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On a compact connected 2m-dimensional Kähler manifold with Kähler form ω, given a smooth
function f : M → R and an integer 1 < k < m, we want to solve uniquely in [ω] the equation
ω̃k ∧ωm−k = efωm, relying on the notion of k-positivity for ω̃ ∈ [ω] (the extreme cases are solved:
k = m by (Yau in 1978), and k = 1 trivially). We solve by the continuity method the corresponding
complex elliptic kthHessian equation, more difficult to solve than the Calabi-Yau equation (k = m),
under the assumption that the holomorphic bisectional curvature of the manifold is nonnegative,
required here only to derive an a priori eigenvalues pinching.

1. The Theorem

All manifolds considered in this paper are connected.
Let (M,J, g,ω) be a compact connected Kähler manifold of complex dimensionm ≥ 3.

Fix an integer 2 ≤ k ≤ m − 1. Let ϕ : M → R be a smooth function, and let us consider
the (1, 1)-form ω̃ = ω + i∂∂ϕ and the associated 2-tensor g̃ defined by g̃(X,Y ) = ω̃(X, JY ).
Consider the sesquilinear forms h and ˜h on T1,0 defined by h(U,V ) = g(U,V ) and ˜h(U,V ) =
g̃(U,V ). We denote by λ(g−1g̃) the eigenvalues of ˜hwith respect to the Hermitian form h. By
definition, these are the eigenvalues of the unique endomorphism A of T1,0 satisfying

˜h(U,V ) = h(U,AV ) ∀U,V ∈ T1,0. (1.1)
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Calculations infer that the endomorphism Awrites

A : T1,0 −→ T1,0,

Ui∂i �−→ A
j

iU
i∂j = gj�g̃i�U

i∂j .
(1.2)

A is a self-adjoint/Hermitian endomorphism of the Hermitian space (T1,0, h), therefore
λ(g−1g̃) ∈ R

m. Let us consider the following cone: Γk = {λ ∈ R
m/∀1 ≤ j ≤ k, σj(λ) > 0},

where σj denotes the jth elementary symmetric function.

Definition 1.1. ϕ is said to be k-admissible if and only if λ(g−1g̃) ∈ Γk.

In this paper, we prove the following theorem.

Theorem 1.2 (the σk equation). Let (M,J, g,ω) be a compact connected Kähler manifold of complex
dimension m ≥ 3 with nonnegative holomorphic bisectional curvature, and let f : M → R be a
function of class C∞ satisfying

∫

M efωm = (mk )
∫

Mωm. There exists a unique function ϕ : M → R

of class C∞ such that

(1)
∫

M

ϕ ωm = 0, (1.3)

(2) ω̃k ∧ωm−k =

(

ef

(mk )

)

ωm. (Ek)

Moreover the solution ϕ is k-admissible.

This result was announced in a note in the Comptes Rendus de l’Acadé-mie des
Sciences de Paris published online in December 2009 [1]. The curvature assumption is used,
in Section 6.2 only, for an a priori estimate on λ(g−1g̃) as in [2, page 408], and it should be
removed (as did Aubin for the case k = m in [3], see also [4] for this case). For the analogue
of (Ek) on C

m, the Dirichlet problem is solved in [5, 6], and a Bedford-Taylor type theory,
for weak solutions of the corresponding degenerate equations, is addressed in [7]. Thanks to
Julien Keller, we learned of an independent work [8] aiming at the same result as ours, with
a different gradient estimate and a similar method to estimate λ(g−1g̃), but no proofs given
for the C0 and the C2 estimates.

Let us notice that the function f appearing in the second member of (Ek) satisfies
necessarily the normalisation condition

∫

M efωm = (mk )
∫

Mωm. Indeed, this results from the
following lemma.

Lemma 1.3. Consider
∫

M ω̃k ∧ωm−k =
∫

Mωm.

Proof. See [9, page 44].

Let us write (Ek) differently.

Lemma 1.4. Consider ω̃k ∧ωm−k = (σk(λ(g−1g̃))/(mk ))ω
m.
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Proof. Let P ∈ M. It suffices to prove the equality at P in a g-normal g̃-adapted chart z
centered at P . In such a chart gij(0) = δij and g̃ij(0) = δijλi(0), so at z = 0, ω = idza ∧ dza and
ω̃ = iλa(0)dza ∧ dza. Thus

ω̃k ∧ωm−k =

(

∑

a

iλa(0)dza ∧ dza
)k

∧
(

∑

b

idzb ∧ dzb
)m−k

=
∑

(a1,..., ak)∈{1,..., m}
distinct integers

(b1,..., bm−k)∈{1,..., m}\{a1,..., ak}
distinct integers

imλa1(0) · · ·λak(0)

(

dza1 ∧ dza1
)

∧ · · · ∧
(

dzak ∧ dzak
)

∧
(

dzb1 ∧ dzb1
)

∧ · · · ∧
(

dzbm−k ∧ dzbm−k
)

.

(1.4)

Now a1, . . . , ak, b1, . . . , bm−k are m distinct integers of {1, . . . , m} and 2-forms commute
therefore,

ω̃k ∧ωm−k =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

(a1,..., ak)∈{1,...,m}
distinct integers

(b1,..., bm−k)∈{1,..., m}\{a1,..., ak}
distinct integers

λa1(0) · · ·λak(0)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

im
(

dz1 ∧ dz1
)

∧ · · · ∧
(

dzm ∧ dzm
)

︸ ︷︷ ︸

=
ωm

m!

=

⎛

⎜

⎜

⎝

∑

(a1,..., ak)∈{1,..., m}
distinct integers

(m − k)! λa1(0) · · ·λak(0)

⎞

⎟

⎟

⎠

ωm

m!

ω̃k ∧ωm−k =
(m − k)!
m!

k!σk(λ1(0), . . . , λm(0)) ωm =
σk

(

λ
(

g−1g̃
))

(mk )
ωm.

(1.5)

Consequently, (Ek) writes:

σk
(

λ
(

g−1g̃
))

= ef .
(

E′
k

)

Let us remark that Em corresponds to the Calabi-Yau equation det(g̃)/det(g) = ef , when
E1 is just a linear equation in Laplacian form. Since the endomorphism A is Hermitian, the
spectral theorem provides an h-orthonormal basis for T1,0 of eigenvectors e1, . . . , em:Aei =
λiei, λ = (λ1, . . . , λm) ∈ Γk. At P ∈ M in a chart z, we have Mat∂1,...,∂mAP = [Ai

j(z)]1≤i,j≤m, thus
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σk(λ(AP )) = σk(λ([Ai
j(z)]1≤i, j≤m)). In addition, Aj

i = g
j�g̃i� = g

j�(gi� + ∂i�ϕ) = δ
j

i + g
j�∂i�ϕ, so

the equation writes locally:

σk

(

λ

(

[

δ
j

i + g
j�∂i�ϕ

]

1≤i, j≤m

))

= ef .
(

E′′
k

)

Let us notice that a solution of this equation
(

E′′
k

)

is necessarily k-admissible [9, page 46].

Let us define fk(B) = σk(λ(B)) and Fk(B) = lnσk(λ(B)) where B = [Bji ]1≤i, j≤m is a Hermitian

matrix. The function fk is a polynomial in the variables Bji , specifically fk(B) =
∑

|I|=k BII
(sum of the principal minors of order k of the matrix B). Equivalently

(

E′′
k

)

writes:

Fk

(

[

δ
j

i + g
j�∂i�ϕ

]

1≤i, j≤m

)

= f.
(

E′′′
k

)

It is a nonlinear elliptic second order PDE of complex Monge-Ampère type. We prove the
existence of a k-admissible solution by the continuity method.

2. Derivatives and Concavity of Fk

2.1. Calculation of the Derivatives at a Diagonal Matrix

The first derivatives of the symmetric polynomial σk are given by the following: for all
1 ≤ i ≤ m, (∂σk/∂λi)(λ) = σk−1, i(λ) where σk−1, i(λ) := σk−1|λi=0. For 1 ≤ i /= j ≤ m, let us
denote σk−2, ij(λ) := σk−2|λi=λj=0 and σk−2, ii(λ) = 0. The second derivatives of the polynomial
σk are given by (∂2σk/∂λi∂λj)(λ) = σk−2, ij(λ). We calculate the derivatives of the function
fk : Hm(C) → R, where Hm(C) denotes the set of Hermitian matrices, at diagonal matrices
using the formula:

fk(B) =
∑

1≤i1<···<ik≤m

∑

σ∈Sk
ε(σ)Biσ(1)i1

· · ·Biσ(k)ik

=
1
k!

∑

1≤i1,...,ik ,j1,...,jk≤m
εi1···ikj1···jkB

j1
i1
· · ·Bjkik ,

(2.1)

where

εi1···ikj1···jk =

⎧

⎨

⎩

1 if i1, . . . , ik distinct and j1, . . . , jk even permutation of i1, . . . , ik,
−1 if i1, . . . , ik distinct and j1, . . . , jk odd permutation of i1, . . . , ik,
0 else.

(2.2)
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These derivatives are given by [9, page 48]

∂fk

∂B
j

i

(

diag(b1, . . . , bm)
)

=
{

0 if i /= j,
σk−1, i(b1, . . . , bm) if i = j,

if i /= j
∂2fk

∂B
j

j∂B
i
i

(

diag(b1, . . . , bm)
)

= σk−2,ij(b1, . . . , bm)

∂2fk

∂Bij∂B
j

i

(

diag(b1, . . . , bm)
)

= −σk−2,ij(b1, . . . , bm),

(2.3)

and all the other second derivatives of fk at diag(b1, . . . , bm) vanish.
Consequently, the derivatives of the function Fk = ln fk : λ−1(Γk) ⊂ Hm(C) → R

at diagonal matrices diag(λ1, . . . , λm) with λ = (λ1, . . . , λm) ∈ Γk, where λ−1(Γk) = {B ∈
Hm(C)/λ(B) ∈ Γk}, are given by

∂Fk

∂B
j

i

(

diag(λ1, . . . , λm)
)

=

⎧

⎨

⎩

0 if i /= j,
σk−1, i(λ)
σk(λ)

if i = j,
(2.4)

if i /= j
∂2Fk

∂Bij∂B
j

i

(

diag(λ1, . . . , λm)
)

= −
σk−2, ij(λ)
σk(λ)

∂2Fk

∂B
j

j∂B
i
i

(

diag(λ1, . . . , λm)
)

=
σk−2, ij(λ)
σk(λ)

−
σk−1, i(λ)σk−1, j(λ)

(σk(λ))
2

∂2Fk

∂Bii∂B
i
i

(

diag(λ1, . . . , λm)
)

= − (
σk−1, i(λ))

2

(σk(λ))
2

(2.5)

and all the other second derivatives of Fk at diag(λ1, . . . , λm) vanish.

2.2. The Invariance of Fk and of Its First and Second Differentials

The function Fk : λ−1(Γk) → R is invariant under unitary similitudes:

∀B ∈ λ−1(Γk), ∀U ∈ Um(C), Fk(B) = Fk
(

tUBU
)

. (2.6)
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Differentiating the previous invariance formula (2.6), we show that the first and second
differentials of Fk are also invariant under unitary similitudes:

∀B ∈ λ−1(Γk), ∀ζ ∈ Hm(C), ∀U ∈ Um(C),

(dFk)B · ζ = (dFk)tUBU ·
(

tUζU
)

,
(2.7)

∀B ∈ λ−1(Γk), ∀ζ ∈ Hm(C), ∀Θ ∈ Hm(C), ∀U ∈ Um(C),
(

d2Fk
)

B
· (ζ,Θ) =

(

d2Fk
)

tUBU
·
(

tUζU, tUΘU
)

.
(2.8)

These invariance formulas are allowed to come down to the diagonal case, when it is useful.

2.3. Concavity of Fk

We prove in [9] the concavity of the functions u ◦ λ and more generally u ◦ λB when u ∈
Γ0(Rm) and is symmetric [9, Theorem VII.4.2], which in particular gives the concavity of the
functions Fk = lnσkλ [9, Corollary VII.4.30] andmore generally lnσkλB [9, TheoremVII.4.29].
In this section, let us show by an elementary calculation the concavity of the function Fk.

Proposition 2.1. The function Fk : λ−1(Γk) → R, B �→ Fk(B) = lnσk(λ(B)) is concave (this holds
for all k ∈ {1, . . . , m}).

Proof. The function Fk is of class C2, so its concavity is equivalent to the following inequality:

∀B ∈ λ−1(Γk), ∀ζ ∈ Hm(C)
m
∑

i, j, r, s=1

∂2Fk

∂Bsr∂B
j

i

(B)ζji ζ
s
r ≤ 0. (2.9)

Let B ∈ λ−1(Γk), ζ ∈ Hm(C), and U ∈ Um(C) such that tUBU = diag(λ1, . . . , λm). We have
λ = (λ1, . . . , λm) ∈ Γk. Let us denote ˜ζ = tUζU ∈ Hm(C):

S :=
m
∑

i, j, r, s=1

∂2Fk

∂Bsr∂B
j

i

(B)ζji ζ
s
r

=
(

d2Fk
)

B
· (ζ, ζ) so by the invariance formula (2.8)

=
(

d2Fk
)

tUBU
·
(

tUζU, tUζU
)

=
m
∑

i,j,r,s=1

∂2Fk

∂Bsr∂B
j

i

(

diag(λ1, . . . , λm)
)

˜ζ
j

i
˜ζsr

=
m
∑

i /= j=1

−
σk−2,ij(λ)
σk(λ)

˜ζ
j

i
˜ζij

︸︷︷︸

=˜ζ
j

i
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+
m
∑

i /= j=1

(

σk−2, ij(λ)
σk(λ)

−
σk−1, i(λ)σk−1, j(λ)

(σk(λ))
2

)

︸ ︷︷ ︸

=:cij

˜ζii
˜ζ
j

j +
m
∑

i=1

− (
σk−1, i(λ))

2

(σk(λ))
2

(

˜ζii

)2

=
m
∑

i,j=1

−
σk−2, ij(λ)
σk(λ)

∣

∣

∣

˜ζ
j

i

∣

∣

∣

2
+

m
∑

i, j=1

cij ˜ζ
i
i
˜ζ
j

j .

(2.10)

But cij = (∂2(lnσk)/∂λi∂λj)(λ), and ˜ζii ∈ R, so
∑m

i,j=1 cij
˜ζii
˜ζ
j

j ≤ 0 by concavity of lnσk
at λ ∈ Γk [10, page 269]. In addition, σk−2,ij(λ) > 0 since λ ∈ Γk [11], consequently
∑m

i,j=1 −(σk−2,ij(λ)/σk(λ))|˜ζ
j

i |
2
≤ 0, which shows that S ≤ 0 and achieves the proof.

3. The Proof of Uniqueness

Let ϕ0 and ϕ1 be two smooth k-admissible solutions of
(

E′′′
k

)

such that
∫

M ϕ0ω
m =

∫

M ϕ1ω
m =

0. For all t ∈ [0, 1], let us consider the function ϕt = tϕ1 + (1 − t)ϕ0 = ϕ0 + tϕ with ϕ = ϕ1 − ϕ0.
Let P ∈ M, and let us denote hP

k
(t) = fk([δ

j

i + g
j�(P)∂i�ϕt(P)]). We have hP

k
(1) − hP

k
(0) = 0

which is equivalent to
∫1
0 h

P ′

k
(t)dt = 0. But

hP
′

k (t) =
m
∑

i, j=1

(

m
∑

�=1

∂fk

∂B�i

([

δ
j

i + g
j�(P)∂i�ϕt(P)

])

g�j(P)

)

︸ ︷︷ ︸

=:αtij (P)

∂ijϕ(P).
(3.1)

Therefore we obtain

Lϕ(P) :=
m
∑

i, j=1

aij(P)∂ijϕ(P) = 0 with aij(P) =
∫1

0
αtij(P)dt. (3.2)

We show easily that the matrix [aij(P)]1≤i, j≤m is Hermitian [9, page 53]. Besides the function
ϕ is continuous on the compact manifoldM so it assumes its minimum at a pointm0 ∈M, so
that the complex Hessian matrix of ϕ at the point m0, namely, [∂ijϕ(m0)]1≤i, j≤2m, is positive-

semidefinite.

Lemma 3.1. For all t ∈ [0, 1], λ(g−1g̃ϕt)(m0) ∈ Γk; namely, the functions (ϕt)t∈[0,1] are k-admissible
atm0.

Proof. Let us denote W := {t ∈ [0, 1]/λ(g−1g̃ϕt)(m0) ∈ Γk}. The set W is nonempty, it contains
0, and it is an open subset of [0, 1]. Let t be the largest number of [0, 1] such that [0, t[ ⊂ W.
Let us suppose that t < 1 and show that we get a contradiction. Let 1 ≤ q ≤ k, we have

σq(λ(g−1g̃ϕt)(m0)) − σq(λ(g−1g̃ϕ0)(m0)) = hm0
q (t) − hm0

q (0) =
∫ t

0 h
m′

0
q (s)ds. Let us prove that
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h
m′

0
q (s) ≥ 0 for all s ∈ [0, t[. Fix s ∈ [0, t[; the quantity h

m′
0

q (s) is intrinsic so it suffices to prove
the assertion in a particular chart atm0. Now atm0 in a g-unitary g̃ϕs-adapted chart atm0

h
m′

0
q (s) =

m
∑

i, j, �=1

∂fq

∂B
j

i

([

δ
j

i + g
j�(m0)∂i�ϕs(m0)

])

gj�(m0)∂i�ϕ(m0)

=
m
∑

i=1

∂σq

∂λi

(

λ
(

g−1g̃ϕs

)

(m0)
)

∂iiϕ(m0).

(3.3)

But λ(g−1g̃ϕs)(m0) ∈ Γk ⊂ Γq since s ∈ [0, t[ ⊂ W, then (∂σq/∂λi)(λ(g−1g̃ϕs)(m0)) > 0
for all 1 ≤ i ≤ m. Besides, ∂iiϕ(m0) ≥ 0 since the matrix [∂ijϕ(m0)]1≤i, j≤m is positive-semi-

definite. Therefore, we infer that h
m′

0
q (s) ≥ 0. Consequently, we obtain that σq(λ(g−1g̃ϕt)(m0)) ≥

σq(λ(g−1g̃ϕ0)(m0)) > 0 (since ϕ0 is k-admissible). This holds for all 1 ≤ q ≤ k; we deduce then
that λ(g−1g̃ϕt)(m0) ∈ Γk which proves that t ∈ W. This is a contradiction; we infer then that
W = [0, 1].

We check easily that the Hermitian matrix [aij(m0)]1≤i, j≤m is positive definite [9, page

54] and deduce then the following lemma since themap P �→ aij(P) =
∫1
0 (

∑m
�=1(∂fk/∂B

�
i )([δ

j

i+

gj�(P)∂i�ϕt(P)])g
�j(P))dt is continuous on a neighbourhood ofm0.

Lemma 3.2. There exists an open ball Bm0 centered at m0 such that for all P ∈ Bm0 the Hermitian
matrix [aij(P)]1≤i, j≤m is positive definite.

Consequently, the operator L is elliptic on the open set Bm0 . But the map ϕ is C∞,
assumes its minimum atm0 ∈ Bm0 , and satisfiesLϕ = 0; then by the Hopf maximum principle
[12], we deduce that ϕ(P) = ϕ(m0) for all P ∈ Bm0 . Let us denoteS := {P ∈M/ϕ(P) = ϕ(m0)}.
This set is nonempty and it is a closed set. Let us prove that S is an open set: letm be a point
of S, so ϕ(m) = ϕ(m0), then the map ϕ assumes its minimum at the pointm. Therefore, by the
same proof as for the point m0, we infer that there exists an open ball Bm centered at m such
that for all P ∈ Bm ϕ(P) = ϕ(m) so for all P ∈ Bm ϕ(P) = ϕ(m0) then Bm ⊂ S, which proves
that S is an open set. But the manifold M is connected; then S = M, namely, ϕ(P) = ϕ(m0)
for all P ∈ M. Besides

∫

M ϕωm = 0, therefore we deduce that ϕ ≡ 0 onM namely that ϕ1 ≡ ϕ0

onM, which achieves the proof of uniqueness.

4. The Continuity Method

Let us consider the one parameter family of (Ek,t), t ∈ [0, 1]

Fk

[

ϕt
]

:= Fk
(

[

δ
j

i + g
j�∂i�ϕt

]

1≤i, j≤m

)

= tf + ln

⎛

⎜

⎝

(mk )
∫

Mωm

∫

M etfωm

︸ ︷︷ ︸

⎞

⎟

⎠

At

. (Ek,t)

The function ϕ0 ≡ 0 is a k-admissible solution of (Ek,0):σk(λ([δ
j

i + g
j�∂i�ϕ0]1≤i, j≤m)) = (mk )

and satisfies
∫

M ϕ0ω
m = 0. For t = 1, A1 = 1 so (Ek,1) corresponds to

(

E′′′
k

)

.
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Let us fix l ∈ N, l ≥ 5 and 0 < α < 1, and let us consider the nonempty set (containing
0):

Tl, α :=
{

t ∈ [0, 1]/(Ek,t) have a k-admissible solution ϕ ∈ Cl, α(M)

such that
∫

M

ϕωm = 0
}

.

(4.1)

The aim is to prove that 1 ∈ Tl, α. For this we prove, using the connectedness of [0, 1], that
Tl, α = [0, 1].

4.1. Tl, α Is an Open Set of [0, 1]

This arises from the local inverse mapping theorem and from solving a linear problem. Let
us consider the following sets:

˜Sl, α :=
{

ϕ ∈ Cl, α(M),
∫

M

ϕωm = 0
}

,

Sl, α :=
{

ϕ ∈ ˜Sl, α, k-admissible for g
}

,

(4.2)

where ˜Sl, α is a vector space and Sl, α is an open set of ˜Sl, α. Using these notations, the set Tl, α

writes Tl, α := {t ∈ [0, 1]/∃ϕ ∈ Sl, α solution of (Ek,t)}.

Lemma 4.1. The operator Fk : Sl,α → Cl−2, α(M), ϕ �→ Fk[ϕ] = Fk([δ
j

i + g
j�∂i�ϕ]1≤i, j≤m), is

differentiable, and its differential at a point ϕ ∈ Sl, α, dFkϕ ∈ L( ˜Sl, α, Cl−2, α(M)) is equal to

dFkϕ · ψ =
m
∑

i, j=1

∂Fk

∂B
j

i

([

δ
j

i + g
j�∂i�ϕ

])

gj�∂i�ψ ∀ψ ∈ ˜Sl,α. (4.3)

Proof. See [9, page 60].

Proposition 4.2. The nonlinear operator Fk is elliptic on Sl, α.

Proof. Let us fix a function ϕ ∈ Sl, α and check that the nonlinear operator Fk is elliptic for this
function ϕ. This goes back to show that the linearization at ϕ of the nonlinear operator Fk is
elliptic. By Lemma 4.1, this linearization is the following linear operator:

dFkϕ · v =
m
∑

i, o=1

⎛

⎝

m
∑

j=1

∂Fk

∂B
j

i

[

δ
j

i + g
j o∂ioϕ

]

1≤i, j≤m
× gj o

⎞

⎠∂i ov. (4.4)
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In order to prove that this linear operator is elliptic, it suffices to check the ellipticity in a
particular chart, for example, at the center of a g-normal g̃ϕ-adapted chart. At the center of
such a chart,

dFkϕ · v =
m
∑

i, o=1

(

∂Fk
∂Boi

(

diagλ
(

g−1g̃
))

)

∂i ov =
m
∑

i=1

σk−1, iλ
(

g−1g̃
)

σkλ
(

g−1g̃
) ∂iiv. (4.5)

But for all i ∈ {1, . . . , m} we have σk−1,iλ(g−1g̃)/σkλ(g−1g̃) > 0 onM since λ(g−1g̃) ∈ Γk [11],
which proves that the linearization is elliptic and achieves the proof.

Let us denote Fk the operator

Fk
[

ϕ
]

:= fk
(

[

δ
j

i + g
j�∂i�ϕ

]

1≤i, j≤m

)

. (4.6)

As Fk, the operator Fk : Sl, α → Cl−2, α(M) is differentiable and elliptic on Sl, α of differential

dFkϕ · ψ =
m
∑

i, j=1

∂fk

∂B
j

i

([

δ
j

i + g
j�∂i�ϕ

])

gj�∂i�ψ ∀ψ ∈ ˜Sl, α. (4.7)

Let us denote aϕ the matrix [δji + g
j�∂i�ϕ]1≤i, j≤m and calculate this linearization in a different

way, by using the expression (2.1) of fk:

Fk
[

ϕ
]

= fk
(

aϕ
)

=
1
k!

∑

1≤i1,..., ik , j1,..., jk≤m
εi1···ikj1···jk

(

aϕ
)j1
i1
· · ·

(

aϕ
)jk
ik
. (4.8)

Thus

dFkϕ · v =
d

dt

(

Fk
[

ϕ + tv
])

|t=0

=
d

dt

⎛

⎝

1
k!

∑

1≤i1,..., ik , j1,..., jk≤m
εi1···ikj1···jk

(

aϕ+tv
)j1
i1
· · ·

(

aϕ+tv
)jk
ik

⎞

⎠

|t=0

=
1
k!

∑

1≤i1,..., ik , j1,..., jk≤m
εi1···ikj1...jk

(

gj1s∂i1sv
)

(

aϕ
)j2
i2
· · ·

(

aϕ
)jk
ik

+
1
k!

∑

1≤i1,..., ik , j1,..., jk≤m
εi1···ikj1···jk

(

aϕ
)j1
i1

(

gj2s∂i2sv
)

· · ·
(

aϕ
)jk
ik

+ · · · + 1
k!

∑

1≤i1,..., ik , j1,..., jk≤m
εi1···ikj1···jk

(

aϕ
)j1
i1
· · ·

(

aϕ
)jk−1
ik−1

(

gjks∂iksv
)

=
1

(k − 1)!

∑

1≤i1,..., ik , j1,..., jk≤m
εi1···ikj1···jk

(

aϕ
)j1
i1
· · ·

(

aϕ
)jk−1
ik−1

(

gjks∂iksv
)
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by symmetry

=
m
∑

i, j=1

⎛

⎝

1
(k − 1)!

∑

1≤i1,..., ik−1, j1,..., jk−1≤m
εi1···ik−1ij1···jk−1j

(

aϕ
)j1
i1
· · ·

(

aϕ
)jk−1
ik−1

⎞

⎠

︸ ︷︷ ︸

=:Cij(aϕ)

∇j

i v.

(4.9)

We infer then the following proposition.

Proposition 4.3. The linearization dFk of the operator Fk is of divergence type:

dFkϕ = ∇i

(

Cij
(

aϕ
)

∇j
)

. (4.10)

Proof. By (4.9) we have

dFkϕ · v =
m
∑

i, j=1

Cij
(

aϕ
)

∇j

i v

=
m
∑

i=1

∇i

⎛

⎝

m
∑

j=1

Cij
(

aϕ
)

∇jv

⎞

⎠ −
m
∑

j=1

(

m
∑

i=1

∇i

(

Cij
(

aϕ
)

)

)

∇jv.

(4.11)

Moreover

m
∑

i=1

∇i

(

Cij
(

aϕ
)

)

=
1

(k − 2)!

m
∑

i=1

∑

1≤i1,..., ik−1, j1,..., jk−1≤m
εi1···ik−1ij1···jk−1j

(

aϕ
)j1
i1
· · ·

(

aϕ
)jk−2
ik−2

∇i

(

(

aϕ
)jk−1
ik−1

)

. (4.12)

But ∇i((aϕ)
jk−1
ik−1

) = ∇i(δ
jk−1
ik−1

+∇jk−1
ik−1
ϕ) = ∇jk−1

iik−1
ϕ, then

m
∑

i=1

∇i

(

Cij
(

aϕ
)

)

=
1

(k − 2)!

m
∑

i=1

∑

1≤i1,..., ik−1, j1,..., jk−1≤m
εi1···ik−1ij1···jk−1j

(

aϕ
)j1
i1
· · ·

(

aϕ
)jk−2
ik−2

∇jk−1
iik−1

ϕ. (4.13)

Besides, the quantity ∇jk−1
iik−1

ϕ is symmetric in i, ik−1 (indeed, ∇jk−1
iik−1

ϕ − ∇jk−1
ik−1i

ϕ = R
jk−1
siik−1

∇sϕ and

R
jk−1
siik−1

= 0 since g is Kähler), and εi1···ik−1ij1···jk−1j is antisymmetric in i, ik−1; it follows then that
∑m

i=1 ∇i(Cij(aϕ)) = 0, consequently dFkϕ · v =
∑m

i=1 ∇i(
∑m

j=1 Cij(aϕ)∇jv).

From Proposition 4.3, we infer easily [9, page 62] the following corollary.

Corollary 4.4. The map F : Sl,α → ˜Sl−2, α, ϕ �→ F(ϕ) = Fk[ϕ]−(mk ) is well defined and differentiable
and its differential equals dFϕ = dFkϕ = ∇i(Cij(aϕ)∇j) ∈ L( ˜Sl, α, ˜Sl−2, α).

Now, let t0 ∈ Tl, α and let ϕ0 ∈ Sl, α be a solution of the corresponding equation
(Ek,t0):F(ϕ0) = et0fAt0 − (mk ).
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Lemma 4.5. dFϕ0 : ˜Sl, α → ˜Sl−2, α is an isomorphism.

Proof. Let ψ ∈ Cl−2,α(M)with
∫

M ψvg = 0. Let us consider the equation

∇i

(

Cij
(

aϕ0

)

∇ju
)

= ψ. (4.14)

We have Cij(aϕ0) ∈ Cl−2,α(M) and the matrix [Cij(aϕ0)]1≤i, j≤m = [(∂fk/∂B
j

i )([δ
j

i+

gj�∂i�ϕ0])]1≤i, j≤m is positive definite (since Fk is elliptic at ϕ0); then by Theorem 4.7 of [13,
p. 104] on the operators of divergence type, we deduce that there exists a unique function
u ∈ Cl, α(M) satisfying

∫

M uvg = 0 which is solution of (4.14) and then solution of dFϕ0u = ψ.
Thus, the linear continuous map dFϕ0 : ˜Sl, α → ˜Sl−2, α is bijective, and its inverse is continuous
by the open map theorem, which achieves the proof.

We deduce then by the local inverse mapping theorem that there exists an open
set U of Sl, α containing ϕ0 and an open set V of ˜Sl−2, α containing F(ϕ0) such that F :
U → V is a diffeomorphism. Now, let us consider a real number t ∈ [0, 1] very close
to t0 and let us check that it belongs also to Tl, α: if |t − t0| ≤ ε is sufficiently small then
‖(etfAt − (mk )) − (et0fAt0 − (mk ))‖Cl−2, α(M) is small enough so that etfAt − (mk ) ∈ V , thus there
exists ϕ ∈ U ⊂ Sl,α such that F(ϕ) = etfAt − (mk ) and consequently there exists ϕ ∈ Cl, α(M) of
vanishing integral for g which is solution of (Ek,t). Hence t ∈ Tl, α. We conclude therefore that
Tl, α is an open set of [0, 1].

4.2. Tl,α Is a Closed Set of [0, 1]: The Scheme of the Proof

This section is based on a priori estimates. Finding these estimates is the most difficult step
of the proof. Let (ts)s∈N

be a sequence of elements of Tl, α that converges to τ ∈ [0, 1], and let
(ϕts)s∈N

be the corresponding sequence of functions: ϕts is C
l, α, k-admissible, has a vanishing

integral, and is a solution of

Fk

(

[

δ
j

i + g
j�∂i�ϕts

]

1≤i, j≤m

)

= tsf + ln(Ats). (Ek,ts)

Let us prove that τ ∈ Tl, α. Here is the scheme of the proof.

(1) Reduction to a C2, β(M) estimate: if (ϕts)s∈N
is bounded in a C2, β(M)with 0 < β < 1,

the inclusion C2, β(M) ⊂ C2(M,R) being compact, we deduce that after extraction
(ϕts)s∈N

converges in C2(M,R) to ϕτ ∈ C2(M,R). We show by tending to the limit
that ϕτ is a solution of (Ek,τ) (it is then necessarily k-admissible) and of vanishing
integral for g. We check finally by a nonlinear regularity theorem [14, page 467] that
ϕτ ∈ C∞(M,R), which allows us to deduce that τ ∈ Tl, α (see [9, pages 64–67] for
details).

(2) We show that (ϕts)s∈N
is bounded in C0(M,R): first of all we prove a positivity

Lemma 5.4 for (Ek,t), inspired by the ones of [15, page 843] (for k = m), but in a
very different way, required since the k-positivity of ω̃ts is weaker with k < m (in
this case, some eigenvalues can be nonpositive, which complicates the proof), using
a polarization method of [7, page 1740] (cf. 5.2) and a Gårding inequality 5.3; we
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infer then from this lemma a fundamental inequality 5.5 as Proposition 7.18 of [13,
page 262]. We conclude the proof using the Moser’s iteration technique exactly as
for the equation of Calabi-Yau. We deal with this C0 estimate in Section 5.

(3) We establish the key point of the proof, namely, a C2 a priori estimate (Section 6).

(4) With the uniform ellipticity at hand (consequence of the previous step), we obtain
the needed C2, β(M) estimate by the Evans-Trudinger theory (Section 7).

5. The C0 A Priori Estimate

5.1. The Positivity Lemma

Our first three lemmas are based on the ideas of [7, Section 2].

Lemma 5.1. Let π be a real (1 − 1)-form, it then writes π = ipabdz
a ∧ dzb, with pab = p(∂a, ∂b)

where p is the symmetric tensor p(U,V ) = π(U, JV ); hence

∀� ≤ m π� ∧ωm−� =
�!(m − �)!

m!
σ�

(

λ
[

g−1p
])

ωm. (5.1)

Proof. The same proof as Lemma 1.4.

We consider for 1 ≤ � ≤ m the map f� = σ� ◦ λ : Hm → R where Hm denotes the
R-vector space of Hermitian square matrices of size m. f� is a real polynomial of degree �
and in m2 real variables. Moreover, it is I hyperbolic (cf. [16] for the proof) and it satisfies
f�(I) = σ�(1, . . . , 1) = (m� ) > 0. Let ˜f� be the totally polarized form of f� . This polarized form
˜f� : Hm × · · · × Hm

︸ ︷︷ ︸

� times

→ R is characterized by the following properties:

(i) ˜f� is �-linear.

(ii) ˜f� is symmetric.

(iii) For all B ∈ Hm, ˜f�(B, . . . , B) = f�(B).

Using these notations, we infer from Lemma 5.1 that at the center of a g-unitary chart (this
guarantees that the matrix g−1p is Hermitian), we have

π� ∧ωm−� =
�!(m − �)!

m!
f�

(

g−1p
)

ωm. (5.2)

By transition to the polarized form in this equality we obtain the following lemma.

Lemma 5.2. Let 1 ≤ � ≤ m and π1, . . . , π� be real (1−1)-forms. These forms write πα = i(pα)abdz
a∧

dzb, with (pα)ab = pα(∂a, ∂b) where pα is the symmetric tensor pα(U,V ) = πα(U, JV ). Then, at the
center of a g-unitary chart we have

π1 ∧ · · · ∧ π� ∧ωm−� =
�!(m − �)!

m!
˜f�
(

g−1p1, . . . , g
−1p�

)

ωm. (5.3)
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Proof. See [9, page 71].

Theorem 5 of Gårding [16] applies to f� with 2 ≤ � ≤ m.

Lemma 5.3 (the Gårding inequality for f�). Let 2 ≤ � ≤ m, for all y1, . . . , y� ∈ Γ(f�, I),

˜f�
(

y1, . . . , y�
)

≥ f�
(

y1
)1/�

· · · f�
(

y�
)1/�

. (5.4)

Let us recall that Γ(f�, I) is the connected component of {y ∈ Hm/f�(y) > 0} containing I.
The same proof as [17, pages 129, 130] implies that

Γ
(

f�, I
)

=
{

y ∈ Hm/∀1 ≤ i ≤ � fi
(

y
)

> 0
}

=
{

y ∈ Hm/λ
(

y
)

∈ Γ�
}

= λ−1(Γ�). (5.5)

Note that the Gårding inequality (Lemma 5.3) holds for ˜Γ(f�, I) = {y ∈ Hm/∀1 ≤ i ≤
� fi(y) ≥ 0}.

Let us now apply the previous lemmas in order to prove the following positivity
lemma inspired by the ones of [15, page 843] (for k = m); let us emphasize that the proof
is very different since the k-positivity is weaker.

Lemma 5.4 (positivity lemma). Let α be a real 1-form on M and j ∈ {1, . . . , k − 1}, then the
function f :M → R defined by fωm = tJα ∧ α ∧ωm−1−j ∧ ω̃j is nonnegative.

Proof. Let 1 ≤ j ≤ k − 1, then 2 ≤ � = j + 1 ≤ k. Let α be a real 1-form, it then writes
α = αa dz

a + αa dz
a. Let π1 = tJα ∧ α, hence π1(∂a, ∂b) = α(J∂a)α(∂b) − α(J∂b)α(∂a) =

iαaαb − (−i)αbαa = 2iαaαb. Similarly, we prove that π1(∂a, ∂b) = π1(∂a, ∂b) = 0, consequently
π1 = i2αaαb

︸︷︷︸

=:pab

dza ∧ dzb. Besides, set π2 = · · · = πj+1 = ω̃ = ig̃ab dz
a ∧ dzb. Now, let x ∈M and φ

be a g-unitary chart centered at x. Using Lemma 5.2, we infer that at x in the chart φ:

tJα ∧ α ∧ ω̃j ∧ωm−(j+1) = π1 ∧ · · · ∧ πj+1 ∧ωm−(j+1)

=

(

m − j − 1
)

!
(

j + 1
)

!
m!

˜fj+1
(

g−1p, g−1g̃, . . . , g−1g̃
)

ωm.

(5.6)

But at x, g−1g̃ = g̃ ∈ Γ(fj+1, I) and g−1p = p ∈ ˜Γ(fj+1, I). Indeed, λ(g−1g̃) ∈ Γk since ϕ
is k-admissible and Γk ⊂ Γj+1. Moreover, the Hermitian matrix [2αaαb]1≤a, b≤m is positive-
semidefinite since for all ξ ∈ C

m, we have
∑m

a, b=1 2αaαb ξa ξb = 2|
∑m

a=1 αaξa|
2 ≥ 0; we then

deduce that for all 1 ≤ i ≤ j + 1, we have at x, fi(g−1p) = σi(λ(g−1p)) ≥ 0. Finally, we infer by
the Gårding inequality that at x in the chart φ we have

˜fj+1
(

g−1p, g−1g̃, . . . , g−1g̃
)

≥ fj+1
(

g−1p
)1/(j+1)

fj+1
(

g−1g̃
)j/(j+1)

≥ 0 (5.7)

which proves the positivity lemma.
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5.2. The Fundamental Inequality

The C0 a priori estimate is based on the following crucial proposition which is a general-
ization of the Proposition 7.18 of [13, page 262].

Proposition 5.5. Let h(t) be an increasing function of class C1 defined on R, and let ϕ be a C2 k-
admissible function defined onM, then the following inequality is satisfied:

∫

M

[(

m
k

)

− fk
(

g−1g̃
)

]

h
(

ϕ
)

ωm ≥ 1
2m

(

m
k

)∫

M

h′
(

ϕ
)∣

∣∇ϕ
∣

∣

2
gω

m. (5.8)

Proof. We have the equality
∫

M[(mk ) − fk(g−1g̃)]h(ϕ)ωm = (mk )
∫

M h(ϕ)(ωm − ω̃k ∧
ωm−k). Besides, since Λ2M is commutative ωm − ω̃k ∧ ωm−k = (ω − ω̃) ∧
(ωm−1 +ωm−2 ∧ ω̃ + · · · +ωm−k ∧ ω̃k−1)
︸ ︷︷ ︸

=:Ω

, namely, ωm − ω̃k ∧ ωm−k = −(1/2)ddcϕ ∧ Ω, then

∫

M[(mk ) − fk(g−1g̃)]h(ϕ)ωm = −(1/2)(mk )
∫

M ddcϕ ∧ (h(ϕ)Ω). But d(dcϕ ∧ h(ϕ)Ω) =
ddcϕ ∧ h(ϕ)Ω + (−1)1dcϕ ∧ d(h(ϕ)Ω), and d(h(ϕ)Ω) = h′(ϕ)dϕ ∧ Ω +
(−1)0h(ϕ) dΩ

︸︷︷︸

=0 since ω and ω are closed

so ddcϕ∧h(ϕ)Ω = dcϕ∧h′(ϕ)dϕ∧Ω+d(something). In addition

by Stokes’ theorem,
∫

M d(something) = 0; therefore,

∫

M

[(

m
k

)

− fk
(

g−1g̃
)

]

h
(

ϕ
)

ωm = − 1
2

(

m
k

)∫

M

h′
(

ϕ
)

dcϕ ∧ dϕ ∧Ω

=
1
2

(

m
k

)

⎛

⎜

⎝

∫

M

h′
(

ϕ
)(

−dcϕ
)

∧ dϕ ∧ωm−1

︸ ︷︷ ︸

T1

+
k−1
∑

j=1

∫

M

h′
(

ϕ
)(

−dcϕ
)

∧ dϕ ∧ωm−1−j ∧ ω̃j

︸ ︷︷ ︸

⎞

⎟

⎟

⎠

T2

.

(5.9)

Let us prove that T2 ≥ 0 (using the positivity lemma) and that T1 = (1/m)
∫

M h′(ϕ)|∇ϕ|2gωm.
Let us apply the positivity lemma to dϕ: the function f : M → R defined by fωm = tJdϕ ∧
dϕ ∧ ωm−1−j ∧ ω̃j is nonnegative for all 1 ≤ j ≤ k − 1. But tJdϕ = −dcϕ and h is an increasing
function; then T2 ≥ 0. Let us now calculate T1. Fix x ∈M, and let us work in a g-unitary chart
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centered at x and satisfying dϕ/|dϕ|g = (dzm + dzm)/
√
2 at x. We have then ω = idza ∧ dza

at x and tJdϕ ∧ dϕ = i |dϕ|2g dzm ∧ dzm; therefore,

tJdϕ ∧ dϕ ∧ωm−1

=
∑

a1,..., am−1∈{1,..., m−1}
2 by 2/=

im
∣

∣dϕ
∣

∣

2
g

(

dzm ∧ dzm
)

∧
(

dza1 ∧ dza1
)

∧ · · · ∧
(

dzam−1 ∧ dzam−1
)

=

⎛

⎜

⎜

⎝

∑

a1,..., am−1∈{1,..., m−1}
2 by 2/=

1

⎞

⎟

⎟

⎠

∣

∣dϕ
∣

∣

2
g i

m
(

dz1 ∧ dz1
)

∧ · · · ∧
(

dzm ∧ dzm
)

= (m − 1)!
∣

∣dϕ
∣

∣

2
g

ωm

m!
=

1
m

∣

∣∇ϕ
∣

∣

2
g ω

m.

(5.10)

Thus T1 = (1/m)
∫

M h′(ϕ)|∇ϕ|2gωm, consequently
∫

M[(mk ) − fk(g−1g̃)]h(ϕ)ωm ≥ (1/2)(mk )T1 =
(1/2m)(mk )

∫

M h′(ϕ)|∇ϕ|2g ωm, which achieves the proof of the proposition.

5.3. The Moser Iteration Technique

We conclude the proof using the Moser’s iteration technique exactly as for the equation of
Calabi-Yau. Let us apply the proposition to ϕts in order to obtain a crucial inequality (the
inequality (IN1)) from which we will infer the a priori estimate of ‖ϕts‖C0 . Let p ≥ 2 be a real
number. The function ϕts is C

2 admissible. Let us consider the function h(u) := u|u|p−2 :R →
R. This function is of class C1 and h′(u) = |u|p−2 + u(p − 2)u |u|p−4 = (p − 1)|u|p−2 ≥ 0, so h is
increasing. Therefore we infer by the previous proposition that

p − 1
2m

(

m
k

)∫

M

∣

∣ϕts
∣

∣

p−2∣
∣∇ϕts

∣

∣

2
vg ≤

∫

M

[(

m
k

)

− fk
(

g−1g̃
)

]

ϕts
∣

∣ϕts
∣

∣

p−2
vg. (5.11)

Besides, |∇|ϕts |
p/2|2 = 2gab∂a |ϕts |p/2 ∂b |ϕts |p/2 = 2gab((p/2)ϕts |ϕts |p/2−2)

2∂a ϕts ∂b ϕts = (p2/
4)|ϕts |p−2|∇ϕts |2, so the previous inequality writes:

∫

M

∣

∣

∣∇
∣

∣ϕts
∣

∣

p/2
∣

∣

∣

2
vg ≤

mp2

2
(

p − 1
)

(mk )

∫

M

[(

m
k

)

− fk
(

g−1g̃
)

]

ϕts
∣

∣ϕts
∣

∣

p−2
vg. (IN1)

Let us infer from the inequality (IN1) another inequality (the inequality (IN4)) that is
required for the proof. It follows from the continuous Sobolev embedding H2

1(M) ⊂
L2m/(m−1)(M) that

∥

∥

∣

∣ϕts
∣

∣

p∥
∥

m/(m−1) =
∥

∥

∥

∣

∣ϕts
∣

∣

p/2
∥

∥

∥

2

2m/(m−1)
≤ Cste

(∫

M

∣

∣

∣∇
∣

∣ϕts
∣

∣

p/2
∣

∣

∣

2
+
∫

M

∣

∣ϕts
∣

∣

(p/2)·2
)

, (IN2)
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where Cste is independent of p. Besides, fk(g−1g̃) is uniformly bounded; indeed,

∣

∣

∣fk
(

g−1g̃
)∣

∣

∣ = etsf
(mk )Vol(M)
∫

M etsfvg
≤

(

m
k

)

e2ts‖f‖∞ ≤
(

m
k

)

e2‖f‖∞ . (IN3)

Using the inequalities (IN1), (IN2), (IN3), and p2/2(p − 1) ≤ p we obtain

∥

∥

∣

∣ϕts
∣

∣

p∥
∥

m/(m−1) ≤ Cste
′ × p

(∫

M

∣

∣ϕts
∣

∣

p−1 +
∫

M

∣

∣ϕts
∣

∣

p
)

(

p ≥ 2
)

, (IN4)

where Cste′ is independent of p. Suppose that Cste′ ≥ 1.
Using the Green’s formula and the inequalities of Sobolev-Poincaré (IN2) and of

Hölder, we prove following [13] these Lq estimates.

Lemma 5.6. There exists a constant μ such that for all 1 ≤ q ≤ 2m/(m − 1),

∥

∥ϕts
∥

∥

q ≤ μ. (5.12)

Proof. M is a compact Riemannian manifold and ϕts ∈ C2, so by the Green’s formula ϕts(x) =

(1/Vol(M))
∫

M

ϕtsdv

︸ ︷︷ ︸

=0

+
∫

MG(x, y)�ϕts(y)dv(y), where G(x, y) ≥ 0 and
∫

MG(x, y)dv(y) is

independent of x. Here�ϕts denotes the real Laplacian. Then, we infer that ‖ϕts‖1 ≤ C‖�ϕts‖1.
But ‖�ϕts‖1 =

∫

M�ϕ+
ts
+ �ϕ−

ts
and

∫

M�ϕts =
∫

M�ϕ+
ts
− �ϕ−

ts
= 0; then ‖�ϕts‖1 = 2

∫

M�ϕ+
ts
.

Besides �ϕts < 2m since ϕts is k-admissible: indeed, at x in a g-normal g̃-adapted chart,
namely, a chart satisfying gab = δab, g̃ab = δabλa and ∂νgab = 0 for all 1 ≤ a, b ≤ m,

ν ∈ {1, . . . , m, 1, . . . , m}, we have λ(g−1g̃) = (λ1, . . . , λm) so λ = (λ1 . . . , λm) ∈ Γk since ϕts is
k-admissible; consequently �ϕts = −2gab∂abϕts = −2

∑

a ∂aaϕts = 2
∑

a(1 − λa) = 2m − 2σ1(λ),
but σ1(λ) > 0 since λ ∈ Γk which proves that �ϕts < 2m. Therefore �ϕ+

ts
< 2m and

‖�ϕts‖1 ≤ 4mVol(M). We infer then that ‖ϕts‖1 ≤ 4mCVol(M). Now let us take p = 2 in
the inequality (IN2): ‖ϕts‖

2
2m/(m−1) ≤ Cste(

∫

M |∇|ϕts ||
2 +

∫

M |ϕts |
2). Besides, ϕts ∈ H2

1(M) and
has a vanishing integral; then by the Sobolev-Poincaré inequality we infer ‖ϕts‖2 ≤ A‖∇ϕts‖2.
But |∇|ϕts || = |∇ϕts | almost everywhere; therefore ‖ϕts‖2m/(m−1) ≤ Cste‖∇|ϕts |‖2. Using the
inequality (IN1) with p = 2 and the fact that fk(g−1g̃) is uniformly bounded, we obtain that
‖∇|ϕts |‖

2
2 ≤ Cste‖ϕts‖1 ≤ Cste

′. Consequently, we infer that ‖ϕts‖2m/(m−1) ≤ Cste.
Let 1 ≤ q ≤ 2m/(m − 1) =: 2δ. By the Hölder inequality we have ‖ϕts‖

q
q =

∫

M |ϕts |
q · 1 ≤

(
∫

M |ϕts |q·(2δ/q))
q/2δVol(M)1−q/2δ. Therefore ‖ϕts‖q ≤ Vol(M)(1/q)−(1/2δ)‖ϕts‖2δ. But

Vol(M)1/q−1/2δ = e(1/q−1/2δ) ln(Vol(M)) ≤
{

1 if Vol(M) ≤ 1,
Vol(M)1−1/2δ if Vol(M) ≥ 1

(5.13)

and ‖ϕts‖2δ ≤ Cste, thus ‖ϕts‖q ≤ μ := Cste ×Max(1,Vol(M)1−1/2δ).
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Supposewithout limitation of generality that μ ≥ 1. Now,we deduce from the previous
lemma and the inequality (IN4), by induction, thesemore general Lp estimates using the same
method as [13].

Lemma 5.7. There exists a constant C0 such that for all p ≥ 2,

∥

∥ϕts
∥

∥

p ≤ C0

(

δm−1Cp
)−m/p

, (5.14)

with δ = m/(m − 1) and C = Cste′(1 +Max(1,Vol(M)1/2)) ≥ 1 where Cste′ is the constant of the
inequality (IN4).

Proof. We prove this lemma by induction: first we check that the inequality is satisfied
for 2 ≤ p ≤ 2δ = 2m/(m − 1); afterwards we show that if the inequality is true for p,
then it is satisfied for δp too. Denote C0 = μδm(m−1)Cmem/e. For 2 ≤ p ≤ 2δ we have
‖ϕts‖p ≤ μ, so it suffices to check that μ ≤ C0(δm−1Cp)−m/p. This inequality is equivalent

to δm(m−1)Cmem/e(δm−1Cp)−m/p ≥ 1; then (δm(m−1)Cm)em/e ≥ (δm(m−1)Cm)1/ppm/p. But if x ≥ 1,
then x ≥ x1/p (since p ≥ 1), and δm(m−1)Cm ≥ 1 (since C ≥ 1, m ≥ 1 and δ ≥ 1); therefore
δm(m−1)Cm ≥ (δm(m−1)Cm)1/p. Besides, pm/p = em(ln p/p) ≤ em/e, which proves the inequality
for 2 ≤ p ≤ 2δ. Now let us fix p ≥ 2. Suppose that ‖ϕts‖p ≤ C0(δm−1Cp)−m/p and prove that

‖ϕts‖δp ≤ C0(δm−1Cδp)−m/δp. The inequality (IN4) proved previously writes:

∥

∥

∣

∣ϕts
∣

∣

p∥
∥

δ ≤ Cste′ × p
(∫

M

∣

∣ϕts
∣

∣

p−1 +
∫

M

∣

∣ϕts
∣

∣

p
)

(

p ≥ 2
)

,
(

IN4′
)

where Cste′ is independent of p, namely, ‖ϕts‖
p

δp ≤ Cste′ × p(‖ϕts‖
p−1
p−1 + ‖ϕts‖

p
p). But since

1 ≤ p − 1 ≤ p, we have by the Hölder inequality that ‖ϕts‖p−1 ≤ Vol(M)1/(p−1)−1/p‖ϕts‖p;
therefore ‖ϕts‖

p

δp
≤ Cste′ × p(Vol(M)1/p‖ϕts‖

p−1
p + ‖ϕts‖

p
p).

(i) If ‖ϕts‖p ≤ 1, then ‖ϕts‖
p

δp
≤ C × p; therefore ‖ϕts‖δp ≤ (Cp)1/p. Let us check

that (Cp)1/p ≤ C0(δm−1Cδp)−m/δp. This inequality is equivalent to p(1/p)(1+m/δ) ≤
μδm(m−1)(1−1/p)em/e × Cm−m/δp−1/p, but 1 + m/δ = m so it is equivalent to pm/p ≤
μδm(m−1)(1−1/p)em/e × Cm(1−1/p). Besides pm/p ≤ em/e and μδm(m−1)(1−1/p) ≥ 1, then it
suffices to have Cm(1−1/p) ≥ 1, and this is satisfied since C ≥ 1.

(ii) If ‖ϕts‖p ≥ 1, we infer that ‖ϕts‖
p

δp ≤ C×p‖ϕts‖
p
p, therefore ‖ϕts‖δp ≤ C1/p×p1/p‖ϕts‖p ≤

(Cp)1/pC0(δm−1Cp)−m/p by the induction hypothesis. But (1 − m)/p = −m/δp;
then we obtain the required inequality ‖ϕts‖δp ≤ C0δ

−m2/δp(Cp)−m/δp =

C0(δm−1Cδp)−m/δp.

By tending to the limit p → +∞ in the inequality of the previous lemma, we obtain the
needed C0 a priori estimate.

Corollary 5.8. Consider

∥

∥ϕts
∥

∥

C0 ≤ C0. (5.15)
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6. The C2 A Priori Estimate

6.1. Strategy for a C2 Estimate

First, we will look for a uniform upper bound on the eigenvalues λ([δji + g
j�∂i�ϕt]1≤i,j≤m.

Secondly, we will infer from it the uniform ellipticity of the continuity equation (Ek,t) and
a uniform gradient bound. Thirdly, with the uniform ellipticity at hand, we will derive a
one-sided estimate on pure second derivatives and finally get the needed C2 bound.

6.2. Eigenvalues Upper Bound

6.2.1. The Functional

Let t ∈ Tl, α, and let ϕt :M → R be a Cl, α k-admissible solution of (Ek,t) satisfying
∫

M ϕtω
m =

0. Consider the following functional:

B : UT1, 0 −→ R

(P, ξ) �−→ B(P, ξ) = ˜hP (ξ, ξ) − ϕt(P),
(6.1)

where UT1, 0 is the unit sphere bundle associated to (T1, 0, h) and g̃ is related to g by: ω̃ =
ω + i∂∂ϕt. B is continuous on the compact set UT1, 0, so it assumes its maximum at a point
(P0, ξ0) ∈ UT1, 0. In addition, for fixed P ∈ M, ξ ∈ UT1, 0

P �→ ˜hP (ξ, ξ) is continuous on the
compact subsetUT1, 0

P (the fiber); therefore it attains its maximum at a unit vector ξP ∈ UT1, 0
P ,

and by the min-max principle we can choose ξP as the direction of the largest eigenvalue of
AP , λmax(AP ). Specifically, we have the following.

Lemma 6.1 (min-max principle). Consider

˜hP (ξP , ξP ) = max
ξ∈T1, 0

P , hP (ξ, ξ)=1

˜hP (ξ, ξ) = λmax(AP ). (6.2)

For fixed P , we have maxhP (ξ, ξ)=1B(P, ξ) = B(P, ξP ) = λmax(AP ) − ϕt(P); therefore
max(P, ξ)∈UT1, 0 B(P, ξ) = maxP∈M B(P, ξP ) = B(P0, ξ0) ≤ B(P0, ξP0); hence,

max
(P, ξ)∈UT1, 0

B(P, ξ) = B(P0, ξP0) = λmax(AP0) − ϕt(P0). (6.3)

At the point P0, consider e
P0
1 , . . . , e

P0
m an hP0 -orthonormal basis of (T1, 0

P0
, hP0) made of eigen-

vectors of AP0 that satisfies the following properties:

(1) hP0 -orthonormal: [hij(P0)]1≤i, j≤m = Im.

(2) ˜hP0 -diagonal: [˜hij(P0)]1≤i, j≤m = MatAP0 = diag(λ1, . . . , λm), λ ∈ Γk.

(3) λmax(AP0) is achieved in the direction eP01 = ξP0 : AP0(ξP0) = λmax(AP0)ξP0 = λ1ξP0 and
λ1 ≥ · · · ≥ λm.
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In other words, it is a basis satisfying

(1) [gij(P0)]1≤i,j≤m = Im,

(2) [g̃i˜j(P0)]1≤i,j≤m = MatAP0 = diag(λ1, . . . , λm), λ ∈ Γk,

(3) λmax(AP0) = λ1 ≥ · · · ≥ λm.

Let us consider a holomorphic normal chart (U0, ψ0) centered at P0 such that ψ0(P0) = 0 and
∂i|P0 = e

P0
i for all i ∈ {1 · · ·m}.

6.2.2. Auxiliary Local Functional

From now on, we work in the chart (U0, ψ0) constructed at P0. The map P �→ g11(P) is
continuous on U0 and is equal to 1 at P0, so there exists an open subset U1 ⊂ U0 such that
g11(P) > 0 for all P ∈ U1. Let B1 be the functional

B1 : U1 −→ R

P �−→ B1(P) =
g̃11(P)
g11(P)

− ϕt(P).
(6.4)

We claim that B1 assumes a local maximum at P0. Indeed, we have at each P ∈ U1:
g̃11(P)/g11(P) = g̃P (∂1, ∂1)/gP (∂1, ∂1) = ˜hP (∂1, ∂1)/hP (∂1, ∂1) = ˜hP (∂1/|∂1|hP , ∂1/|∂1|hP ) ≤
λmax(AP ) (see Lemma 6.1); thus B1(P) ≤ λmax(AP ) − ϕt(P) ≤ λmax(AP0) − ϕt(P0) = B1(P0).

6.2.3. Differentiating the Equation

For short, we drop henceforth the subscript t of ϕt. Let us differentiate (Ek,t) at P , in a chart z:

t∂1f = dFk[δji+gj�(P)∂i�ϕ(P)]1≤i, j≤m
·
[

∂1

(

gj�∂i�ϕ
)]

1≤i, j≤m

=
m
∑

i, j=1

∂Fk

∂B
j

i

[

δ
j

i + g
j�∂i�ϕ

](

∂1g
j�∂i�ϕ + gj�∂1i�ϕ

)

.
(6.5)

Differentiating once again, we find

t∂11f =
m
∑

i, j, r, s=1

∂2Fk

∂Bsr∂B
j

i

[

δ
j

i + g
j�∂i�ϕ

](

∂1g
so∂roϕ + gso∂1roϕ

)

×
(

∂1g
j�∂i�ϕ + gj�∂1i�ϕ

)

+
m
∑

i, j=1

∂Fk

∂B
j

i

[

δ
j

i + g
j�∂i�ϕ

]

×
(

∂11g
j�∂i�ϕ + ∂1g

j�∂1i�ϕ + ∂1gj�∂1i�ϕ + gj�∂11i�ϕ
)

.

(6.6)
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Using the above chart (U1, ψ0) at the point P0, normality yields gj� = δj� , ∂αgi� = 0 and
∂αg

i� = 0. Furthermore [δji + g
j�∂i�ϕ] = [δji + ∂ijϕ] = [g̃ij] = diag(λ1, . . . , λm). In this chart, we

can simplify the previous expression; we get then at P0,

t∂11f =
m
∑

i, j, r, s=1

∂2Fk

∂Bsr∂B
j

i

(

diag(λ1, . . . , λm)
)

∂1rsϕ ∂1ijϕ

+
m
∑

i, j=1

∂Fk

∂B
j

i

(

diag(λ1, . . . , λm)
)

(

∂11g
ji∂iiϕ + ∂11ijϕ

)

.

(6.7)

Besides, ∂11g
ji = ∂1(−gjsgoi∂1gos), so still by normality, we obtain at P0 that ∂11g

ji =
−gjsgoi∂11gos = −∂11gij − R11ij . Therefore we get

t∂11f =
m
∑

i, j=1

∂Fk

∂B
j

i

(

diag(λ1, . . . , λm)
)

(

∂11ijϕ − R11ij ∂iiϕ
)

+
m
∑

i, j, r, s=1

∂2Fk

∂Bsr∂B
j

i

(

diag(λ1, . . . , λm)
)

∂1rsϕ ∂1ijϕ.

(6.8)

6.2.4. Using Concavity

Now, using the concavity of lnσk [10], we prove for Proposition 2.1 that the second sum of
(6.8) is negative [9, page 84]. This is not a direct consequence of the concavity of the function
Fk since the matrix [∂1ijϕ]1≤i, j≤m is not Hermitian.

Lemma 6.2. Consider

S :=
m
∑

i, j, r, s=1

∂2Fk

∂Bsr∂B
j

i

(

diag(λ1, . . . , λm)
)

∂1rsϕ ∂1ijϕ ≤ 0. (6.9)

Hence, from (6.8) combined with Lemma 6.2 we infer

t∂11f ≤
m
∑

i=1

σk−1, i(λ)
σk(λ)

(

∂11iiϕ − R11ii∂iiϕ
)

. (6.10)
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6.2.5. Differentiation of the Functional B1

Let us differentiate twice the functional B1:

B1(P) =
g̃11(P)
g11(P)

− ϕ(P),

∂iB1 =
∂ig̃11
g11

−
g̃11∂ig11
(

g11
)2

− ∂iϕ,

∂iiB1 =
∂iig̃11
g11

−
∂ig11∂ig̃11 + ∂ig̃11∂ig11 + g̃11∂iig11

(

g11
)2

+
2g̃11∂ig11∂ig11

(

g11
)3

− ∂iiϕ.

(6.11)

Therefore at P0, in the above chart (U1, ψ0) we find ∂iiB1 = ∂ii(g11 + ∂11ϕ) − λ1∂iig11 − ∂iiϕ =
R11ii + ∂11iiϕ − λ1R11ii − ∂iiϕ. Let us define the operator:

L :=
m
∑

i, j=1

∂Fk

∂B
j

i

(

[

δ
j

i + g
j�∂i�ϕ

]

1≤i, j≤m

)

∇j

i . (6.12)

Thus, we have at P0

L(B1) =
m
∑

i=1

σk−1, i(λ)
σk(λ)

(

∂11iiϕ + (1 − λ1)R11ii − ∂iiϕ
)

. (6.13)

Combining (6.13) with (6.10), we get rid of the fourth derivatives:

t∂11f − L(B1) ≤
m
∑

i=1

σk−1, i(λ)
σk(λ)

R11ii(λ1 − 1 − λi + 1)

+
m
∑

i=1

σk−1, i(λ)
σk(λ)

(λi − 1).

(6.14)

Since B1 assumes its maximum at P0, we have at P0 that L(B1) ≤ 0. So we are left with the
following inequality at P0:

0 ≥
m
∑

i=2

σk−1, i(λ)
σk(λ)

(

−R11ii

)

(λ1 − λi) −
m
∑

i=1

σk−1, i(λ)
σk(λ)

λi +
m
∑

i=1

σk−1, i(λ)
σk(λ)

+ t∂11f. (6.15)

Curvature Assumption

Henceforth, we will suppose that the holomorphic bisectional curvature is nonnegative at
any P ∈ M. Thus in a holomorphic normal chart centered at P we have Raabb(P) ≤ 0 for all
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1 ≤ a, b ≤ m. This holds in particular at P0 in the previous chart ψ0. This assumption will be
used only to derive an a priori eigenvalues pinching and is not required in the other sections.

Back to the inequality (6.15), we have σk(λ) > 0 and σk−1, i(λ) > 0 since λ ∈ Γk, and
under our curvature assumption (−R11ii) ≥ 0 for all i ≥ 2. Besides, λi ≤ λ1 for all i; therefore
∑m

i=2(σk−1, i(λ)/σk(λ))(−R11ii)(λ1 − λi) ≥ 0. So we can get rid of the curvature terms in (6.15)
and infer from it the inequality

0 ≥ −
m
∑

i=1

σk−1, i(λ)
σk(λ)

λi +
m
∑

i=1

σk−1, i(λ)
σk(λ)

+ t∂11f. (6.16)

6.2.6. A λ1’s Upper Bound

Here, we require elementary identities satisfied by the σ� ’s [11], namely:

∀1 ≤ � ≤ m σ�(λ) = σ�, i(λ) + λiσ�−1, i(λ),

∀1 ≤ � ≤ m
m
∑

i=1

σ�−1, i(λ)λi = �σ�(λ),

so in particular
m
∑

i=1

σk−1, i(λ)
σk(λ)

λi = k,

∀1 ≤ � ≤ m
m
∑

i=1

σ�, i(λ) = (m − �)σ�(λ),

so in particular
m
∑

i=1

σk−1, i(λ)
σk(λ)

= (m − k + 1)
σk−1(λ)
σk(λ)

.

(6.17)

Consequently, (6.16)writes:

qk :=
(m − k + 1)

k

σk−1(λ)
σk(λ)

≤ 1 − t

k
∂11f. (6.18)

So qk ≤ 1+(1/k)|∂11f |. But at P0, |∇2f |2g=2gacgdb (∇abf ∇cdf+∇adf ∇cbf) = 2
∑m

a, b=1(|∂abf |2+
|∂abf |2), then |∂11f | ≤ |∇2f |g , and consequently qk ≤ 1 + (1/k)‖f‖C2(M) =: C1. In other words,
there exists a constant C1 independent of t ∈ [0, 1] such that

qk ≤ C1. (6.19)

To proceed further, we recall the following

Lemma 6.3 (Newton inequalities). For all � ≥ 2, λ ∈ R
m:

σ�(λ)σ�−2(λ) ≤
(� − 1)(m − � + 1)
�(m − � + 2)

[σ�−1(λ)]
2. (6.20)
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Let us use Newton inequalities to relate qk to σ1. Since for 2 ≤ � ≤ k and λ ∈ Γk we have
σ�(λ) > 0, σ�−1(λ) > 0 and σ�−2(λ) > 0 (σ0(λ) = 1 by convention), Newton inequalities imply
then that ((m − � + 2)/(� − 1))(σ�−2(λ)/σ�−1(λ)) ≤ ((m − � + 1)/�)(σ�−1(λ)/σ�(λ)), or else
q�−1 ≤ q� , consequently qk ≥ qk−1 ≥ · · · ≥ q2 = (m − 1)σ1(λ)/2σ2(λ). By induction, we get
σ1(λ) ≤ (�!(m − �)!/(m − 1)!)σ�(λ)(q�)

�−1 for all 2 ≤ � ≤ k. In particular

σ1(λ) ≤
k!(m − k)!
(m − 1)!

σk(λ)
(

qk
)k−1

. (6.21)

But σk(λ) ≤ e2‖f‖∞(mk ); combining this with (6.19) and (6.21)we obtain at P0 that

σ1(λ) ≤ me2‖f‖∞(C1)k−1 =: C2. (6.22)

Hence we may state the following.

Theorem 6.4. There exists a constant C2 > 0 depending only onm, k, ‖f‖∞ and ‖f‖C2 such that for
all 1 ≤ i ≤ m λi(P0) ≤ C2.

Combining this result with the C0 a priori estimate ‖ϕt‖C0
≤ C0 immediately yields the

following.

Theorem 6.5. There exists a constant C′
2 > 0 depending only onm, k, ‖f‖C2 and C0 such that for all

P ∈M, for all 1 ≤ i ≤ m, λi(P) ≤ C2 + 2C0 =: C′
2.

6.2.7. Uniform Pinching of the Eigenvalues

We infer automatically the following pinchings of the eigenvalues.

Proposition 6.6. For all 1 ≤ i ≤ m, −(m − 1)C2 ≤ λi(P0) ≤ C2.

Proposition 6.7. For all P ∈M, for all 1 ≤ i ≤ m,−(m − 1)C′
2 ≤ λi(P) ≤ C′

2.

6.3. Uniform Ellipticity of the Continuity Equation

To prove the next proposition on uniform ellipticity, we require some inequalities satisfied by
the σ� ’s.

Lemma 6.8 (Maclaurin inequalities). For all 1 ≤ � ≤ s for all λ ∈ Γs, (σs(λ)/(ms ))
1/s ≤

(σ�(λ)/(m� ))
1/� .

Proposition 6.9 (uniform ellipticity). There exist constants E > 0 and F > 0 depending only on
m, k, ‖f‖∞ and C2 such that: E ≤ σk−1, 1(λ) ≤ · · · ≤ σk−1, m(λ) ≤ F where λ = λ(P0).

Proof. We have ∂σk/∂λ1 = σk−1, 1(λ) ≤ · · · ≤ σk−1, m(λ) ≤
(

m−1
k−1

)

(C2)
k−1 =: F where, indeed, the

constant F so defined depends only on m, k, and C2. Let us look for a uniform lower bound
on σk−1, 1(λ), using the identity σk(λ) = λ1σk−1, 1(λ) + σk, 1(λ). We distinguish two cases.
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Case 1. (σk, 1(λ) ≤ 0). When so, we have σk(λ) ≤ λ1σk−1, 1(λ); therefore σk−1, 1(λ) ≥ σk(λ)/λ1.
But σk(λ) ≥ e−2‖f‖∞(mk ) and 0 < λ1 ≤ C2; hence σk−1, 1(λ) ≥ e−2‖f‖∞(mk )/C2.

Case 2. (σk, 1(λ) > 0). For 1 ≤ j ≤ k − 1, σj(λ2, . . . , λm) = σj, 1(λ) > 0 since j + 1 ≤ k and
λ ∈ Γk. Besides σk(λ2, . . . , λm) = σk, 1(λ) > 0 by hypothesis, therefore (λ2, . . . , λm) ∈ Γk,1 =
{β ∈ R

m−1/∀1 ≤ j ≤ k, σj(β) > 0}. From the latter, we infer by Maclaurin inequalities
(σk(λ2, . . . , λm)/

(

m−1
k

)

)1/k ≤ (σk−1(λ2, . . . , λm)/
(

m−1
k−1

)

)1/(k−1) or else (σk, 1(λ)/
(

m−1
k

)

)1/k ≤
(σk−1, 1(λ)/

(

m−1
k−1

)

)1/(k−1); thus we have σk, 1(λ) ≤
(

m−1
k

)

(σk−1, 1(λ)/
(

m−1
k−1

)

)1+1/(k−1), conse-
quently

σk(λ) = λ1σk−1, 1(λ) + σk, 1(λ)

≤ λ1σk−1, 1(λ) +
(

m − 1
k

)

(

σk−1, 1(λ)
(

m−1
k−1

)

)1+1/(k−1)

≤ σk−1, 1(λ)

⎡

⎣λ1 +

(

m−1
k

)

(

m−1
k−1

)

(

σk−1, 1(λ)
(

m−1
k−1

)

)1/(k−1)
⎤

⎦.

(6.23)

Here, let us distinguish two subcases of Case 2.

(i) If σk−1, 1(λ) >
(

m−1
k−1

)

, then we have the uniform lower bound that we look for.

(ii) Else σk−1, 1(λ) ≤
(

m−1
k−1

)

, thus (σk−1, 1(λ)/
(

m−1
k−1

)

)1/(k−1) ≤ 1, therefore σk(λ) ≤
σk−1, 1(λ)[λ1 +

(

m−1
k

)

/
(

m−1
k−1

)

] = σk−1, 1(λ)(λ1 + m/k − 1); then we get σk−1, 1(λ) ≥
σk(λ)/(λ1 +m/k − 1) ≥ e−2‖f‖∞(mk )/(C2 +m/k − 1).

Consequently σk−1, 1(λ) ≥ min(e−2‖f‖∞(mk )/C2,
(

m−1
k−1

)

, e−2‖f‖∞(mk )/(C2 + m/k − 1)) or finally
σk−1, 1(λ) ≥ min(

(

m−1
k−1

)

, e−2‖f‖∞(mk )/(C2 + m/k − 1)) =: E, where the constant E so defined
depends only onm, k, ‖f‖∞ and C2.

Similarly we prove the following.

Proposition 6.10 (uniform ellipticity). There exists constants E0 > 0 and F0 > 0 depending only
onm, k, ‖f‖∞ and C′

2 such that for all P ∈M, for all 1 ≤ i ≤ m, E0 ≤ σk−1, i(λ(P)) ≤ F0.

6.4. Gradient Uniform Estimate

The manifoldM is Riemannian compact and ϕt ∈ C2(M), so by the Green’s formula

ϕt(P) =
1

Vol(M)

∫

M

ϕt(Q)dvg(Q) +
∫

M

G(P,Q)�ϕt(Q)dvg(Q), (6.24)

where G(P,Q) is the Green’s function of the Laplacian �. By differentiating locally under the
integral sign we obtain ∂uiϕt(P) =

∫

M�ϕt(Q)(∂ui)PG(P,Q)dvg(Q). We infer then that at P in
a holomorphic normal chart, we have

∣

∣

(

∇ϕt
)

P

∣

∣ ≤
√
2m

∫

M

∣

∣�ϕt(Q)
∣

∣|∇PG(P,Q)|dvg(Q). (6.25)
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Now, using the uniform pinching of the eigenvalues, we prove easily the following estimate
of the Laplacian.

Lemma 6.11. There exists a constant C3 > 0 depending onm and C′
2 such that ‖�ϕt‖∞,M ≤ C3.

Combining Lemma 6.11 with (6.25), we deduce that |(∇ϕt)P | ≤
√
2mC3

∫

M |∇PG(P,
Q)|dvg(Q). Besides, classically [13, page 109], there exists constants C and C′ such that

|∇PG(P,Q)| ≤ C
dg(P,Q)2m−1 ,

∫

M

1

dg(P,Q)2m−1dvg(Q) ≤ C′. (6.26)

We thus obtain the following result.

Proposition 6.12. There exists a constant C5 > 0 depending on m,C′
2, and (M,g) such that for all

P ∈M|(∇ϕt)P | ≤ C5.

Specifically, we can choose C5 =
√
2mC3CC′.

6.5. Second Derivatives Estimate

Our equation is of type:

F
(

P,
[

∂uiuj ϕ
]

1≤i, j≤2m

)

= v, P ∈M. (E)

6.5.1. The Functional

Consider the following functional:

Φ : UT −→ R

(P, ξ) �−→
(

∇2ϕt
)

P
(ξ, ξ) +

1
2
∣

∣

(

∇ϕt
)

P

∣

∣

2
g
,

(6.27)

where UT is the real unit sphere bundle associated to (TM, g). Φ is continuous on the
compact setUT , so it assumes its maximum at a point (P1, ξ1) ∈ UT .

6.5.2. Reduction to Finding a One-Sided Estimate for (∇2ϕt)P1(ξ1, ξ1)

If we find a uniform upper bound for (∇2ϕt)P1(ξ1, ξ1), since |∇ϕt|∞ ≤ C5, we readily deduce
that there exists a constant C6 > 0 such that

(

∇2ϕt
)

P
(ξ, ξ) ≤ C6 ∀(P, ξ) ∈ UT. (6.28)

Fix P ∈ M. Let (UP, ψP ) be a holomorphic g-normal g̃-adapted chart centered at P , namely,
[gij(P)]1≤i, j≤m = Im, ∂�gij(P) = 0 and [g̃ij(P)]1≤i, j≤m = [diag(λ1(P), . . . , λm(P))]. Since |∂xj |g =
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√
2, we obtain ∂xjxj ϕt(P) = 2(∇2ϕt)P (∂xj/

√
2, ∂xj /

√
2) ≤ 2C6 and similarly ∂yjyj ϕt(P) =

2(∇2ϕt)P (∂yj/
√
2, ∂yj /

√
2) ≤ 2C6 for all 1 ≤ j ≤ m. Besides, we have ∂xjxj ϕt(P) + ∂yjyj ϕt(P) =

4∂jjϕt(P) = 4(λj(P) − 1) ≥ −4[(m − 1)C′
2 + 1]; therefore we obtain

∂xjxj ϕt(P) ≥ −4
[

(m − 1)C′
2 + 1

]

− 2C6 =: −C7,

∂yjyj ϕt(P) ≥ −C7, ∀1 ≤ j ≤ m.
(6.29)

Let us now bound second derivatives of mixed type ∂urusϕt(P). Let 1 ≤ r /= s ≤ 2m.
Since |∂xr ± ∂xs |g = 2, we have (∇2ϕt)P ((∂xr ± ∂xs)/2, (∂xr ± ∂xs)/2) = (1/4)∂xrxrϕt(P) +
(1/4)∂xsxsϕt(P) ± (1/2)∂xrxsϕt(P) ≤ C6, which yields ±∂xrxsϕt(P) ≤ 2C6 − (1/2)∂xrxrϕt(P) −
(1/2)∂xsxsϕt(P), hence as well |∂xrxsϕt(P)| ≤ 2C6 + C7. Similarly we prove that at P , in the
above chart ψP , we have |∂yrysϕt(P)| ≤ 2C6+C7 for all 1 ≤ r /= s ≤ m and |∂xrysϕt(P)| ≤ 2C6+C7

for all 1 ≤ r, s ≤ m. Consequently |∂uiuj ϕt(P)| ≤ 2C6 + C7 for all 1 ≤ i, j ≤ 2m. Therefore we
deduce that

∣

∣

∣

(

∇2ϕt
)

(P)
∣

∣

∣

2

g
=

1
4

∑

1≤i, j≤2m

(

∂uiuj ϕt(P)
)2 ≤ m2(2C6 + C7)2. (6.30)

Theorem 6.13 (second derivatives uniform estimate). There exists a constant C8 > 0 depending
only onm,C′

2, and C6 such that for all P ∈M, |(∇2ϕt)P |g ≤ C8.

This allows to deduce the needed uniform C2 estimate:

∥

∥ϕ
∥

∥

C2(M,R) ≤ C0 + C5 + C8. (6.31)

6.5.3. Chart Choice

For fixed P ∈ M, ξ ∈ UTP �→ (∇2ϕt)P (ξ, ξ) is continuous on the compact subset UTP (the
fiber); therefore it assumes its maximum at a unit vector ξP ∈ UTP . Besides, (∇2ϕt)P is a
symmetric bilinear form on TPM, so by the min-max principle we have (∇2ϕt)P (ξ

P , ξP ) =
maxξ∈TPM, g(ξ, ξ)=1(∇2ϕt)P (ξ, ξ) = βmax(P), where βmax(P) denotes the largest eigenvalue of
(∇2ϕt)P with respect to gP ; furthermore we can choose ξP as the direction of the largest
eigenvalue βmax(P). For fixed P , we now have maxξ∈TPM, gP (ξ, ξ)=1Φ(P, ξ) = Φ(P, ξP ) =
(∇2ϕt)P (ξ

P , ξP )+(1/2)|(∇ϕt)P |
2
g = βmax(P)+(1/2)|(∇ϕt)P |

2
g , consequentlymax(P, ξ)∈UT Φ(P, ξ) =

maxP∈MΦ(P, ξP ) = Φ(P1, ξ1) ≤ Φ(P1, ξP1), hence max(P, ξ)∈UT Φ(P, ξ) = Φ(P1, ξP1) = βmax(P1) +
(1/2)|(∇ϕt)P1 |

2
g
.

At the point P1, consider ε
P1
1 , . . . , ε

P1
2m a (real) basis of (TP1M,gP1) that satisfies the

following properties:

(i) [gij(P1)]1≤i, j≤2m = I2m,

(ii) [(∇2ϕt)ij(P0)]1≤i, j≤2m = diag(β1, . . . , β2m),

(iii) β1 = βmax(P1) ≥ β2 ≥ · · · ≥ β2m.

Let (U′
1, ψ1) be a C∞g-normal real chart at P1 obtained from a holomorphic chart z1, . . . , zm by

setting (u1, . . . , u2m) = (x1, . . . , xm, y1, . . . , ym) where zj = xj + iyj (namely, [gij(P1)]1≤i, j≤2m =
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I2m and ∂u�gij = 0 for all 1 ≤ i, j, � ≤ 2m) satisfying ψ1(P1) = 0 and ∂ui |P1 = εP1i , so that ∂u1 |P1 is
the direction of the largest eigenvalue βmax(P1).

6.5.4. Auxiliary Local Functional

From now on, we work in the real chart (U′
1, ψ1) so constructed at P1.

Let U2 ⊂ U′
1 be an open subset such that g11(P) > 0 for all P ∈ U2, and let Φ1 be the

functional

Φ1 : U2 −→ R

P �−→ Φ1(P) =

(

∇2ϕt
)

11(P)
g11(P)

+
1
2
∣

∣

(

∇ϕt
)

P

∣

∣

2
g
.

(6.32)

We claim that Φ1 assumes its maximum at P1. Indeed, (∇2ϕt)11(P)/g11(P) = (∇2ϕ)P (∂u1 ,
∂u1)/gP (∂u1 , ∂u1) = (∇2ϕ)P (∂u1/|∂u1 |g, ∂u1/|∂u1 |g) ≤ βmax(P), so Φ1(P) ≤ βmax(P) +
(1/2)|(∇ϕt)P |

2
g ≤ βmax(P1) + (1/2)|(∇ϕt)P1 |

2
g
= Φ1(P1) proving our claim.

Let us now differentiate twice in the real direction ∂u1 the equation

F
(

P,
[

∂uiuj ϕ
]

1≤i, j≤2m

)

= v. (E∗)

At the point P , in a chart u, we obtain

∂u1v =
∂F

∂u1
[

ϕ
]

+
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

∂u1uiuj ϕ. (6.33)

Differentiating once again

∂u1u1v =
∂2F

∂u1∂u1
[

ϕ
]

+
2m
∑

i, j=1

∂2F

∂rij∂u1
[

ϕ
]

∂u1uiuj ϕ

+
2m
∑

i, j=1

[

∂2F

∂u1∂rij

[

ϕ
]

+
2m
∑

e, s=1

∂2F

∂res∂rij

[

ϕ
]

∂u1ueusϕ

]

∂u1uiuj ϕ

+
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

∂u1u1uiuj ϕ.

(6.34)

But at the point P1, for our function F(P, r) = Fk[δ
j

i + (1/4)gj�(P)(ri� + r(i+m)(�+m) + iri(�+m) −
ir(i+m)�)]1≤i, j≤m, we have (∂2F/∂rij∂u1)[ϕ] = 0 since ∂u1gsq(P1) = 0. Hence, we infer that

∂u1u1v =
∂2F

∂u1∂u1
[

ϕ
]

+
2m
∑

i, j, e, s=1

∂2F

∂res∂rij

[

ϕ
]

∂u1ueusϕ ∂u1uiuj ϕ

+
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

∂u1u1uiuj ϕ.

(6.35)
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6.5.5. Using Concavity

The function F is concave with respect to the variable r. Indeed

F(P, r) = Fk

[

δ
j

i +
1
4
gj�(P)

(

ri� + r(i+m)(�+m) + iri(�+m) − ir(i+m)�
)

]

1≤i, j≤m

= Fk
(

g−1(P)r̃
)

, where

r̃ =
[

gij(P) +
1
4
(

rij + r(i+m)(j+m) + iri(j+m) − ir(i+m)j
)

]

1≤i, j≤m

= Fk

(

g−1/2(P)r̃g−1/2(P)
︸ ︷︷ ︸

)

∈Hm(C)

= Fk
(

ρP (r)
)

, where

ρP (r) :=

[

δ
j

i +
1
4

m
∑

�, s=1

(

g−1/2(P)
)

i�

(

g−1/2(P)
)

sj

(

r�s + r(�+m)(s+m) + ir�(s+m) − ir(�+m)s
)

]

1≤i, j≤m
(6.36)

but for a fixed point P the function r ∈ S2m(R) �→ ρP (r) ∈ Hm(C) is affine (where S2m(R)
denotes the set of symmetric matrices of size 2m); we deduce then that the composition
F(P, ·) = Fk ◦ ρP is concave on the set {r ∈ S2m(R)/ρP (r) ∈ λ−1(Γk)} = ρ−1P (λ−1(Γk)), which
proves our claim. Hence, since the matrix [∂u1uiuj ϕ]1≤i, j≤m is symmetric, we obtain that

2m
∑

i, j, e, s=1

∂2F

∂res∂rij

[

ϕ
]

∂u1ueusϕ ∂u1uiuj ϕ ≤ 0. (6.37)

Consequently

∂u1u1v − ∂u1u1F
[

ϕ
]

≤
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

∂u1u1uiuj ϕ. (6.38)

Let us now calculate the quantity ∂u1u1F[ϕ] (at P1). Since ∂u1gsq(P1) = 0, we have

∂2F

∂u1∂u1

(

P1, D
2ϕ(P1)

)

=
m
∑

s=1

σk−1, s(λ(P1))
σk(λ(P1))

× ∂u1u1gss(P1)∂ssϕ(P1). (6.39)

But at P1, ∂u1u1gss = −gsogqs∂u1u1gqo and [gij]1≤i, j≤m = 2Im, then ∂u1u1gss = −4∂u1u1gss so that
∂u1u1g

ss = −∂u1u1gss −∂u1u1g(s+m)(s+m). Moreover Γu
r

ujus
= (1/2)(∂uj gos +∂usgoj −∂uogjs) gor , thus

∂uiΓu
r

ujus
= (1/2)(∂uiuj grs+∂uiusgrj−∂uiur gjs). Similarly, we have at P1 : ∂uiΓu

s

ujur
= (1/2)(∂uiuj grs+

∂uiur gsj − ∂uiusgjr). Consequently, we deduce that ∂uiuj grs = ∂uiΓu
r

ujus
+ ∂uiΓu

s

ujur
. Hence, we have
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at P1: ∂u1u1gss = −2∂u1Γu
s

u1us
−2∂u1Γu

s+m

u1us+m
. Besides, ∂ssϕ = (1/4)(∂ususϕ+∂us+mus+mϕ), which infers

that at P1

∂u1u1F
[

ϕ
]

=
m
∑

s=1

σk−1, s(λ(P1))
σk(λ(P1))

×
(

−2∂u1Γu
s

u1us
− 2∂u1Γu

s+m

u1us+m

)

× 1
4
(

∂ususϕ + ∂us+mus+mϕ
)

.

(6.40)

Consequently, the inequality (6.38) becomes

∂u1u1v ≤
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

∂u1u1uiuj ϕ − 1
2

m
∑

s=1

σk−1, s(λ(P1))
σk(λ(P1))

×
(

∂u1Γu
s

u1us
+ ∂u1Γu

s+m

u1us+m

)

×
(

∂ususϕ + ∂us+mus+mϕ
)

.

(6.41)

6.5.6. Differentiation of the Functional Φ1

We differentiate twice the functional Φ1:

Φ1(P) =

(

∇2ϕ
)

11(P)
g11(P)

+
1
2
∣

∣

(

∇ϕ
)

P

∣

∣

2
g
,

∂ujΦ1(P) =
∂uj

(

∇2ϕ
)

11

g11(P)
−

(

∇2ϕ
)

11∂uj g11(P)

g11(P)2
+
1
2
∂uj

∣

∣

(

∇ϕ
)

P

∣

∣

2
g
,

∂uiujΦ1(P) =
∂uiuj

(

∇2ϕ
)

11

g11(P)
−
∂uj

(

∇2ϕ
)

11∂uig11(P)

g11(P)2

−
∂ui

(

∇2ϕ
)

11∂uj g11(P) +
(

∇2ϕ
)

11(P)∂uiuj g11(P)

g11(P)2

−
(

∇2ϕ
)

11
(P)∂uj g11(P)∂ui

(

1

g11(P)2

)

+
1
2
∂uiuj

∣

∣

(

∇ϕ
)

P

∣

∣

2
g
.

(6.42)

Hence, at P1 in the chart ψ1, we obtain

∂uiujΦ1 = ∂uiuj
(

∇2ϕ
)

11
−
(

∇2ϕ
)

11
(P1)∂uiuj g11 +

1
2
∂uiuj

∣

∣

(

∇ϕ
)

P

∣

∣

2
g
(P1). (6.43)

Let us now calculate the different terms of this formula (at P1 in the chart ψ1):

∂uiuj
(

∇2ϕ
)

11
= ∂uiuj

(

∂u1u1ϕ − Γu
s

u1u1
∂usϕ

)

= ∂uiuju1u1ϕ − ∂uiujΓu
s

u1u1
∂usϕ − ∂ujΓu

s

u1u1
∂uiusϕ − ∂uiΓu

s

u1u1
∂ujusϕ.

(6.44)
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Besides, we have Γu
1

uju1
= (1/2)(∂uj gs1 + ∂u1gsj − ∂usgj1)gs1; therefore we deduce that ∂uiΓu

1

uju1
=

(1/2)(∂uiuj gs1+∂uiu1gsj −∂uiusgj1)gs1+0 = (1/2)∂uiuj g11; namely, ∂uiuj g11 = 2∂uiΓu
1

uju1
. Moreover,

we have at P1

∂uiuj
∣

∣

(

∇ϕ
)

P

∣

∣

2
g
= ∂uiuj

(

2m
∑

r, s=1

grs∂urϕ ∂usϕ

)

=
2m
∑

r, s=1

∂uiuj g
rs∂urϕ ∂usϕ + grs∂uiujurϕ ∂usϕ

+ grs∂ujurϕ ∂uiusϕ + grs∂uiurϕ ∂ujusϕ + grs∂urϕ ∂uiujusϕ

=
2m
∑

r, s=1

∂uiuj g
rs∂urϕ ∂usϕ + 2

2m
∑

s=1

∂uiujusϕ ∂usϕ

+ 2
2m
∑

s=1

∂uiusϕ ∂ujusϕ.

(6.45)

But at P1, ∂uiuj grs = −∂uiuj grs, in addition at this point ∂uiuj grs = ∂uiΓu
r

ujus
+ ∂uiΓu

s

ujur
; therefore

we obtain at P1 in the chart ψ1

∂uiuj
∣

∣

(

∇ϕ
)

P

∣

∣

2
g
= − 2

2m
∑

r, s=1

∂uiΓu
r

ujus
∂urϕ ∂usϕ + 2

2m
∑

s=1

∂uiujusϕ ∂usϕ

+ 2
2m
∑

s=1

∂uiusϕ ∂ujusϕ.

(6.46)

Henceforth, and in order to lighten the notations, we use ∂i instead of ∂ui and Γsij instead of
Γu

s

uiuj
, so we have

∂ijΦ1 = ∂ij11ϕ − ∂ijΓs11∂sϕ − ∂jΓs11∂isϕ − ∂iΓs11∂jsϕ − 2∂iΓ1j1
(

∇2ϕ
)

11
(P1)

−
2m
∑

r, s=1

∂iΓrjs∂rϕ ∂sϕ +
2m
∑

s=1

∂ijsϕ ∂sϕ +
2m
∑

s=1

∂isϕ ∂jsϕ.

(6.47)

Let us now consider the second order linear operator:

˜L =
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

∂ij . (6.48)
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Since the functional Φ1 assumes its maximum at the point P1, we have ˜L(Φ1) ≤ 0 at P1 in the
chart ψ1. Besides, combining the inequalities (6.41) and (6.47), we obtain

2 ˜LΦ1
︸︷︷︸

≤0

− ∂11v ≥
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

[

∂ij11ϕ − ∂ijΓs11∂sϕ − ∂jΓi11∂iiϕ

− ∂iΓ
j

11∂jjϕ − 2∂iΓ1j1
(

∇2ϕ
)

11
(P1)

−
2m
∑

r, s=1

∂iΓrjs∂rϕ ∂sϕ

+
2m
∑

s=1

∂ijsϕ ∂sϕ + δji
(

∂iiϕ
)2 − ∂11ijϕ

]

+
1
2

m
∑

s=1

σk−1, s(λ(P1))
σk(λ(P1))

(

∂1Γs1s + ∂1Γ
s+m
1(s+m)

)

(

∂ssϕ + ∂(s+m)(s+m)ϕ
)

.

(6.49)

The fourth derivatives are simplified. Moreover, we have at P1 : ∂sv = (∂F/∂u1)[ϕ] +
∑2m

i, j=1(∂F/∂rij)[ϕ] ∂sijϕ with (∂F/∂u1)(P1, D2ϕ(P1)) = 0, consequently:

0 ≥ ∂11v +
2m
∑

s=1

∂sv ∂sϕ

+
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

[

− 2∂iΓ1j1
(

∇2ϕ
)

11
(P1) − ∂iΓ

j

11∂jjϕ − ∂jΓi11∂iiϕ

−
2m
∑

s=1

∂ijΓs11∂sϕ −
2m
∑

r, s=1

∂iΓrjs∂rϕ ∂sϕ + δji
(

∂iiϕ
)2

]

+
1
2

m
∑

s=1

σk−1, s(λ(P1))
σk(λ(P1))

(

∂1Γs1s + ∂1Γ
s+m
1(s+m)

)

(

∂ssϕ + ∂(s+m)(s+m)ϕ
)

.

(6.50)

Let us now express the quantities ∂iΓ1j1, ∂iΓ
j

11, ∂jΓ
i
11, ∂iΓ

r
js and ∂ijΓ

s
11 using the components of

the Riemann curvature (at the point P1 in the normal chart ψ1):

∂iΓ1j1 =
1
3

⎛

⎜

⎝Rj11i + Rji11
︸︷︷︸

=0

⎞

⎟

⎠ =
1
3
Rj11i,

∂iΓ
j

11 =
1
3
(

R1j1i + R1i1j
)

=
2
3
R1j1i,

∂jΓi11 =
2
3
R1i1j ,

∂iΓrjs =
1
3
(

Rjrsi + Rjisr

)

,



International Journal of Mathematics and Mathematical Sciences 33

∂1Γs1s =
1
3

⎛

⎝R1ss1 + R11ss
︸︷︷︸

=0

⎞

⎠ =
1
3
R1ss1,

∂1Γs+m1(s+m) =
1
3
R1(s+m)(s+m)1,

∂ijΓs11 =
1
4
(

∇iR1j1s +∇iR1s1j +∇jR1s1i +∇jR1i1s
)

− 1
12

(

∇sR1i1j +∇sR1j1i
)

=
1
2
(

∇iR1s1j +∇jR1s1i
)

− 1
6
∇sR1i1j .

(6.51)

We then obtain

0 ≥ ∂11v +
2m
∑

s=1

∂sv ∂sϕ

+
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

⎡

⎣

−2
3
Rj11i

(

∇2ϕ
)

11
(P1) −

2
3
R1j1i ∂jjϕ − 2

3
R1i1j ∂iiϕ

−
2m
∑

s=1

(

1
2
∇iR1s1j +

1
2
∇jR1s1i −

1
6
∇sR1i1j

)

∂sϕ

−
2m
∑

r, s=1

1
3
(

Rjrsi + Rjisr

)

∂rϕ ∂sϕ + δji
(

∂iiϕ
)2

]

+
1
2

m
∑

s=1

σk−1, s(λ(P1))
σk(λ(P1))

1
3
(

R1ss1 + R1(s+m)(s+m)1
)(

∂ssϕ + ∂(s+m)(s+m)ϕ
)

.

(6.52)

6.5.7. The Uniform Upper Bound of β1 = (∇2ϕ)P1(ξ1, ξ1)

By the uniform estimate of the gradient we have |∂jϕt| ≤ C5 for all 1 ≤ j ≤ 2m. Moreover, at
P1 in the chart ψ1: [(∇2ϕ)ij(P1)]1≤i, j≤2m = [∂ijϕ(P1)]1≤i, j≤2m = diag(β1, . . . , β2m). Consequently

0 ≥ ∂11v +
2m
∑

s=1

∂sv ∂sϕ

+
2m
∑

i, j=1

∂F

∂rij

[

ϕ
]

[

δij
(

βi
)2 − 2

3
Rj11iβ1 −

2
3
R1j1iβj −

2
3
R1i1jβi −

1
3

2m
∑

r, s=1

(

Rjrsi + Rjisr

)

∂rϕ ∂sϕ

−1
2

2m
∑

s=1

(

∇iR1s1j +∇jR1s1i −
1
3
∇sR1i1j

)

∂sϕ

]

+
1
6

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

×
(

R1ii1 + R1(i+m)(i+m)1
)(

βi + βi+m
)

.

(6.53)



34 International Journal of Mathematics and Mathematical Sciences

But for F[ϕ] = Fk([δ
j

i + g
j�∂i�ϕ]1≤i, j≤m) since ∂ssϕ = (1/4)(∂usus + ∂us+mus+m), we obtain at P1 in

the chart ψ1 that

∂F

∂rij

[

ϕ
]

=
m
∑

s=1

∂Fk
∂Bss

(

diag(λ(P1))
)1
4
∂
(

rss + r(s+m)(s+m)
)

∂rij
. (6.54)

Then

∀1 ≤ i /= j ≤ 2m
∂F

∂rij

[

ϕ
]

= 0,

∀1 ≤ i ≤ m ∂F

∂rii

[

ϕ
]

=
∂F

∂r(i+m)(i+m)

[

ϕ
]

=
1
4
∂Fk

∂Bii

(

diag(λ(P1))
)

=
1
4
σk−1, i(λ(P1))
σk(λ(P1))

︸ ︷︷ ︸

>0 sinceλ(P1)∈Γk

.

(6.55)

Hence

0 ≥ ∂11v +
2m
∑

s=1

∂sv ∂sϕ +
2m
∑

i−1

∂F

∂rii

[

ϕ
]

×
[

(

βi
)2 +

2
3
R1i1i

(

β1 − 2βi
)

+
1
3

2m
∑

r, s=1

Riris ∂rϕ ∂sϕ −
2m
∑

s=1

(

∇iR1s1i −
1
6
∇sR1i1i

)

∂sϕ

]

+
1
6

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

(

R1ii1 + R1(i+m)(i+m)1
)(

βi + βi+m
)

.

(6.56)

But at P1 in the chart ψ1, ‖R‖2g = gaigbjgcrgdsRabcdRijrs =
∑2m

a, b, c, d=1(Rabcd)
2; then |Rabcd| ≤ ‖R‖g

for all a, b, c, d ∈ {1, . . . , 2m}, consequently

∣

∣

∣

∣

∣

1
3

2m
∑

r,s=1

Riris ∂rϕ ∂sϕ

∣

∣

∣

∣

∣

≤ 1
3

2m
∑

r, s=1

‖R‖g(C5)2 =
1
3
(2m)2‖R‖g(C5)2

=
4
3
m2(C5)2‖R‖g.

(6.57)

Besides, at P1 in the chart ψ1, we have ‖∇R‖2g = gelgaigbjgcrgds∇eRabcd∇lRijrs =
∑2m

e, a, b, c, d=1(∇eRabcd)
2, so |∇eRabcd| ≤ ‖∇R‖g for all e, a, b, c, d ∈ {1, . . . , 2m}, therefore

∣

∣

∣

∣

∣

−
2m
∑

s=1

(

∇iR1s1i −
1
6
∇sR1i1i

)

∂sϕ

∣

∣

∣

∣

∣

≤
2m
∑

s=1

7
6
‖∇R‖gC5 = 2m

7
6
‖∇R‖gC5

=
7
3
mC5‖∇R‖g.

(6.58)
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Hence at P1 in the chart ψ1, we obtain

−t∂11f − t
2m
∑

s=1

∂sf∂sϕ ≥
2m
∑

i=1

∂F

∂rii

[

ϕ
]

[

(

βi
)2 +

2
3
R1i1i

(

β1 − 2βi
)

]

+
1
6

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

×
(

R1ii1 + R1(i+m)(i+m)1
)(

βi + βi+m
)

+

(

2m
∑

i=1

∂F

∂rii

[

ϕ
]

)

×
[

−4
3
m2(C5)2‖R‖g −

7
3
mC5‖∇R‖g

]

.

(6.59)

But |∂11f(P1)| ≤ ‖f‖C2(M), |∂sf(P1)| ≤ ‖f‖C2(M) and |∂sϕ| ≤ C5 for all s then

−t∂11f − t
2m
∑

s=1

∂sf ∂sϕ ≤
∥

∥f
∥

∥

C2(M)(1 + 2mC5). (6.60)

Besides

2m
∑

i=1

∂F

∂rii

[

ϕ
]

=
m
∑

i=1

∂F

∂rii

[

ϕ
]

+
∂F

∂r(i+m)(i+m)

[

ϕ
]

=
1
2

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

. (6.61)

Consequently, we obtain

∥

∥f
∥

∥

C2(M)(1 + 2mC5) ≥
∂F

∂r11

[

ϕ
](

β1
)2 +

2
3

2m
∑

i=1

∂F

∂rii

[

ϕ
]

R1i1i
(

β1 − 2βi
)

+
1
6

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

×
(

R1ii1 + R1(i+m)(i+m)1
)(

βi + βi+m
)

+
1
2

(

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

)

×
[

−4
3
m2(C5)2‖R‖g −

7
3
mC5‖∇R‖g

]

.

(6.62)

Let us now estimate |βi| for 1 ≤ i ≤ m using β1. We follow the same method as for
the proof of Theorem 6.13. For all (P, ξ) ∈ UT , we have the inequality (∇2ϕt)P (ξ, ξ) ≤
β1 + (1/2)(C5)

2; then at P in a holomorphic g-normal g̃-adapted chart ψP , namely, a chart
such that [gij(P)]1≤i, j≤m = Im, ∂�gij(P) = 0 and [g̃ij(P)]1≤i, j≤m = diag(λ1(P), . . . , λm(P)), we
deduce that for all j ∈ {1, . . . , m}

∂xjxj ϕt(P) = 2
(

∇2ϕt
)

P

(

∂xj√
2
,
∂xj√
2

)

≤ 2β1 + (C5)2,

∂yjyj ϕt(P) ≤ 2β1 + (C5)2.

(6.63)
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Since λj(P) ≥ −(m − 1)C′
2, we infer the following inequalities:

∀j ∈ {1, . . . , m} ∂xjxj ϕt(P) ≥ −4
[

(m − 1)C′
2 + 1

]

− 2β1 − (C5)2,

∂yjyj ϕt(P) ≥ −4
[

(m − 1)C′
2 + 1

]

− 2β1 − (C5)2.
(6.64)

Consequently

∀1 ≤ i, j ≤ 2m
∣

∣∂uiuj ϕt(P)
∣

∣ ≤ 4β1 + 2(C5)2 + 4
[

(m − 1)C′
2 + 1

]

︸ ︷︷ ︸

=:C9

,
(6.65)

in the chart ψP .
Hence we infer that

∣

∣

∣

(

∇2ϕt
)

P

∣

∣

∣

2

g
=

1
4

2m
∑

i,j=1

(

∂uiuj ϕt(P)
)2 ≤ m2

[

4β1 + 2(C5)2 + C9

]2
∀P. (6.66)

But at P1 in the chart ψ1, |(∇2ϕt)P1 |
2
g =

∑2m
i=1(∂uiuiϕt(P1))

2 =
∑2m

i=1(βi)
2; consequently we obtain

∀1 ≤ i ≤ 2m
∣

∣βi
∣

∣ ≤ m
(

4β1 + 2(C5)2 + C9

)

. (6.67)

Thus

∣

∣(R1i1i)
(

β1 − 2βi
)∣

∣ ≤ |R1i1i|
(∣

∣β1
∣

∣ + 2
∣

∣βi
∣

∣

)

≤ 3m‖R‖g
(

4β1 + 2(C5)2 + C9

)

.
(6.68)

Besides

∣

∣

(

R1ii1 + R1(i+m)(i+m)1
)(

βi + βi+m
)∣

∣ ≤
(

|R1ii1| +
∣

∣R1(i+m)(i+m)1
∣

∣

)(∣

∣βi
∣

∣ +
∣

∣βi+m
∣

∣

)

≤ 4m‖R‖g
(

4β1 + 2(C5)2 + C9

)

.
(6.69)
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Hence

∥

∥f
∥

∥

C2(M)(1 + 2mC5) ≥
1
4
σk−1, 1(λ(P1))
σk(λ(P1))

(

β1
)2

+

(

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

)

(−m)‖R‖g
(

4β1 + 2(C5)2 + C9

)

+

(

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

)

(

−2
3
m

)

‖R‖g
(

4β1 + 2(C5)2 + C9

)

+

(

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

)

[

−7
6
mC5‖∇R‖g −

2
3
m2(C5)2‖R‖g

]

.

(6.70)

Then

∥

∥f
∥

∥

C2(M)(1 + 2mC5) ≥
1
4
σk−1, 1(λ(P1))
σk(λ(P1))

(

β1
)2

+

(

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

)

(

−5
3
m

)

‖R‖g
(

4β1 + 2(C5)2 + C9

)

+

(

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

)

[

−7
6
mC5‖∇R‖g −

2
3
m2(C5)2‖R‖g

]

.

(6.71)

But using the uniform ellipticity and the inequalities e−2‖f‖∞(mk ) ≤ σk(λ(P)) ≤ e2‖f‖∞(mk ), we
obtain

m
∑

i=1

σk−1, i(λ(P1))
σk(λ(P1))

≤ me2‖f‖∞F0

(mk )
, (6.72)

σk−1, 1(λ(P1))
σk(λ(P1))

≥ e−2‖f‖∞E0

(mk )
. (6.73)

Then at P1 in the chart ψ1, we have

0 ≥ 1
4
e−2‖f‖∞E0

(mk )
(

β1
)2 +

me2‖f‖∞F0

(mk )

(

−5
3
m

)

‖R‖g
(

4β1 + 2(C5)2 + C9

)

− me2‖f‖∞F0

(mk )

[

7
6
mC5‖∇R‖g +

2
3
m2(C5)2‖R‖g

]

−
∥

∥f
∥

∥

C2(M)(1 + 2mC5).

(6.74)
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The previous inequality means that some polynomial of second order in the variable β1 is
negative:

0 ≥ 1
4
e−2‖f‖∞E0

(mk )
(

β1
)2 +

me2‖f‖∞F0

(mk )

(

−20
3
m

)

‖R‖gβ1

− me2‖f‖∞F0

(mk )

[

7
6
mC5‖∇R‖g +

2
3
m2(C5)2‖R‖g +

5
3
m‖R‖g

(

2(C5)2 + C9

)

]

−
∥

∥f
∥

∥

C2(M)(1 + 2mC5).

(6.75)

Set

I :=
80
3
m2e4‖f‖∞

F0

E0
‖R‖g > 0,

J := 4m2e4‖f‖∞
F0

E0

[

7
6
C5‖∇R‖g +

2
3
m(C5)2‖R‖g +

5
3

(

2(C5)2 + C9

)

‖R‖g
]

+
4(mk )e

2‖f‖∞

E0

∥

∥f
∥

∥

C2(M)(1 + 2mC5) > 0.

(6.76)

The previous inequality writes then:

(

β1
)2 − Iβ1 − J ≤ 0. (6.77)

The discriminant of this polynomial of second order is equal to � = I2 + 4J > 0, which gives
an upper bound for β1.

7. A C2, β A Priori Estimate

We infer from the C2 estimate a C2, β estimate using a classical Evans-Trudinger theorem
[18, Theorem 17.14 page 461], which achieves the proof of Theorem 1.2. Let us state this
Evans-Trudinger theorem; we use Gilbarg and Trudinger’s notations for classical norms and
seminorms of Hölder spaces (cf. [18] and [9, page 137]).

Theorem 7.1. Let Ω be a bounded domain (i.e., an open connected set) of R
n, n ≥ 2. Let one denote

by R
n×n the set of real n × n symmetric matrices. u ∈ C4(Ω,R) is a solution of

G[u] = G
(

x,D2u
)

= 0 on Ω, (E′)

where G ∈ C2(Ω × R
n×n,R) is elliptic with respect to u and satisfies the following hypotheses.

(1) G is uniformly elliptic with respect to u, that is, there exist two real numbers λ,Λ > 0 such
that

∀x ∈ Ω, ∀ξ ∈ R
n, λ|ξ|2 ≤ Gij

(

x,D2u(x)
)

ξiξj ≤ Λ|ξ|2. (7.1)
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(2) G is concave with respect to u in the variable r. Since G is of class C2, this condition of
concavity is equivalent to

∀x ∈ Ω, ∀ζ ∈ R
n×n, Gij,ks

(

x,D2u(x)
)

ζijζks ≤ 0. (7.2)

Then for all Ω′ ⊂⊂ Ω, one has the following interior estimate:

[

D2u
]

β;Ω′
≤ C, (7.3)

where β ∈ ]0, 1] depends only on n, λ, andΛ and C > 0 depends only on n, λ,Λ, |u|2;Ω′ , dist(Ω′, ∂Ω),
Gx, Gr , Gxx et Grx. The notation Grx used here denotes the matrix Grx = [Gij, x� ]i, j, �=1···n evaluated
at (x,D2u(x)). It is the same for the notations Gx, Gr , and Gxx [18, page 457].

7.1. The Evans-Trudinger Method

Let us suppose that there exists a constant C11 > 0 such that for all i ∈ N, we have
‖ϕti‖C2(M,R) ≤ C11. In the following, we remove the index i from ϕti to lighten the notations.
In order to construct a C2, β estimate with 0 < β < 1, we prepare the framework of application
of Theorem 7.1.

Let R = (Uj, φj)1≤j≤N be a finite covering of the compact manifoldM by charts, and let
P = (θj)1≤j≤N be a partition of unity of class C∞ subordinate to this covering. The family of
continuity equations writes in the chart (Us, φs) where 1 ≤ s ≤N is a fixed integer as follows:

Fk

⎛

⎝

[

δ
j

i + g
j� ◦ φ−1

s (x)
∂
(

ϕt ◦ φ−1
s

)

∂zi∂z�
(x)

]

1≤i, j≤m

⎞

⎠ − tf ◦ φ−1
s (x) − ln(At) = 0

x ∈ φs(Us) ⊂ R
2m.

(

E′
k,t

)

Besides, we have ∂/∂za∂zb = (1/4)(Dab + D(a+m)(b+m) + iDa(b+m) − iD(a+m)b) where the Dabs
denotes real derivatives; thus our equation writes:

G
(

x,D2
(

ϕt ◦ φ−1
s

))

= 0 x ∈ φs(Us) ⊂ R
2m with,

(

E′′
k,t

)

G(x, r) = Fk

(

[

δ
j

i +
1
4
gj�

(

φ−1
s (x)

)

(

ri� + r(i+m)(�+m) + iri(�+m) − ir(i+m)�
)

]

1≤i, j≤m

)

− tf ◦ φ−1
s (x) − ln(At).

(7.4)

This map G is concave in the variable r as the map F appearing in the C2 estimate (cf. (6.36)),
(namely, for all fixed x of φs(Us), G(x, ·) is concave on ρ−1

φ−1
s (x)

(λ−1(Γk)) ⊂ S2m(R)). For all

s ∈ {1, . . . ,N}, let us consider Ωs a bounded domain of R
2m strictly included in φs(Us):

Ωs ⊂⊂ φs(Us). (7.5)
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The notation S′ ⊂⊂ S means that S′ is strictly included in S, namely, that S′ ⊂ S. We will
explain later how these domains Ωs are chosen. The map G is of class C2 and the solution
ψst := ϕt ◦ φ−1

s ∈ C4(Ωs,R) since ϕt ∈ C�,α(M) with � ≥ 5. The equation
(

E′′
k,t

)

on Ωs ⊂
φs(Us) is now written in the form corresponding to the Theorem 7.1; it remains to check the
hypotheses of this theorem on Ωs, namely, that

(1) G is uniformly elliptic with respect to ψst = ϕt ◦ φ−1
s ; that is, there exist two real

numbers λs,Λs > 0 such that

∀x ∈ Ωs, ∀ξ ∈ R
2m, λs|ξ|2 ≤ Gij

(

x,D2(ψst
)

(x)
)

ξiξj ≤ Λs|ξ|2. (7.6)

Moreover, we will impose ourselves to find real numbers λs,Λs independent of t.

(2) G is concave with respect to ψst in the variable r. SinceG is of classC2, this concavity
condition is equivalent to

∀x ∈ Ωs, ∀ζ ∈ R
2m×2m, Gij, k�

(

x,D2(ψst
)

(x)
)

ζijζk� ≤ 0. (7.7)

This has been checked before.

(3) The derivatives Gx, Gr , Gxx, and Grx are controlled (these quantities are evaluated
at (x,D2(ψst )(x))).

Once these three points checked, and since we have a C2 estimate of ϕt by C11, Theorem 7.1
allows us to deduce that for all open setΩ′

s ⊂⊂ Ωs there exist two real numbers βs ∈ ]0, 1] and
Cstes > 0 depending only onm, λs, Λs, dist(Ω′

s, ∂Ωs), on the uniform estimate of |ψst |2;Ω′
s
, and

on the uniform estimates of the quantities Gx, Gr , Gxx, and Grx, so in particular βs and Cstes
are independent of t, such that

[

D2(ψst
)

]

βs;Ω′
s

≤ Cstes. (7.8)

The Choice of Ωs and Ω′
s

Let us denote by Ks the support of the function θs ◦ φ−1
s :

Ks := supp
(

θs ◦ φ−1
s

)

= φs
(

supp θs
)

⊂ φs(Us). (7.9)

The set Ks is compact, and it is included in the open set φs(Us) of R
2m, and R

2m is separated
locally compact; then by the theorem of intercalation of relatively compact open sets, applied
twice, we deduce the existence of two relatively compact open sets Ωs and Ω′

s such that

Ks ⊂ Ω′
s ⊂⊂ Ωs ⊂⊂ φs(Us). (7.10)

The set Ωs is required to be connected: for this, it suffices that Ks be connected even after
restriction to a connected component inΩs of a point ofKs; indeed, this connected component
is an open set of Ωs since Ωs is locally connected (as an open set of R

2m); moreover it is
bounded since Ωs is bounded.
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Application of the Theorem

Let β := min βs; the norm ‖ · ‖C2, β is submultiplicative; then

∥

∥ϕt
∥

∥

R,P
C2, β(M) =

N
∑

s=1

∣

∣

∣

(

θs ◦ φ−1
s

)

×
(

ϕs ◦ φ−1
s

)∣

∣

∣

2, β;Ω′
s

≤
N
∑

s=1

∣

∣

∣θs ◦ φ−1
s

∣

∣

∣

2, β;Ω′
s

×
∣

∣ψst
∣

∣

2, β;Ω′
s
.

(7.11)

But, by (7.8) we have |ψst |2, βs;Ω′
s
= |ψst |2;Ω′

s
+ [D2(ψst )]βs;Ω′

s
≤ |ψst |2;Ω′

s
+ Cstes ≤ Cste′s where

Cste′s depends only on m, λs, Λs, dist(Ω′
s, ∂Ωs), C11 (the constant of the C2 estimate) and the

uniform estimates of the quantities Gx, Gr , Gxx, and Grx. We obtain consequently the needed
C2, β estimate:

∥

∥ϕt
∥

∥

R,P
C2, β(M) ≤

N
∑

s=1

∣

∣

∣θs ◦ φ−1
s

∣

∣

∣

2, β;Ω′
s

× Cste′s =: C12. (7.12)

Let us now check the hypotheses 1 and 3 above.

7.2. Uniform Ellipticity of G on Ωs

Let x ∈ Ωs and ξ ∈ R
2m:

2m
∑

i, j=1

Gij(x, r)ξiξj = d(G(x, ·))r(M) with M =
[

ξiξj
]

1≤i, j≤m ∈ S2m(R)

= d
(

Fk ◦ ρφ−1
s (x)

)

r
(M)

= d(Fk)ρ
φ−1s (x)(r)

· d
(

ρφ−1
s (x)

)

r
(M).

(7.13)

Let us recall that ρP (r) = [δji + (1/4)
∑m

�, o=1(g
−1/2(P))i�(g

−1/2(P))oj(r�o + r(�+m)(o+m) + ir�(o+m) −
ir(�+m)o)]1≤i, j≤m (cf. (6.36)); we consequently obtain

2m
∑

i, j=1

Gij

(

x,D2(ψst
)

(x)
)

ξiξj

= d(Fk)ρ
φ−1s (x)(D

2(ψst )(x))
·
[

1
4

m
∑

�, o=1

(g−1/2(φ−1
s (x)))i�

(

g−1/2
(

φ−1
s (x)

))

oj

×
(

M�o +M(�+m)(o+m) + iM�(o+m) − iM(�+m)o
)

]

1≤i, j≤m

.

(7.14)
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In the following, we denote ˜M := [(1/4)(M�s + M(�+m)(s+m) + iM�(s+m) − iM(�+m)s)]1≤�, s≤m.
Thus

˜M =
[

1
4
(ξ�ξs + ξ�+mξs+m + iξ�ξs+m − iξ�+mξs)

]

1≤�, s≤m
∈ Hm(C)

=

⎡

⎢

⎢

⎣

1
4
(ξ� − iξ�+m)

(

ξs + iξs+m
︸ ︷︷ ︸

)

=:˜ξs

⎤

⎥

⎥

⎦

1≤�, s≤m

=
[

1
4
˜ξ�

˜ξs

]

1≤�, s≤m
.

(7.15)

Besides, let us denote di = σk−1,i[λ(g−1g̃ϕt(φ
−1
s (x)))]/σk[λ(g−1g̃ϕt(φ

−1
s (x)))] and g−1/2 instead

of g−1/2(φ−1
s (x)) in order to lighten the formulas. We obtain by the invariance formula (2.7)

that

2m
∑

i, j=1

Gij

(

x,D2(ψst
)

(x)
)

ξiξj = d(Fk)[g]−1/2g̃ϕt [g]−1/2 ·
(

[

g
]−1/2

˜M
[

g
]−1/2

)

= d(Fk)diag(λ1,...,λm) ·
(

tU
[

g
]−1/2

˜M
[

g
]−1/2

U
)

where U ∈ Um(C) with

tU
[

g
]−1/2

g̃ϕt
[

g
]−1/2

U = diag(λ1, . . . , λm)

we are at the point φ−1
s (x)

=
m
∑

i=1

di
(

tU
[

g
]−1/2

˜M
[

g
]−1/2

U
)

ii

=
m
∑

i=1

di

(

t

(

[

g
]−1/2

U

)

˜M
(

[

g
]−1/2

U
)

)

ii

=
m
∑

i, �, j=1

di

(

[

g
]−1/2

U

)

�i

˜M�j

(

[

g
]−1/2

U
)

ji

=
m
∑

i, �, j=1

di

(

[

g
]−1/2

U

)

�i

1
4
˜ξ�

˜ξj
(

[

g
]−1/2

U
)

ji

=
1
4

m
∑

i=1

di

⎛

⎝

m
∑

j=1

˜ξj
(

[

g
]−1/2

U
)

ji

⎞

⎠

︸ ︷︷ ︸

=:αi

(

m
∑

�=1

˜ξ�

(

[

g
]−1/2

U

)

�i

)

︸ ︷︷ ︸

=αi

=
1
4

m
∑

i=1

di|αi|2.

(7.16)
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But by Proposition 6.10 and the inequalities e−2‖f‖∞(mk ) ≤ σk(λ(g−1g̃ϕt(P))) ≤ e2‖f‖∞(mk ), we
have for (6.72)

e−2‖f‖∞E0

(mk )
≤ di ≤

e2‖f‖∞F0

(mk )
. (7.17)

Combining (7.16) and (7.17), we obtain

1
4
e−2‖f‖∞E0

(mk )

(

m
∑

i=1

|αi|2
)

≤
2m
∑

i, j=1

Gij

(

x,D2(ψst
)

(x)
)

ξiξj

≤ 1
4
e2‖f‖∞F0

(mk )

(

m
∑

i=1

|αi|2
)

.

(7.18)

But

m
∑

i=1

|αi|2 =
m
∑

i=1

∣

∣

∣

∣

∣

∣

m
∑

j=1

˜ξj
(

[

g
]−1/2

U
)

ji

∣

∣

∣

∣

∣

∣

2

=
m
∑

i=1

⎛

⎝

m
∑

j=1

˜ξj
(

[

g
]−1/2

U
)

ji

⎞

⎠

(

m
∑

�=1

˜ξ�

(

[

g
]−1/2

U

)

�i

)

=
m
∑

j, �=1

{

m
∑

i=1

(

[

g
]−1/2

U
)

ji

(

[

g
]−1/2

U

)

�i

}

˜ξj ˜ξ�

=
m
∑

j, �=1

(

(

[

g
]−1/2

U
)

× t

(

[g]−1/2U
))

j�

˜ξj ˜ξ�.

(7.19)

And ([g]−1/2U)× t([g]−1/2U) = [g]−1/2UtU
t
[g]−1/2 = [g]−1/2

t
[g]−1/2 = [g]−1/2[g]−1/2 = [g]−1;

then

m
∑

i=1

|αi|2 =
m
∑

j, �=1

(

[

g
]−1

)

j�

˜ξj ˜ξ� =
m
∑

j, �=1

g�j
(

φ−1
s (x)

)

˜ξj ˜ξ�. (7.20)

Consequently, and since |ξ|2 = |˜ξ|2, the checking of the hypothesis of uniform ellipticity of the
Theorem 7.1 is reduced to find two real numbers λos ,Λ

o
s > 0 such that

∀x ∈ Ωs, ∀˜ξ ∈ C
m, λos

∣

∣

∣

˜ξ
∣

∣

∣

2
≤

m
∑

j, �=1

g�j
(

φ−1
s (x)

)

˜ξ� ˜ξj ≤ Λo
s

∣

∣

∣

˜ξ
∣

∣

∣

2
. (7.21)
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By the min-max principle applied on C
m to the Hermitian form ≺X,Y�g(φ−1

s (x))=

gab(φ−1
s (x))XaYb relatively to the canonical one, we have

λmin

[

gab
(

φ−1
s (x)

)]

1≤a, b≤m

∣

∣

∣

˜ξ
∣

∣

∣

2
≤

m
∑

a, b=1

gab
(

φ−1
s (x)

)

˜ξa ˜ξb

≤ λmax

[

gab
(

φ−1
s (x)

)]

1≤a, b≤m

∣

∣

∣

˜ξ
∣

∣

∣

2
.

(7.22)

But the functions P �→ λmin[gab(P)]1≤a, b≤m and P �→ λmax[gab(P)]1≤a, b≤m are continuous on

φ−1
s (Ωs) ⊂ Us which is compact since it is a closed set of the compact manifoldM (cf. (7.5) for

the choice of the domains Ωs), so these functions are bounded and reach their bounds; thus

(

min
P∈φ−1

s (Ωs)
λmin

[

gab(P)
]

1≤a, b≤m

)

︸ ︷︷ ︸

=:λos

×
∣

∣

∣

˜ξ
∣

∣

∣

2
≤

m
∑

a, b=1

gab
(

φ−1
s (x)

)

˜ξa˜ξb

≤
(

max
P∈φ−1

s (Ωs)
λmax

[

gab(P)
]

1≤a, b≤m

)

︸ ︷︷ ︸

=:Λo
s

×
∣

∣

∣

˜ξ
∣

∣

∣

2
.

(7.23)

By the inequalities (7.18) and (7.23), we deduce that

λs
∣

∣

∣

˜ξ
∣

∣

∣

2
≤

2m
∑

i, j=1

Gij

(

x,D2(ψst
)

(x)
)

ξi ξj ≤ Λs

∣

∣

∣

˜ξ
∣

∣

∣

2

with λs :=
1
4
e−2‖f‖∞E0

(mk )
λos,

Λs :=
1
4
e2‖f‖∞F0

(mk )
Λo
s .

(7.24)

The real numbers λs and Λs depend on k, m, ‖f‖∞, E0, F0, g, (Us, φs), and Ωs and are
independent of t, x and ˜ξ, which achieves the proof of the global uniform ellipticity.

7.3. Uniform Estimate of Gx, Gr , Gxx, and Grx

In this subsection, we estimate uniformly the quantities Gx, Gr ,Gxx, and Grx (recall that these
quantities are evaluated at (x,D2(ψst )(x))) by using the same technique as in the previous
subsection for the proof of uniform ellipticity (7.24).

We have

|Gx|2 =
∣

∣[Gxi]1≤i≤2m
∣

∣

2 =
2m
∑

i=1

|Gxi |
2 where Gxi =

∂G

∂xi

(

x,D2(ψst
)

(x)
)

. (7.25)
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For (7.14), we obtain

Gxi = d(Fk)[g−1g̃ϕt (φ
−1
s (x))] ·

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎣

m
∑

�=1

∂
(

gq� ◦ φ−1
s

)

∂xi
(x)∂o�ϕt

(

φ−1
s (x)

)

⎤

⎥

⎦

1≤o, q≤m
︸ ︷︷ ︸

⎞

⎟

⎟

⎟

⎟

⎠

=:Mo

− t
∂
(

f ◦ φ−1
s

)

∂xi
(x)

(7.26)

and for (7.16), we infer then by the invariance formula (2.7) that

Gxi =
m
∑

j=1

dj
(

tUMoU
)

jj
− t

∂f

∂xi

(

φ−1
s (x)

)

, (7.27)

where U ∈ Um(C) such that (tU[g−1g̃ϕt(φ
−1
s (x))]U = diag(λ1, . . . , λm) and di =

σk−1, i[λ(g−1g̃ϕt(φ
−1
s (x)))]/σk[λ(g−1g̃ϕt(φ

−1
s (x)))]. We can then write:

Gxi =
m
∑

j, p, q=1

djUpjUqjM
o
pq − t

∂f

∂xi

(

φ−1
s (x)

)

=
m
∑

j, p, q=1

djUpjUqj

(

m
∑

�=1

∂gq�

∂xi

(

φ−1
s (x)

)

∂p�ϕt
(

φ−1
s (x)

)

)

− t
∂f

∂xi

(

φ−1
s (x)

)

.

Thus |Gxi | ≤
m
∑

j, p, q, �=1

e2‖f‖∞F0

(mk )

∣

∣

∣Upj

∣

∣

∣

∣

∣Uqj

∣

∣

×

⎛

⎜

⎜

⎝

max
1≤a, b≤m, 1≤i≤2m

max
P∈φ−1

s (Ωs)

∣

∣

∣

∣

∣

∂gab

∂xi
(P)

∣

∣

∣

∣

∣

︸ ︷︷ ︸

⎞

⎟

⎟

⎠

=:Λ1
s

∥

∥ϕt
∥

∥

C2(M,R) +
∥

∥f
∥

∥

C1(M,R).

(7.28)

ButU ∈ Um(C); then |Uqj | ≤ 1 for all 1 ≤ q, j ≤ m, consequently

|Gxi | ≤ m4 e
2‖f‖∞F0

(mk )
Λ1
s

∥

∥ϕt
∥

∥

C2(M,R)
︸ ︷︷ ︸

≤C11(C2 estimate)

+
∥

∥f
∥

∥

C1(M,R), (7.29)

which gives the needed uniform estimate for Gx:

|Gx| ≤
√
2m

(

m4 e
2‖f‖∞F0

(mk )
Λ1
sC11 +

∥

∥f
∥

∥

C1(M,R)

)

. (7.30)
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Similarly

|Gr |2 =
∣

∣

∣

[

Gpq

]

1≤p, q≤2m

∣

∣

∣

2
=

2m
∑

p, q=1

∣

∣Gpq

∣

∣

2
,

where Gpq =
∂G

∂rpq

(

x,D2(ψst
)

(x)
)

.

(7.31)

And we have

Gpq = d(Fk)[g−1g̃ϕt (φ
−1
s (x))] ·

[

m
∑

�=1

gj�
(

φ−1
s (x)

)(

˜Epq
)

i�

]

1≤i, j≤m
︸ ︷︷ ︸

=:M1

,
(7.32)

where Epq is the m × m matrix whose all coefficients are equal to zero except the coefficient
pq which is equal to 1, and the matrix (˜Epq) is obtained from Epq by the formula ˜M :=
[(1/4)(M�s +M(�+m)(s+m) + iM�(s+m) − iM(�+m)s)]1≤�, s≤m, thus

Gpq =
m
∑

j=1

dj(
tUM1U)jj , (7.33)

where U and di are as before for Gx.
Since |(˜Epq)i� | ≤ 1 for all 1 ≤ i, � ≤ m, we obtain for Gx that

∣

∣Gpq

∣

∣ ≤ m4 e
2‖f‖∞F0

(mk )
Λ2
s, (7.34)

where Λ2
s = max1≤a, b≤mmax

P∈φ−1
s (Ωs)

|gab(P)|, which gives the needed uniform estimate for Gr :

|Gr | ≤ 2m5 e
2‖f‖∞F0

(mk )
Λ2
s. (7.35)

Concerning Gxx, we have

|Gxx|2 =
∣

∣

∣

∣

[

Gxpxq

]

1≤p, q≤2m

∣

∣

∣

∣

2

=
2m
∑

p, q=1

∣

∣

∣Gxpxq

∣

∣

∣

2
,

where Gxpxq =
∂2G

∂xp∂xq

(

x,D2(ψst
)

(x)
)

.

(7.36)
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A calculation shows that

Gxpxq = − t
∂2f

∂xp∂xq

(

φ−1
s (x)

)

+
m
∑

i, j, �=1

∂Fk

∂B
j

i

([

g−1g̃ϕt

(

φ−1
s (x)

)]) ∂2gj�

∂xp∂xq

(

φ−1
s (x)

)

∂i�ϕt
(

φ−1
s (x)

)

+
m
∑

i, j, �, μ, o, ν=1

∂2Fk

∂Boμ∂B
j

i

([

g−1g̃ϕt

(

φ−1
s (x)

)])

︸ ︷︷ ︸

=:E

×
∂goν

∂xp

(

φ−1
s (x)

)∂gj�

∂xq

(

φ−1
s (x)

)

∂μνϕt
(

φ−1
s (x)

)

∂i�ϕt
(

φ−1
s (x)

)

.

(7.37)

All the terms are uniformly bounded; it remains to justify that the term in second derivative
E is also uniformly bounded:

E = d2(Fk)[g−1g̃ϕt (φ
−1
s (x))] ·

(

Eμo, Eij
)

then by the invariance formula (2.7)

=
m
∑

a, b, c, d=1

∂2Fk

∂Bba∂B
d
c

[

diag(λ1, . . . , λm)
]

(tUEμoU)ab(
tUEijU)cd,

where U ∈ Um(C) is like before.

(7.38)

But we know the second derivatives of Fk at a diagonal matrix by (2.5). Besides, we have
0 < σk−1, i(λ)/σk(λ) = di ≤ e2‖f‖∞F0/(mk ) by (7.17), and since e−2‖f‖∞(mk ) ≤ σk(λ), it remains
only to control the quantities |σk−2,ij(λ)| with i /= j to prove that E is uniformly bounded. But
since λ ∈ Γk, we have σk−2, ij(λ) > 0 [11]. Moreover, by the pinching of the eigenvalues, we
deduce automatically that

σk−2, ij(λ) ≤
(

m − 2
k − 2

)

(

C′
2
)k−1 =: F1, (7.39)

which achieves the checking of the fact that Gxx is uniformly bounded.
Similarly, we establish a uniform estimate of Gxr using this calculation:

Gxo, pq =
∂2G

∂xo∂rpq

(

x,D2(ψst
)

(x)
)

=
m
∑

i, j, �=1

∂Fk

∂B
j

i

([

g−1g̃ϕt

(

φ−1
s (x)

)])∂gj�

∂xo

(

φ−1
s (x)

)(

˜Epq
)

i�



48 International Journal of Mathematics and Mathematical Sciences

+
m
∑

i, j, �, ν, μ, γ=1

∂2Fk

∂B
μ
ν∂B

j

i

([

g−1g̃ϕt

(

φ−1
s (x)

)])

×
∂gμγ

∂xo

(

φ−1
s (x)

)

∂νγϕt
(

φ−1
s (x)

)

gj�
(

φ−1
s (x)

)(

˜Epq
)

i�
,

(7.40)

which achieves the proof of the C2, β estimate.
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