8), by Theorem 2.2, we know k = 3, a0 = −13, a3 = 2, d = 3, thus iteration of
order n of the fractional polynomial functions f :

fn(x) = 3(1−(−3)
n)/4(x − 2)(−3)

n

+ 2. (4.5)

By Theorem 3.6, we know f has iterative roots of any odd order n:

F(x) = 3(1−(−3)
1/n)/4(x − 2)(−3)

1/n

+ 2, (4.6)

where n ∈ Z
+.
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