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On a compact connected 2m-dimensional Kahler manifold with Kahler form cw, given a smooth
function f : M — R and an integer 1 < k < m, we want to solve uniquely in [w] the equation
@k A w™*k = efw™, relying on the notion of k-positivity for @ € [w] (the extreme cases are solved:
k =mby (Yau in 1978), and k = 1 trivially). We solve by the continuity method the corresponding
complex elliptic kth Hessian equation, more difficult to solve than the Calabi-Yau equation (k = m),
under the assumption that the holomorphic bisectional curvature of the manifold is nonnegative,
required here only to derive an a priori eigenvalues pinching.

1. The Theorem

All manifolds considered in this paper are connected.

Let (M, J, g, w) be a compact connected Kdhler manifold of complex dimension m > 3.
Fix an integer 2 < k < m—1. Let ¢ : M — R be a smooth function, and let us consider
the (1,1)-form @ = w + i65(p and the associated 2-tensor g defined by g(X,Y) = w(X, JY).
Consider the sesquilinear forms h and h on T'0 defined by h(U, V) = g(U, V) and fz(ll, V)=
3(U, V). We denote by 1(g7'g) the eigenvalues of h with respect to the Hermitian form h. By
definition, these are the eigenvalues of the unique endomorphism A of T'? satisfying

h(U,V) = h(U, AV) VYU,V €T, (1.1)
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Calculations infer that the endomorphism A writes

A:TYW —T1Y
‘ o _ ' (1.2)
lllai — Afula] = g]egi?ulaj.

A is a self-adjoint/Hermitian endomorphism of the Hermitian space (T'0,h), therefore
A(g7'g) € R™. Let us consider the following cone: It = {A € R™/V1 < j < k,0j(1) > 0},
where o; denotes the jth elementary symmetric function.

Definition 1.1. ¢ is said to be k-admissible if and only if A(g7'g) € T.
In this paper, we prove the following theorem.

Theorem 1.2 (the oy equation). Let (M, ], g, w) be a compact connected Kihler manifold of complex
dimension m > 3 with nonnegative holomorphic bisectional curvature, and let f : M — R be a
function of class C* satisfying [, efw™ = (') [, w™. There exists a unique function ¢ : M — R
of class C* such that

1) jMw w™ =0, (1.3)

Q) & AWk = <%>wm. (Ex)
(%)

Moreover the solution ¢ is k-admissible.

This result was announced in a note in the Comptes Rendus de 1’Acadé-mie des
Sciences de Paris published online in December 2009 [1]. The curvature assumption is used,
in Section 6.2 only, for an a priori estimate on A(g7'g) as in [2, page 408], and it should be
removed (as did Aubin for the case k = m in [3], see also [4] for this case). For the analogue
of (Ex) on C™, the Dirichlet problem is solved in [5, 6], and a Bedford-Taylor type theory,
for weak solutions of the corresponding degenerate equations, is addressed in [7]. Thanks to
Julien Keller, we learned of an independent work [8] aiming at the same result as ours, with
a different gradient estimate and a similar method to estimate 1(g~'g), but no proofs given
for the C° and the C? estimates.

Let us notice that the function f appearing in the second member of (Ei) satisfies
necessarily the normalisation condition [, efw™ = (') [,,;w™. Indeed, this results from the
following lemma.

Lemma 1.3. Consider [, @* Aw™* = [, w™.
Proof. See [9, page 44]. O
Let us write (Ey) differently.

Lemma 1.4. Consider &* A w™* = (0x(M(g713))/ ('} ))w™.
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Proof. Let P € M. It suffices to prove the equality at P in a g-normal g-adapted chart z
centered at P. In such a chart g,-;(O) = 6;; and §i;-(0) = 6;Ai(0),s0 at z = 0, w = idz® A dz” and
@ = il,(0)dz® A dz°. Thus

e

k m-k
“Anwmk = <Zma(0)dza A dz“> A <Zidzb A dzb>
a b

> i"Ag, (0) -+ A4, (0)
(a1, ax)€(1,..., m} (1.4)
distinct integers
(bl,..., bm-k)€ [ 1,..,m } \ { aiye.., Ak ]
distinct integers

(dz“l A dzﬁl> A A <dz“k A dzﬁk> A <dz"l A dzE) Aeee A <dzbm-k A dzgm-k>.

Now ay,..., ak, by,..., by are m distinct integers of {1,...,m} and 2-forms commute
therefore,

@k Ak = > Xa, (0) -+~ Ag, (0)
(a1,..., ak)€{1,...,m}
distinct integers

(b1, bk )€(1,..., mi\{a1,..., ar }
distinct integers

- -/

e (1.5)

= Z (m—k)' -)Lm(o)"')‘uk(o)

(a1,..., ak)€{l,..., m}
distinct integers

wm
!

(m-k)!

m!

07D .

@A™k = k!ok(11(0), ..., Lm(0) w™ = S
(%)

Consequently, (Ex) writes:
o(1(s7%)) =/ ()

Let us remark that E,, corresponds to the Calabi-Yau equation det(3)/ det(g) = e/, when
E; is just a linear equation in Laplacian form. Since the endomorphism A is Hermitian, the
spectral theorem provides an h-orthonormal basis for T'? of eigenvectors ey, ..., en: Ae; =

,,,,,
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0k (M(Ap)) = 0k (M([AL(2)]1; jom)- In addition, A] = g8 = g7(g7+ Bz0) = 6] + g/0;3p, 50
the equation writes locally:

Ok <J\<[6f + gjfaig(p]lsi,jgm>> =el. (EY)

Let us notice that a solution of this equation (E}) is necessarily k-admissible [9, page 46].
Let us define fi(B) = ox(A(B)) and Fx(B) = Inox(A(B)) where B = [B;]lgi,jSm is a Hermitian

matrix. The function fi is a polynomial in the variables BZ , specifically fi(B) = ZI I=k Bir
(sum of the principal minors of order k of the matrix B). Equivalently (EZ) writes:

Fy < |6+ 80,20 Kngm) = f. (E¥)

It is a nonlinear elliptic second order PDE of complex Monge-Ampere type. We prove the
existence of a k-admissible solution by the continuity method.

2. Derivatives and Concavity of F;
2.1. Calculation of the Derivatives at a Diagonal Matrix

The first derivatives of the symmetric polynomial o are given by the following: for all
1 <i < m, (00k/0N)(A) = 0k-1,i(A) where 0k_1,i(A) := Ok-1|y=0. For 1 < i#j < m, let us
denote oy 2,ij(A) = Ok-2|y= 1=0 and Ok, ii (A) = 0. The second derivatives of the polynomial
o are given by (d?0x/ 04;04;) (1) = Ox-2,ij(1). We calculate the derivatives of the function
fi : Hm(C) — R, where H#,,(C) denotes the set of Hermitian matrices, at diagonal matrices

using the formula:

fk(B) — Z Z 8(0)3;;7(1) . B;:(IO
1<iy<-<ix<m o€Sk

2.1
_ l Z gil"'ik B]l . B]k ( )

T k! Jrejk i i’

: 1<it,esik 1 e Jk S
where
o 1 ifiy,..., i distinct and jj, ..., jx even permutation of iy,..., i,
e}iﬁi’,}’; =14 -1 ifiy,..., i distinct and ji, ..., jk odd permutation of iy, ..., i, (2.2)
0 else.
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These derivatives are given by [9, page 48]

afk i = 0 lfl#]/
a_B{(dlag(b1/1bm)) - { ok—l,i(bll"'/bm) lf i= j,
ivi O g -
iz 8B]:6B’f( iag(b1,...,bm)) = ok-2,ij(b1, ..., bm) (23)
Y
0% fi (diag(b b)) " .
X > 1ag(01,...,0m :_ok—Z,ij 1 bm),
iR/
OBI0B)]

and all the other second derivatives of fi at diag(b;, ..., b,,) vanish.

Consequently, the derivatives of the function Fx = In fi : AT ¢ #H,(C) - R
at diagonal matrices diag(Ay,..., ) with X = (Ay,...,\,) € I'k, where A N(Ty) = (B €
H(C)/A(B) €Tk}, are given by

0 if i#],
OF
_’;(diag(Al,...,Am)) = {akl,i(l) fici (2.4)
OB; e (L) j,
.. O0*Fc .. Ok-2,ij (1)
ifi#j aB;aBZ (diag(A1, ..., Am)) = ol
’ —2,ij (4 —1,i(M)ok-1, 1 (4
a Fk (dlag()Ll,,J\m)) — Ok 2,]( ) _ Ok-1, ( )Gk ;,]( ) (25)
OB;0; o) (k1)
62F . . i-)L 2
: k - (diag(A1, ..., Am)) = _M
OB;0B; (0x(1)

and all the other second derivatives of Fi at diag(\s, ..., A,,) vanish.

2.2, The Invariance of Fi and of Its First and Second Differentials

The function Fx : A™}(Tx) — R is invariant under unitary similitudes:

VB € \"Y(Ty), YU € Un(C), Fi(B) = Fx <fUBu>. (2.6)
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Differentiating the previous invariance formula (2.6), we show that the first and second
differentials of Fy are also invariant under unitary similitudes:

VBe A I(Ty), Vi€ H,(C), YUEeU,),
_ (2.7)
(dFp - ¢ = (dFQgpy - (TTLU),

VB e A Y(Tk), Y¢€Hn(C), VOEH(C), YU eUnC),
- (2.8)
<d2Fk>B (,0) = (dZFk>ﬁBu : (fugu, fueu).

These invariance formulas are allowed to come down to the diagonal case, when it is useful.

2.3. Concavity of F

We prove in [9] the concavity of the functions u o A and more generally u o \p when u €
I'o(R™) and is symmetric [9, Theorem VIL.4.2], which in particular gives the concavity of the
functions Fi = InoyA [9, Corollary VII.4.30] and more generally In oxAp [9, Theorem VII.4.29].
In this section, let us show by an elementary calculation the concavity of the function Fy.

Proposition 2.1. The function Fx : \"1(Tx) — R, B Fx(B) = In ok (A(B)) is concave (this holds
forallk € {1,...,m}).

Proof. The function Fy is of class C?, so its concavity is equivalent to the following inequality:

VBeA (), Weda(© > 2T (mye <o 29)
i,j,r,s=1 6Bfan

Let B € A'(Tk), ¢ € #,,(C), and U € U,,(C) such that ‘UBU = diag(\y,..., ). We have
A= (A, ..., Ay) €Tk Let us denote ¢ = fﬁgu € H,,(C):

m 621: P s
S= Y —=B&
i,j,1,5=1 6BﬁaBl

<d2Fk>B -(¢,¢) so by the invariance formula (2.8)

<d2Fk>tﬁBu ) <tU§LL taéu)

& 9F .. 5
> aBsa’}; - (diag(A, - )l &
i,j,r,s:l r i

Ok-2,ij () % el
- d gj
Ok ()L) ~——

i#j=1
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. i <ok—2,ij(/\) Ok-1,i(A) Ok 1](”)& d +E_M<a>2

S\ o) (0k(1))? = (o)’

""; (lf,f)” o]+ 3 i

i,j=1

- '
i,j=1
(2.10)

But ¢;; = (62(ln0k)/6)q6)uj)()l), and Z; € R, so Z?j:l cijE;IZ;f < 0 by concavity of Inoy
at A € Ty [10, page 269]. In addition, okx;j(1) > 0 since A € T} [11], consequently

~ 2
23}:1 —(Ok-2,ij(N)/ O‘k()t))lgl” < 0, which shows that S < 0 and achieves the proof. O

3. The Proof of Uniqueness

Let (o and ¢; be two smooth k-admissible solutions of (E}") such that [,  gow™ = [, 1™
0. Forall t € [0, 1], let us consider the function ¢; = tp; + (1 — )¢ = o + ty with ¢ = 1 — .

Let P € M, and let us denote hP(t) fie([ 6] + gfe(P)E)letpt(P)]) We have hp(l) hP(O) =0
which is equivalent to f; hY (t)dt = 0. But

HOEDY <Z aBg([61+gf"(P>ale<pt<P>]) ‘*f(P>> d50(P).

i,j=1 \&=1 B (31)
=:;§7(P)
Therefore we obtain
m 1
Ly (P) = Z ai]-(P)al.;(p(P) =0 with a;;(P) = Jo cxf.].(P)dt. (3.2)

i, j=1

We show easily that the matrix [a;;(P)],_; j<m
¢ is continuous on the compact manifold M so it assumes its minimum at a point my € M, so
that the complex Hessian matrix of ¢ at the point mg, namely, [6i7(p(mo)]1si,jszm, is positive-

is Hermitian [9, page 53]. Besides the function

semidefinite.

Lemma 3.1. Forallt € [0,1], \( g’lg%) (my) € I'y; namely, the functions (¢p;) ref0,1] A1€ k-admissible
at my.

Proof. Let us denote 30 := {t € [0,1]/A( g‘lgw)(mo) € I't}. The set W is nonempty, it contains
0, and it is an open subset of [0,1]. Let t be the largest number of [0, 1] such that [0,¢[ C %0.
Let us suppose that t < 1 and show that we get a contradiction. Let 1 < g < k, we have

04(M(g78p) (M) — 04(M(87'Gp,) (o)) = hy*(t) — hy"(0) = f(t) h;ﬂé(s)ds. Let us prove that
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h;ﬂo(s) >0forall s € [0,t[. Fix s € [0, t[; the quantity h;ﬂo(s) is intrinsic so it suffices to prove
the assertion in a particular chart at 7. Now at mg in a g-unitary g, -adapted chart at mg

a—fq. < [6{ + gj?(mo)aiz‘Ps (mo)] >gj?(m0)ai?¢(m0)

hy'(s) =
1 0B

Me

N
11
~T

v (3.3)

oY)

Oy

_)ti (A(g—1§%> (m0)>61;(p(m0)

Ms=

1

Il
—_

But A(g7'8,.)(mg) € Tx C T, since s € [0,t[ C W, then (d0,/0X:)(M(g™'gy,)(mo)) > 0
for all 1 < i < m. Besides, 0;;¢(mg) > 0 since the matrix [aiftp(mo)]lsi, j<m 1S positive-semi-
definite. Therefore, we infer that h;ﬂb (s) > 0. Consequently, we obtain that o, (A(g7' &y, ) (mo)) >
og(A( g‘lg(m)(mo)) > 0 (since ¢y is k-admissible). This holds for all 1 < g < k; we deduce then
that A( g‘lgq,t)(mo) € I't which proves that t € %0. This is a contradiction; we infer then that
0 = [0,1]. O

We check easily that the Hermitian matrix [a;;(mo)];; i<, is positive definite [9, page
54] and deduce then the following lemma since the map P + a;;(P) = f& (> (0fk/ an) ( [6{ +
g% (P)d5¢:(P)])g% (P))dt is continuous on a neighbourhood of .

Lemma 3.2. There exists an open ball B,,, centered at my such that for all P € B,,, the Hermitian
matrix [a;j(P)]i<; j<m 18 positive definite.

Consequently, the operator £ is elliptic on the open set B,,,. But the map ¢ is C*,
assumes its minimum at 1y € B,,,, and satisfies Ly = 0; then by the Hopf maximum principle
[12], we deduce that ¢(P) = ¢(myg) forall P € B,,. Letus denote S := {P € M/p(P) = ¢(myp)}.
This set is nonempty and it is a closed set. Let us prove that .S is an open set: let m be a point
of S, 50 ¢p(m) = @p(my), then the map ¢ assumes its minimum at the point m. Therefore, by the
same proof as for the point 1, we infer that there exists an open ball B,, centered at m such
that for all P € B, ¢(P) = ¢(m) so for all P € B,, ¢(P) = ¢(myp) then B,, C S, which proves
that S is an open set. But the manifold M is connected; then S = M, namely, ¢(P) = ¢(my)
for all P € M. Besides [, pw™ = 0, therefore we deduce that ¢ = 0 on M namely that ¢; = ¢
on M, which achieves the proof of uniqueness.

4. The Continuity Method

Let us consider the one parameter family of (Ex;), t € [0,1]

o (%) @™
— I 4 ol = M
Frloe] = Fk<[6i +8 aie‘/’t] 15i’j5m> =tf+In [, efwm | (Ext)
A

The function ¢y = 0 is a k-admissible solution of (Ek): O‘k()t([(S{ + gfzf)i?(po]1 < Sm)) = (%)
and satisfies [,  gow™ = 0. For t =1, A; = 1 s0 (Ey,1) corresponds to (E}").
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Letus fix] € N,I >5and 0 < « < 1, and let us consider the nonempty set (containing
0):

Ca= {t € [0,1]/(Ek;) have a k-admissible solution ¢ € Cch (M)
(4.1)
such that I pw™ = 0}.
M

The aim is to prove that 1 € C; ,. For this we prove, using the connectedness of [0, 1], that
Tro = [0,1].

4.1. T; , Is an Open Set of [0,1]

This arises from the local inverse mapping theorem and from solving a linear problem. Let
us consider the following sets:

Sia = {(pEC"“(M),IMwwm =0}, )

Sia = {(p € §1,a, k-admissible for g},

where §l,a is a vector space and S; , is an open set of §1,a. Using these notations, the set T »
writes C; , = {t € [0,1]/3¢p € S; o solution of (Exy)}.

Lemma 4.1. The operator Fy = Spa — C-2%(M), ¢ — Filg] = Fi([6] + gf?aiw]lg,jgm), is
differentiable, and its differential at a point ¢ € S; 4, d¥r, € .Z(gl,u, Cl2a(M)) is equal to

mOFk /i g - ~
AFiy-¢ = 3, ?<[5f +g°09] )80y Vo € Sia. (4.3)

i,j=1 OB;
Proof. See [9, page 60]. O
Proposition 4.2. The nonlinear operator ¥y is elliptic on Sy 4.

Proof. Let us fix a function ¢ € S; , and check that the nonlinear operator ¥ is elliptic for this
function ¢. This goes back to show that the linearization at ¢ of the nonlinear operator ¥y is
elliptic. By Lemma 4.1, this linearization is the following linear operator:

AFry-v= D, <Z o [5f + gjaazB‘P]13i,jgm % 8j0> 0i5v. (44)

i,0=1 \ j=1 aB{
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In order to prove that this linear operator is elliptic, it suffices to check the ellipticity in a
particular chart, for example, at the center of a g-normal g,-adapted chart. At the center of
such a chart,

& [ OFk /. 1~ & ok-1,i(87'8)
AFky v = Z<aB;<dlag)L<g 1g>>> =) l;rkl)u(g‘r) 0;0. (4.5)

i,0=1 i=1

But for alli € {1,...,m} we have ox_1,A(g7'3)/okA(g'g) > 0 on M since A(g'g) € Ik [11],
which proves that the linearization is elliptic and achieves the proof. O

Let us denote § the operator
Sklo] = fr ( |67 + g709] < ]<m> (4.6)
As ¥y, the operator §k : S;0 — CE2%(M) is differentiable and elliptic on S; , of differential

AFry ¢ = Z o5 ([57 + ¢/ g(p]>gﬂa S Vg €Sy, (4.7)

i,j=1

Let us denote a,, the matrix [6{ + gJ'?(')iz(p]1 <i,jem and calculate this linearization in a different

way, by using the expression (2.1) of fi:

1 z g 1 ik
Sk [‘P] = fk(alﬂ) Tk Z Ejpji \ Gy ;1 (a</’ £k~ (4.8)

C1<i ey k) JLyens kST
Thus

d
Ay v = 5(& [p +to]),

d 1 b . )

-~ = 11k noo. Tk

- dt k' Z gjlmjk(a‘{”'tv)i] (atp+tv)ik
T AL ey kg 1, kST lizo

1 i [ i3 , .
=5 X (g ous0)(ap)] - (ap)l

Y Ai e, ke e JkSM

1 N Y :

1 ik (o VU 088, o) - (g, Ve

o Z € \ B9 )y <g alzsv> (ay);;
ik i ]

1<y, k) 1 yoes JkSM
+...+l Z Eilmik a i ( Ji-1 ]ksa -0
k! Jrejk N7y ix1 g kS
" AKi ey kg JLye kST
_ 1 Z gil”'ik a o (a )jk—l jkEa, -0
" (k-1)! i 49 iy )i \& Oiks

Y 1<ty ik JLyee kST
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by symmetry
Z D i (g ) (a,) ) Ve,
< (k 1)' 1<iy ey ikt 1oy Jk-1 ST e ! k=
::C;‘(“q’)
(4.9)
We infer then the following proposition.
Proposition 4.3. The linearization d§ of the operator §y is of divergence type:
A, = Vi(Ci(a,) V). (4.10)
Proof. By (4.9) we have
Ak, v = '-21 Ci(ay)Vjv
ij=
(4.11)
= 21 Vi <Z C;(%)Vjv> - Zl <Z1 Vi<c;(%)>> vio.
i= = j= i=

Moreover

iv <Cl(a‘/’)> (k-2)! 2)| Z Z € ;Z il] (a tp) (%)f:iv <(a<p f:i) (4.12)

i=1 i=1 1<i, e ik-1, J1 s Jk-1SM

But V; ((a(/,)]k =V (8 + VI L) = vl ¢, then

Ik-1 k-1 k-1

2 Vi(Ciay)) = o 2).2 S g (a)) (@)l Vi e @13)

i=1 i=1 1<iq e, k=1, oo Je1 ST

Besides, the quantity V]k lpis symmetric in 7, ik (indeed, V' ¢ — VI Lo = R Vs and

k-1 11 Slij_1

R]si'i;,l 0 since g is Kihler), and 5 ;k 1'] is antisymmetric in i,ix_;; it follows then that

>V (C](a(,,)) = 0, consequently d&kq, v=3" Vi3 Cj.(aq,)va). O
From Proposition 4.3, we infer easily [9, page 62] the following corollary.

Corollary 4.4. Themap F : S;; — Si5 4,0 — F(g) = S [@]— () is well defined and differentiable
and its differential equals dF,, = A, = Vi(Cj.(a(,,)Vf) € L(S1,4,512,a)-

Now, let ty € T, and let ¢y € S;, be a solution of the corresponding equation
(Ek,to): P(‘PO) = etOfAto - (7(1)
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Lemma 4.5. dF,, : 51,,,( — §1_2,a is an isomorphism.

Proof. Let ¢ € C'=2*(M) with [, gvg = 0. Let us consider the equation
Vi(Ci(ap)Vin) = ¢. (4.14)

We have C;(aq,o)eCl‘z'“(M) and the matrix [C;‘(afpo)]lsi,jgm = [(6fk/6B{)([6{+

gf‘Z aiz(PO])]lgi, j<m is positive definite (since §x is elliptic at ¢); then by Theorem 4.7 of [13,
p. 104] on the operators of divergence type, we deduce that there exists a unique function
u € C*(M) satisfying [,  uve = 0 which is solution of (4.14) and then solution of dF,u = ¢.
Thus, the linear continuous map dF,, : S La — §l_2,,x is bijective, and its inverse is continuous
by the open map theorem, which achieves the proof. O

We deduce then by the local inverse mapping theorem that there exists an open
set U of S;, containing ¢y and an open set V of 51,2,,,, containing F(¢po) such that F
U — V is a diffeomorphism. Now, let us consider a real number t € [0,1] very close
to to and let us check that it belongs also to Cj,: if |t — | < € is sufficiently small then
(e As = (7)) - (etof Ay, - (% Dllcr2.a(ar is small enough so that et Ay — (') € V, thus there
exists ¢ € U C S;, such that F(¢p) = e/ A; — (¥') and consequently there exists ¢ € C"%(M) of
vanishing integral for ¢ which is solution of (Ex;). Hence t € T, ,. We conclude therefore that
Ty« is an open set of [0,1].

4.2. T, Is a Closed Set of [0,1]: The Scheme of the Proof

This section is based on a priori estimates. Finding these estimates is the most difficult step
of the proof. Let (t;),cy be a sequence of elements of C; , that converges to 7 € [0,1], and let
(¢1,) sen be the corresponding sequence of functions: ¢, is C"%, k-admissible, has a vanishing
integral, and is a solution of

Fk<[61]' + 8jeai290ts]15i,jSm> =t f +In(Ay). (Eis.)

Let us prove that T € T; ,. Here is the scheme of the proof.

(1) Reduction to a C>(M) estimate: if (¢;.)  is bounded ina C>#(M) with0 < f < 1,
the inclusion C*#(M) ¢ C%(M, R) being compact, we deduce that after extraction
(¢1.) seny converges in C2(M, R) to ¢, € C?(M,R). We show by tending to the limit
that ¢; is a solution of (Ex,) (it is then necessarily k-admissible) and of vanishing
integral for g. We check finally by a nonlinear regularity theorem [14, page 467] that
pr € C*(M,R), which allows us to deduce that T € C; , (see [9, pages 64-67] for
details).

(2) We show that (¢,).ey is bounded in C°(M, R): first of all we prove a positivity
Lemma 5.4 for (Ex;), inspired by the ones of [15, page 843] (for k = m), butin a
very different way, required since the k-positivity of ¢, is weaker with k < m (in
this case, some eigenvalues can be nonpositive, which complicates the proof), using
a polarization method of [7, page 1740] (cf. 5.2) and a Gérding inequality 5.3; we
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infer then from this lemma a fundamental inequality 5.5 as Proposition 7.18 of [13,
page 262]. We conclude the proof using the Moser’s iteration technique exactly as
for the equation of Calabi-Yau. We deal with this C° estimate in Section 5.

(3) We establish the key point of the proof, namely, a C? a priori estimate (Section 6).

(4) With the uniform ellipticity at hand (consequence of the previous step), we obtain
the needed C*#(M) estimate by the Evans-Trudinger theory (Section 7).

5. The C° A Priori Estimate
5.1. The Positivity Lemma

Our first three lemmas are based on the ideas of [7, Section 2].

Lemma 5.1. Let o be a real (1 —1)-form, it then writes or = ip ;dz® A dz", with P = P(0a, 05)
where p is the symmetric tensor p(U, V) = o (U, JV); hence

ll(m—-2)!

Ve<m xlnwm?=
m!

o¢ ()L [g‘lprm. (5.1)

Proof. The same proof as Lemma 1.4. O

We consider for 1 < ¢ < m the map fy = oy 0 A : H,, — R where H,, denotes the
R-vector space of Hermitian square matrices of size m. fy is a real polynomial of degree ¢
and in m? real variables. Moreover, it is I hyperbolic (cf. [16] for the proof) and it satisfies
fe(I) =0¢(1,...,1) = (%) > 0. Let fg be the totally polarized form of f,. This polarized form
fg i Hy x -+ x Hyy — Ris characterized by the following properties:

£ times
i) fg is €-linear.
(ii) fg is symmetric.

(iii) For all B € H,5,, f¢(B, ..., B) = fe(B).

Using these notations, we infer from Lemma 5.1 that at the center of a g-unitary chart (this
guarantees that the matrix g~!p is Hermitian), we have

2l(m—-20)!
m!

4

AW =

fe(g7'p)w™. (5.2)

By transition to the polarized form in this equality we obtain the following lemma.

Lemma5.2. Let1 <€ <mand iy, ..., e be real (1-1)-forms. These forms write 7, = i(pa) 7dz* A
dzb, with (Pa) .5 = Pa(0a, Of) where p, is the symmetric tensor p,(U, V) = m,(U, JV). Then, at the
center of a g-unitary chart we have

O(m—0)! ~

fe(87prr- o g7 pe) ™. (53)

m—¢
= | 14
m:

TN AT Aw
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Proof. See [9, page 71]. O
Theorem 5 of Gdrding [16] applies to f, with2 < ¢ < m.

Lemma 5.3 (the Garding inequality for f¢). Let2< € <m, forall y',...,y* € T(fe, 1),

fe<y11---,3/) 2 fe<y1>1/e---fe<y€>l/é. (5.4)

Let us recall that I'(f,, I) is the connected component of {y € H,,/ f¢(y) > 0} containing I.
The same proof as [17, pages 129, 130] implies that

T(fe,I)={y e Hn/V1<i<€ fi(y) >0} ={y € #n/A(y) €Te} =171 (Ty). (5.5)

Note that the Garding inequality (Lemma 5.3) holds for lN"( fe,I) ={y € #,/V1<i<
¢ fi(y) 2 0}.

Let us now apply the previous lemmas in order to prove the following positivity
lemma inspired by the ones of [15, page 843] (for k = m); let us emphasize that the proof
is very different since the k-positivity is weaker.

Lemma 5.4 (positivity lemma). Let a be a real 1-form on M and j € {1,...,k — 1}, then the
function f : M — R defined by fw™ = Ja A a Aw™ 7T A @I is nonnegative.

Proof. Let 1 < j < k-1,then2 < ¢ = j+1 < k. Let a be a real 1-form, it then writes
a = a,dz? + a;dz" Let 1y = 'Ja A a, hence 1(04,05) = a(JOa) a(0;) — a(Jop) a(da) =
iagap — (—i)apa, = 2ia,ap. Similarly, we prove that o1 (9,4, 0p) = 71(95, 0;) = 0, consequently
o1 = 2a,a, dz% A dzP. Besides, set o, = - - - = Ty = =1ig,7dz" A dz?. Now, let x € M and ¢

::pﬂg
be a g-unitary chart centered at x. Using Lemma 5.2, we infer that at x in the chart ¢:

t](x /\ (24 /\ (:)J /\ (,(]m_(j+1) = _71'1 /\ oo /\ yr].+1 /\ wm_(j+1)

_(m-j-1)G D)

(5.6)
- fia(sp 878 878w

Butat x, g7'§ = § € I(fjs1,I) and g7'p = p € T(fju1,I). Indeed, A(g7'§) € T since ¢
is k-admissible and I'x C I'j;;. Moreover, the Hermitian matrix [2a,ap]1<, pe,, 1S positive-
semidefinite since for all ¢ € C™, we have Z;’szl 2a,ap §a§_b =23, au§u|2 > 0; we then
deduce that forall 1 <i < j+1, we have at x, f;(g7'p) = 0:(A(g"'p)) > 0. Finally, we infer by
the Garding inequality that at x in the chart ¢ we have

fi(g'p 878 87'8) 2 fim (g‘lp)l/(j+l)ff+1 (g‘1§)j/(j+l) >0 (5.7)

which proves the positivity lemma. O
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5.2, The Fundamental Inequality

The C° a priori estimate is based on the following crucial proposition which is a general-
ization of the Proposition 7.18 of [13, page 262].

Proposition 5.5. Let h(t) be an increasing function of class C' defined on R, and let ¢ be a C? k-
admissible function defined on M, then the following inequality is satisfied:

fM[( > fi(s' ]h(‘P)wm>—< >f H (9)|Vo|rw (5.8)

Proof. We have the equality fM Y = fr(@ ') h(p)w™ = (k)jM h(p)(w™ — &F A

w™ k) Be51des since AZM is commutatlve w" — oF AWt = (w - @) A

(W P+ W PAD+ -+ WA DR ) namely, w" — &F A W™k = —(1/2)dd°p A Q, then
-0

Il = fu@'D]h(@w™ = -(1/2)(¥) [y ddp A (h(@)Q). But d(dp A h(p)Q) =

dd'p A h(@Q + (-D'dp A d(h(p)Q), and dh(p)Q) = H(p)de A Q +

(—1)0h(<p) aQ so dd°pAh(p)Q = d°pAh (¢)dpAQ+d(something). In addition

=0since w and w are closed

by Stokes’ theorem, fM d(something) = 0; therefore,

[ (D) -] rnn= ~2(0) [ wpapndpne

-5(%) jM W (p) (~dtp) A dyp A o™

/

—

T

k-1
+ '[M W () (=dp) Adep Aw™ T A
=1

-~

T

v

(5.9)

Let us prove that T, > 0 (using the positivity lemma) and that T; = (1/m) [, h'( (p)|V<p|§wm
Let us apply the positivity lemma to d: the function f : M — R defined by fw™ = Jdy A
do A w™ 171 A @1 is nonnegative for all 1 < j < k — 1. But Jdy = —d°p and h is an increasing
function; then T, > 0. Let us now calculate T;. Fix x € M, and let us work in a g-unitary chart
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centered at x and satisfying do/|dy|, = (dz™ + dz™)/+/2 at x. We have then w = idz® A dz°
at x and 'Jdo A dy = i|dg|} dz" A dz"™; therefore,

Tdep A dep A w™!

= i del? (dz™ Adz™) A (dz® Adz® ) A--- A (dzo A dz®
s gl )~ ( ) A ( )
2by2#
= > 1 |d(p|§im(dzl/\dzT> Ao A <dz"‘/\dzm>
ai,..., am-1€{1,...,m-1}
2by2#

wm
= (m—l)!|d(p|§m |V(p|§wm.

—
J—

Thus Ty = (1/m) [,, ' (9)|Velzew™, consequently [, [(%) ~ fr(g7'@)]h(p)w™ > (1/2)(})Th =
(1/2m)(7) [ W ()] V(plé w™, which achieves the proof of the proposition. O

5.3. The Moser Iteration Technique

We conclude the proof using the Moser’s iteration technique exactly as for the equation of
Calabi-Yau. Let us apply the proposition to ¢;, in order to obtain a crucial inequality (the
inequality (IN1)) from which we will infer the a priori estimate of ||¢; || . Let p > 2 be a real
number. The function ¢, is C> admissible. Let us consider the function h(u) := ulufP2:R —
R. This function is of class C' and h'(u) = |[u|P™2 + u(p - 2)u|ulP™ = (p — 1)|u[P~2 > 0, so h is
increasing. Therefore we infer by the previous proposition that

() oo ()6

) _ _
Besides, |Vpy, ["/%|" = 28704 gy, [P/2 05 lpn,IP/? = 28 ((p/2)pr.lpn, [P/ 2)Ba 1, O 1, = (p?/
4)|¢pr, [P~2|V ¢y, %, so the previous inequality writes:

,[M M‘Pfs ””)2% < % fM [(7:) ~ f (g‘1§)]<pts|<pt5

Let us infer from the inequality (IN1) another inequality (the inequality (IN4)) that is
required for the proof. It follows from the continuous Sobolev embedding Hi(M) C
L2m/(m=D (M) that

Pt |p_zvg. (5.11)

P20, (IN1)

p _ p/2]|? p/2|? (p/2)2
10 e = 2 oy < Cste ([ [Tl ] 1l®27), v
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where Cste is independent of p. Besides, fx(g™'g) is uniformly bounded; indeed,

| 5 <g_1§>| _ o GEVOLM) <7I1<1>82t5||f||w < <7:>62||f\|w' (IN3)

IM eJvg

Using the inequalities (IN1), (IN2), (IN3), and p?/2(p — 1) < p we obtain

” |(Pt5|p||m/(m_1) < Cste' x p<IM |(Pts Py fM |(Pts |p> (p=>2), (IN4)

where Cste' is independent of p. Suppose that Cste’ > 1.
Using the Green’s formula and the inequalities of Sobolev-Poincaré (IN2) and of
Holder, we prove following [13] these L, estimates.

Lemma 5.6. There exists a constant p such that for all1 < q <2m/(m-1),

el < p (5.12)

Proof. M is a compact Riemannian manifold and ¢;, € C?, so by the Green’s formula ¢;_(x) =

(1/V01(M))IM ¢r.dv + [, G(x,y) Ay, (y)do(y), where G(x,y) > 0 and [,, G(x, y)dv(y) is

—_—
=0

independent of x. Here Ag; denotes the real Laplacian. Then, we infer that ||¢p;, ||, < Cl||A¢y,||;-
But |[Ap.ll, = [y, A¢) + Ag; and [, Apy, = [, Apf — App = 0; then [|[Apy I, = 2[,, A} .
Besides Ag;, < 2m since ¢y is k-admissible: indeed, at x in a g-normal g-adapted chart,
namely, a chart satisfying g7 = O, §53 = Owls and 0,g,; = Oforalll < a, b < m,
RS {1,...,m,T,...,ﬁ}, we have A(g‘lg) = (M,..., Am)sod = (Ar..., Ay) € T since ¢y, is
k-admissible; consequently Ag; = —Zg“baag(pts =-23 .04, =2>,(1-1;) =2m—-201(1),
but o1(1) > 0 since A € I'x which proves that Ay, < 2m. Therefore Ap] < 2m and
Ay |l, < 4mVol(M). We infer then that [|¢; [, < 4mCVol(M). Now let us take p = 2 in
the inequality (IN2): ||(pts||§m/(m71) < Cste([y, V] |I* + Im lgr.|%). Besides, ¢;, € H*(M) and
has a vanishing integral; then by the Sobolev-Poincaré inequality we infer ||¢; ||, < <4|[Vy|l,.
But |[V]gy.|| = [V, | almost everywhere; therefore [y, ||,,, Jm-1) S Cste||V]py||l,- Using the
inequality (IN1) with p = 2 and the fact that fx(¢~'g) is uniformly bounded, we obtain that
[V]ge.|II5 < Cstellgs. ||, < Cste'. Consequently, we infer that 9112/ (m-1) < Cste.

Let1 < g <2m/(m—1) =: 26. By the Holder inequality we have ||(,0t5||Z = [ o,

qlS

(Jag lope,[@/D)3720V01 (M) 7972 Therefore ||y, ||, < Vol(M) /D=2 gy, 5. But
. . 1 if Vol(M) < 1
1/q-1/26 — (1/q 1/26) In(Vol(M)) < ’
Vol(M) e = {Vol(M)H/Z'S i Vol(M) > 1 (5.13)

and [y, ||,5 < Cste, thus ||¢py, g SH= Cste x Max(1, Vol(M)'"1/2%). O
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Suppose without limitation of generality that > 1. Now, we deduce from the previous
lemma and the inequality (IN4), by induction, these more general L, estimates using the same
method as [13].

Lemma 5.7. There exists a constant Cy such that for all p > 2,
-1 -m/p
low.ll, < Co(6™1Cp) ™, (5.14)

with 6 = m/(m —1) and C = Cste'(1 + Max(l,Vol(M)l/z)) > 1 where Cste' is the constant of the
inequality (IN4).

Proof. We prove this lemma by induction: first we check that the inequality is satisfied
for 2 < p < 26 = 2m/(m — 1); afterwards we show that if the inequality is true for p,
then it is satisfied for 6p too. Denote Cy = u6™mVC™e™/¢, For 2 < p < 26 we have

||(pt5||p < u, so it suffices to check that u < Co(ﬁm‘1Cp)_m/ P. This inequality is equivalent
to &mm-DCmem/e(§m-1Cp)™/P > 1; then (§™m-DCm)em/e > (§mm-1Cm)/Ppm/p Butif x > 1,
then x > x!/P (since p > 1), and 6™™DC™ > 1 (since C > 1,m > 1 and 6 > 1); therefore
smm-lcm > (§mm-1)Cm)l/P Besides, p™/P = e™InP/P) < g™/, which proves the inequality
for 2 < p < 26. Now let us fix p > 2. Suppose that [l ||, < Co(6™'Cp)™/P and prove that
llepe. || op < C0(6’"’1C6p)7m/ % The inequality (IN4) proved previously writes:

oIl < Cste’ x p(fM e fM o) (22, (IN4)

where Cste' is independent of p, namely, ||‘Pts||§p < Cste' x p(||<Pts||§j + ||<pts||z). But since
1/(p-1)-1
1 < Vol(M) D7 P

1 < p-1 < p, we have by the Holder inequality that ¢,
therefore [lgy, [}, < Cste’ x p(Vol(M)/? g, [ + [l I)-

(i) If [lgpr,[l, < 1, then ||(pts||gp < C x p; therefore [l [l5, < (Cp)"/P. Let us check

that (Cp)'/P < Co(6™'C6p)™™/°P. This inequality is equivalent to p(1/P1+m/6) <

pomm=D=-1/p)gm/e o cm=m/6p=1/p ‘put 1 + m/6 = m so it is equivalent to p™/? <
p&mm-D-1/p)gm/e  Cm(1-1/p) Besides p™/P < e™/¢ and u&™"-D1-1/P) > 1, then it
suffices to have C™(1-1/P) > 1, and this is satisfied since C > 1.

(ii) I lopr,II,, > 1, we infer that [l [If, < Cxpligy, |15, therefore [l |5, < CVPxp/Pligy |, <
(Cp)'/PCy(6™'Cp)™'P by the induction hypothesis. But (1 — m)/p = —m/6p;
then we obtain the required inequality |¢y,|| & S Cob67™/ 5P(CP)fm/6p =
Co(6™1Cop) ™/, O

By tending to the limit p — +oo in the inequality of the previous lemma, we obtain the
needed C° a priori estimate.

Corollary 5.8. Consider

¢t || co < Co. (5.15)
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6. The C? A Priori Estimate
6.1. Strategy for a C> Estimate

First, we will look for a uniform upper bound on the eigenvalues /\([6{ + gﬁaiz(pt]l <ijem’

Secondly, we will infer from it the uniform ellipticity of the continuity equation (Ex;) and
a uniform gradient bound. Thirdly, with the uniform ellipticity at hand, we will derive a
one-sided estimate on pure second derivatives and finally get the needed C? bound.

6.2. Eigenvalues Upper Bound
6.2.1. The Functional

Lett € C;n andletp;: M — Rbea Ch* k-admissible solution of (Ej ;) satisfying fM ™ =
0. Consider the following functional:

B:UT"" —R
~ (6.1)
(P,§) — B(P,§) = hp(¢, &) — i (P),

where UT" is the unit sphere bundle associated to (T, h) and g is related to g by: @ =
w + i0dy;. B is continuous on the compact set UT"Y, so it assumes its maximum at a point
(Py, &) € UTYY. In addition, for fixed P € M, ¢ € LIT};O — hp(¢,¢) is continuous on the

compact subset LITIl;O (the fiber); therefore it attains its maximum at a unit vector ¢p € LIT},’O,
and by the min-max principle we can choose ¢p as the direction of the largest eigenvalue of
Ap, Amax(Ap). Specifically, we have the following.

Lemma 6.1 (min-max principle). Consider

hp(&p,ép) = ggﬁié,aj’l’@'é) = Amax(Ap). (62)

For fixed P, we have maxy,¢ -1B(P¢) = B(Pép) = Amax(Ap) — @i(P); therefore
maxp,¢yeurto B(P, &) = maxpenm B(P, ép) = B(Po, é) < B(Py,¢p,); hence,

pmax B(P) = B(Pydn) = Amas (An) = (). (63)

At the point Py, consider efo,. .. ,e,ff an hp,-orthonormal basis of (Tl(’]o, hp,) made of eigen-

vectors of Ap, that satisfies the following properties:
(1) hp,-orthonormal: [hij(PO)]lgi,jgm =1I,.
(2) hp,-diagonal: [R;;(Po) |1« j< = MatAp, = diag(Ay, ..., Ap), A € Tk

(3) Amax(Ap,) is achieved in the direction ef‘] =¢p: Ap,(ép,) = dmax(Ap,)ép, = Miép, and
A > 2 A
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In other words, it is a basis satisfying

(D) [87(Po) i<ijem = Im,
(2) [87(P) 1zt jom = MatAp, = diag(l, .., An), L € T,
(3) )Lmax(APo) =l 2 2 A

Let us consider a holomorphic normal chart (U, ¢5) centered at Py such that ¢p(P) = 0 and
Oilp, = e foralli € {1---m).

6.2.2. Auxiliary Local Functional

From now on, we work in the chart (U, ¢) constructed at Py. The map P — g7(P) is
continuous on Uy and is equal to 1 at Py, so there exists an open subset U; C Uy such that
,7(P) > 0 for all P € U;. Let By be the functional

Bl:U1—>R

gﬁ(P) (6.4)

P = &11(P)

—(Pt(P)-

We claim that B; assumes a local maximum at Py. Indeed, we have at each P € U;:
£171(P)/&7(P) = gp(01,07)/8p(01,07) = hp(01,01)/hp(01,01) = hp(01/01lny,01/101]h,) <
Amax(Ap) (see Lemma 6.1); thus Bi(P) < Amax(Ap) — @1 (P) < Amax(Ap,) — ¢t (Po) = B1(Po).

6.2.3. Differentiating the Equation

For short, we drop henceforth the subscript ¢ of ¢;. Let us differentiate (Ey) at P, in a chart z:

_ o (il
tan N dFk[6;+gjz(p)ai?(p(P)]1gi,jSm . [al <g] aiﬂ(ﬁ)]lgi,jsm

" SF, 5 S . (6.5)
= '_Zl o5 [5 +8'%0; <P] (afg] O+ 8’ %z«p)-
ij= i
Differentiating once again, we find
toyf = i oh |67+ 87029] (9187010 + g 701,00
ij,1,5=1 anaB]
< OF
x (0787050 + 705 )+ Z B ][5]+3zea (P] (6.6)

(
(

x a118 aé<p+61g a1e‘P+alg %o; e+ 8 anze‘l’>



International Journal of Mathematics and Mathematical Sciences 21

Usmg the above chart (U, gp) at the point Py, normality yields g/ = 6/¢, 9,g; = 0 and

0.8" = 0. Furthermore [6] +g1€a 701 = [6] +0;5¢] = [g;5] = diag(Ay, ..., Aw). In this chart, we
can simplify the previous expression; we get then at P,

m az
to3f = D,

i,j,1,5=1 aBsaB]

(d1ag(/\1, ey )tm)) O1rs¢p ‘}11]"‘/’
(6.7)

m

+ g(ohag()q, ..,)Lm))@ﬁgﬁaw N 31@74))-

i,j=1

Besides, 3,78/ = 0r(-g/°g°0180z), so still by normality, we obtain at Py that 3,7/ =
~8/°8%0,780% = —0,78;7 — Ry7;7- Therefore we get

toy1f = Z (dlag()q, s Am)) <aﬁi7‘l’ - Ry ai?‘i’)

ij= 10
or (6.8)
k

+
l]rslaBsaB

- (diag (A1, ..., Am)) O1rstp Og5¢p-

6.2.4. Using Concavity

Now, using the concavity of In ok [10], we prove for Proposition 2.1 that the second sum of
(6.8) is negative [9, page 84]. This is not a direct consequence of the concavity of the function
F since the matrix [0,;¢]4; j<, is not Hermitian.

Lemma 6.2. Consider

S =

aBSaB’ £ (diag(A, - -, Am))B1rstp D560 < 0. (6.9)
i,j,r,5=1

Hence, from (6.8) combined with Lemma 6.2 we infer

& O'k—l,i()‘)
t3f <>, ) (011 — Ry7;:0:00)- (6.10)

i=1
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6.2.5. Differentiation of the Functional By

Let us differentiate twice the functional B:

§1I(P)

B1(P) = —o(P),
o 98T &i1%&T .
iP1L= T 5 ~ O
1 (&)
0557 0180 + 031058yt + §0sguT (6.11)
9581 i8179:817 t 0i8119:817 T 8119811
0;B1 = _ 2
811 (817)
23’11a §119; 811 _ o
(gu)
Therefore at Py, in the above chart (U1, ¢o) we find 0;B1 = 0;;(g;7 + 017¢) — M0;;817 — 03¢ =
Ry3; + 04359 — MRyg;; — 0;;9. Let us define the operator:
L'_Zak [6]+ 7"6 ] v/ 6.12
: 55 8 0¥y iem ) Vi (6.12)
i,j=1
Thus, we have at P,
e Ok-1,i(N) 3 A
L(By) —gl: o) (Oy37 + (1 = L) Rygz — 050). (6.13)
Combining (6.13) with (6.10), we get rid of the fourth derivatives:
td,7f — L(By) < i"" Ri:(h =14 +1)
1 1) = - O.k()t) 114 \ M1 i
(6.14)

Z 2 1,- )
=1

Since B; assumes its maximum at Py, we have at Py that L(B;) < 0. So we are left with the
following inequality at Py:

i A u i A —1,i A
= Z = 1()5) ) 1111)(/\1 Zl 07;. 1()5) ) Zl O’;.:,()f) ) + taﬁf' (615)
Curvature Assumption

Henceforth, we will suppose that the holomorphic bisectional curvature is nonnegative at
any P € M. Thus in a holomorphic normal chart centered at P we have R ;- (P) < 0 for all
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1 < a, b < m. This holds in particular at Py in the previous chart ¢j. This assumption will be
used only to derive an a priori eigenvalues pinching and is not required in the other sections.

Back to the inequality (6.15), we have ox(A) > 0 and oy_1,i(1) > 0 since A € Iy, and
under our curvature assumption (-R;7;) > 0 for all i > 2. Besides, A; < A, for all i; therefore
St (0k-1,i(L) /0K (L)) (=R3;) (A1 — ;) > 0. So we can get rid of the curvature terms in (6.15)
and infer from it the inequality

" Oko1,i(L) < Ok-1,i(A)
OZ—Z 1 )Li+§I;;T+taﬁf- (6.16)

6.2.6. A \i's Upper Bound

Here, we require elementary identities satisfied by the o,’s [11], namely:
Vi<é<sm op(d) =0¢i(A) + Aioe-1,i(A),

Vi<e<m D op1,i(M)i = €op()),
i1

. . < Ok-1,i(1)
so in particular ——— 2\ =k,
P 21: ok(4) (6.17)

Vi<esm 3 onh) = (m- 0o,

i=1

Ok-1,i(1) _ ok-1(\)

so in particular -k+1 .
P 20 o

i=1

Consequently, (6.16) writes:

_m-k+Doa () _ .t
i = k O'k()t) < kallf‘

(6.18)

So gk <1+(1/k)|0,7f|. Butat P, |V2f|§=2g“5gdg (Voo f Veaf+Vaaf Vgf) =230, (10 5+
|04 f17), then [0,7f| < |V?flg, and consequently gk <1+ (1/k)| fllc2() = Ci- In other words,
there exists a constant C; independent of t € [0, 1] such that

qrx < C1. (6.19)
To proceed further, we recall the following
Lemma 6.3 (Newton inequalities). Forall ¢ > 2, A € R™:

oe(oea(h) < I o 2 (6:20)
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Let us use Newton inequalities to relate gx to 07. Since for 2 < ¢ < k and A € I'x we have
o¢(A) > 0,00-1(A) > 0 and o,—2(A) > 0 (0p(A) = 1 by convention), Newton inequalities imply
then that ((m — € +2)/(€ — 1))(0¢-2(L)/0p1(A)) < (m =€ +1)/€)(0e-1(L)/0¢(N)), Or else
Ge-1 < qe, consequently gx > g1 > -+ 2 g2 = (m —1)o1()1)/202()). By induction, we get
o(V) < (@(m-€)/(m- 1)!)G€(A«)(q€)e_1 for all 2 < ¢ < k. In particular

k!(m - k)!

D) o () () . (6.21)

o1(A) <

But oy (1) < ?Ifll=(7); combining this with (6.19) and (6.21) we obtain at P, that

o1(\) < me?Wfle ()t =: . (6.22)

Hence we may state the following.

Theorem 6.4. There exists a constant C, > 0 depending only on m, k, || f||, and || f|| - such that for

Combining this result with the C° a priori estimate |[|¢; ll¢, < Co immediately yields the
following.

Theorem 6.5. There exists a constant C,, > 0 depending only on m, k, || f || . and Cq such that for all
PeM,forall1<i<m,)\i(P) <Cy+2Cy=:C,.

6.2.7. Uniform Pinching of the Eigenvalues
We infer automatically the following pinchings of the eigenvalues.

Proposition 6.6. Forall1 <i<m,—(m—-1)Cy < Li(Py) < Ca.

Proposition 6.7. Forall P € M, forall 1 <i < m,—(m—-1)C, < \;(P) < C,.

6.3. Uniform Ellipticity of the Continuity Equation

To prove the next proposition on uniform ellipticity, we require some inequalities satisfied by
the o/’s.

Lemma 6.8 (Maclaurin inequalities). For all 1< € <s for all A € T, (GS(A)/(’S))l/S <
(Ge(0)/ ()"

Proposition 6.9 (uniform ellipticity). There exist constants E > 0 and F > 0 depending only on
m, k, || f|l,, and Ca such that: E < 0x_1,1(A) < -+ < 0k-1,m(A) < F where A = A(Py).

Proof. We have 90y /M = 0k-1,1(A) < -+ < 0,1, m(A) < (’,’::%)(Cz)k_l =: F where, indeed, the
constant F so defined depends only on m, k, and C,. Let us look for a uniform lower bound
on ox_1,1(A), using the identity ox(A) = Aj0k-1,1(A) + 0,1 (). We distinguish two cases.
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Case 1. (0k,1(A) < 0). When so, we have ok () < Ai0k-1,1()); therefore ox_1,1(A) > ok(L)/A1.
But ok (1) > e 2l (") and 0 < Ay < Cy; hence ox_1,1 (L) > e 2/l () /Cs.

Case 2. (ok,1(A) > 0). For 1 < j < k-1, 0j(A2,..., ) = 0j,1(1) > O since j +1 < k and

A € I'k. Besides ok (A2, ..., Am) = 0k,1(A) > 0 by hypothesis, therefore (Ay,...,A,) € T'k1 =
{p € R™1/V1 < j < k, oj(f) > 0}. From the latter, we infer by Maclaurin inequalities
(G2, h) /(" NYE < (Ora (s ) /(BT or else (or1(M)/ (M) <
(0k-1,1(0)/ (7 NV, thus we have o 1(0) < (") (0k-1,1(0) /(5 )Y, conse-
quently

ok (L) = Li0k-1,1(A) + 0k, 1(A)

1+1/(k-1)
m-—1 Ok-1,1(1)
< Mok-1,1(4) + ( k ><_( ) > (6.23)

n1y fo o\ V6D
< 0k-1,1(L) [+ mk_l) < k;'-ll( ) :
(% )

Here, let us distinguish two subcases of Case 2.

(i) If ox-1,1(X) > ( ’,’(1_‘11 ), then we have the uniform lower bound that we look for.

(ii) Else or11(0) < (771), thus (ox11(A)/ (72N * Y < 1, therefore ox(A)
ok-1,1 (M) A+ (") /()] = oxe,1(M) (A + m/k - 1); then we get ok_1,1())
ok(N)/ (A1 +m/k—1) > e 2l (™) /(Cy + m/k - 1).

Consequently ox_1,1(A) > min(e2fle(7)/Cy, (771),e 21/l () /(Cy + m/k — 1)) or finally
Ok-1,1(A) > min((77), el () /(Co + m/k — 1)) =t E, where the constant E so defined
depends only on m, k, || ]|, and C,. O

IV IA

Similarly we prove the following.

Proposition 6.10 (uniform ellipticity). There exists constants Ey > 0 and Fy > 0 depending only
onm,k, || fll, and C, such that for all P € M, for all 1 <i < m, Eg < 0x_1,i(AM(P)) < Fo.

6.4. Gradient Uniform Estimate

The manifold M is Riemannian compact and ¢; € C2(M), so by the Green’s formula
1
= — A .
0(P) = iy | Qi@+ [ GP.Q)ap(Qdo,(Q), (624)

where G(P, Q) is the Green’s function of the Laplacian A. By differentiating locally under the
integral sign we obtain 0, (P) = fM Ap(Q)(0.4) pG (P, Q)dvg (Q). We infer then that at P in
a holomorphic normal chart, we have

(V)| < vam fMlAwt(Q)||VPG(P,Q)|dUg(Q)- (625)
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Now, using the uniform pinching of the eigenvalues, we prove easily the following estimate
of the Laplacian.

Lemma 6.11. There exists a constant C3 > 0 depending on m and C, such that | Agy|, v, < C.
Combining Lemma 6.11 with (6.25), we deduce that [(V¢;)p| < vV2mCs fM |VpG(P,
Q)ldvg(Q). Besides, classically [13, page 109], there exists constants C and C' such that

C 1 )
VGRS o fM g <C. (6.26)

We thus obtain the following result.

Proposition 6.12. There exists a constant Cs > 0 depending on m, C,, and (M, g) such that for all
P e M|(Vg)p| £Cs.

Specifically, we can choose Cs = v2m C3CC'.

6.5. Second Derivatives Estimate

Our equation is of type:
F(P, [0l 1zi jem) =0, PEM. (E)

6.5.1. The Functional

Consider the following functional:

®:UT — R
(6.27)

(2.2 (V) &0+ 51(Vp0),

2
g/

where UT is the real unit sphere bundle associated to (T'M, g). ® is continuous on the
compact set UT, so it assumes its maximum at a point (P, ¢;) € UT.

6.5.2. Reduction to Finding a One-Sided Estimate for (Vz(pt)pl (é1,¢1)

If we find a uniform upper bound for (V2(pt) p,(é1,¢1), since |[Vg|,, < Cs, we readily deduce
that there exists a constant Cg > 0 such that

(V1) ,(6,8) < Co ¥(P,¢) €UT. (6.28)

Fix P € M. Let (Up, ¢p) be a holomorphic g-normal g-adapted chart centered at P, namely,
[85(P) i jom = L 9eg5(P) = 0 and [§5(P) ]y e = [diag(La(P), .., 1n(P))]. Since |3y =
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V2, we obtain 8, (P) = 2(VZp:)p(0xi /2,05 /v2) < 2Ce and similarly Oyiyipr(P) =
2(V29;)p(0yi/v/2,0,/v/2) < 2Cg for all 1 < j < m. Besides, we have 0. ¢ (P) + 8,5, pt(P) =
40;51(P) = 4(1;(P) - 1) 2 —4[(m — 1)C; + 1]; therefore we obtain

B (P) > ~4[(m —1)Cy +1] - 2C¢ =: ~C5,
(6.29)
Oyiyipr(P) 2 -C7, VI<j<m.

Let us now bound second derivatives of mixed type Ourusp¢(P). Let 1 < r#s < 2m.
Since |0, :I:bxs|g = 2, we have (V2¢;)p((0x % 0xs)/2, (Oxr £ 0x:)/2) = (1/4)3xrrrips(P) +
(1/4)0xs2sp(P) £ (1/2)0xrxspr(P) < Cg, which yields £0,rxs¢p(P) < 2Cq — (1/2)0xrrtpe(P) —
(1/2)0xsxsp1(P), hence as well |0xrxs¢pr(P)| < 2C¢ + Cy. Similarly we prove that at P, in the
above chart grp, we have [0yr,s¢; (P)| < 2Cs+Cy forall 1 <7 #s < mand |0y, (P)| < 2C6+Cy
forall 1 < r,s < m. Consequently [0,,i¢p:(P)| < 2C¢ + Cy for all 1 < i, j < 2m. Therefore we
deduce that

(V1) <P>|: = }L S (Buwi(P))* < m*(2Ce + Cr)%. (6.30)

1<i, j<2m

Theorem 6.13 (second derivatives uniform estimate). There exists a constant Cg > 0 depending
only on m,C}, and Cg such that for all P € M, |(V2(Pt)p|g < Cs.

This allows to deduce the needed uniform C? estimate:

”‘P”CZ(M,R) <Co+Cs5+Cs. (6.31)

6.5.3. Chart Choice

For fixed P € M, ¢ € UTp — (V2¢;)p(¢,¢) is continuous on the compact subset UTp (the
fiber); therefore it assumes its maximum at a unit vector §P € UT)p. Besides, (V2<pt) pisa
symmetric bilinear form on TpM, so by the min-max principle we have (V?¢;)p(¢",¢P) =
maxger, M, g@,g)zl(v%pt) p(&,¢) = Pmax(P), where Prax(P) denotes the largest eigenvalue of
(V2¢;)p with respect to gp; furthermore we can choose ¢” as the direction of the largest
eigenvalue fiax(P). For fixed P, we now have maxger,m,gp(,6)=1P(P, &) = D(P, Py =
(V201)p (&7, ") +(1/2) (V) pl2 = Pmax (P)+(1/2)|(Vepr) plz, consequently max e, yeur (P, ¢) =
maxpem@(P, &) = ®(Py,é1) < @(Py,¢M), hence maxpgyeur D(P, &) = D(P1, &™) = Pmax(P1) +
(1/2)|(V‘Pt)1>1|§-

At the point P;, consider Efl,...,&';n a (real) basis of (Tp, M, gp,) that satisfies the
following properties:

() [i7 (P 1<, j<om = Tom,
(ii) [(Vz(Pt)ij(PO)]lgi,jSZm = diag(B1, ..., Pom),
(111) ,61 = ﬂmax(Pl) > ﬂZ > 2 ,62m'

Let (U, ¢1) be a C* g-normal real chart at P obtained from a holomorphic chart z, ..., z" by
setting (u!,...,u*™) = (x!,...,x™,y',...,y™) where z/ = x/ +iy/ (namely, (81 (P)]1gi, j<om =
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Iy, and 0, gij = 0 for all 1 < i, j, € < 2m) satistying ¢s1 (P1) = 0 and O,|p, = sfl, so that 0, |p, is
the direction of the largest eigenvalue fmax(P1).

6.5.4. Auxiliary Local Functional

From now on, we work in the real chart (U}, ¢1) so constructed at P;.
Let U, C U] be an open subset such that gi1(P) > 0 for all P € U, and let ®; be the
functional

@11112%&

_ (V) (P) 1 > (6.32)
PH(Dl(P) = 8'11—(1131) + §|(V(pt)P|g

We claim that @; assumes its maximum at P;. Indeed, (V2¢;);1(P)/g11(P) = (V?¢)p (0.,
aul)/gP(aull aul) = (VZ‘P)P(aul/|au1|gl au1/|au1 |g) < ,Bmax(P)/ SO (Dl(P) < ,Bmax(P) +
(L/2)(Vr)pl < Bmax(P1) + (1/2)|(Vepr) p, Iz, = @, (P1) proving our claim.
Let us now differentiate twice in the real direction 0,y the equation
F(P, (3] 1< jeom) = - (E*)
At the point P, in a chart u, we obtain
oF & OF
0uv = =[] + 1-% o [9] 0w - (6.33)
Differentiating once again
°F & O°F
Ot v = out o] + i,]Z:1 Briou’ [¢]Ouruiuip
2m 2 2m 2
0°F O°F
+ ‘Zﬂ [aularij [(P] + Zﬂ argsarij [‘P] au‘uguS (P] auluiuf(no (6-34)
1L,]= e,s=
2m
OF
pa W [(p] au1u1uiu;‘(p.
i,j=1 ]

But at the point Pj, for our function F(P,r) = Fi [5{ + (1/4)ng(P)(r,»g + T(ivm) (C+m) + iTi(erm) —
ir(i+mye) 1<, j<m, We have (0*F/0r;jou')[¢] = 0 since 9,1g1(P;) = 0. Hence, we infer that

0°F & OF
0y1,0 0 = W [(P] + ; j;:sﬂ W [(P] aulueub(/’ aulu"uf(P

(6.35)

+Z

1]1

ululu'ul @.
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6.5.5. Using Concavity

The function F is concave with respect to the variable r. Indeed

i 1 3 . .
F(P,r) = Fi|6] + Zgjg(P) (Tie + T(ism)(@sm) + iTi(esm) — lr(i+m)e)]
1<i, j<m
= Fx (g‘l(P)?>, where
~ 1 . .
7= (87 (P) + 7 (rij + TsmGomy + iiGjsm) = iTGiam))
1<i, j<m

_ Fk( 1/2(P)rg‘1/2(P)>

K (C)

= Fx(pp(r)), where

pP(r) = [6] 4 Z ( _1/2(P)>i€ <g_1/2(P)>sj (Tﬂs + T(e+m)(s+m) T iré(s+m) - ir(€+m)s)]
1<i, j<m

Z,s=1 <i,j<
(6.36)

but for a fixed point P the function r € Sy,(R) — pp(r) € H,,(C) is affine (where S,,,(R)
denotes the set of symmetric matrices of size 2m); we deduce then that the composition
F(P,-) = Fx o pp is concave on the set {r € Sy, (R)/pp(r) € A7 (Tk)} = pp' (A71(Tk)), which
proves our claim. Hence, since the matrix [0, ¢]1<; j<m 1S symmetric, we obtain that

2m 62 F

Tueus 1,i,i 0 < 0.
ijes=1 aresarij [(P] au ueu (Pau uiu P S 0 (637)
Consequently
2m oF
aululv - aululF [‘P] S 1.%1 E [(P] au1u1uiuj({). (638)

Let us now calculate the quantity d,1,1 F[¢] (at P;). Since 0,1¢*1(P;) = 0, we have

d*F

L s(A(P _
EE <P1/D2(P(P1)> Z Ok-1, ( ( 1)) % aululgss(Pl)asg(P(Pl). (639)

S o(M(P)

But at Py, 0,1,18%° = —g%°¢%° 0,11 845 and [g7]1; jem = 2L, then 1,0 g% = —40,1,1 55 so that
aululgss - —aulul Gss — aulul 8(s+m)(s+m)- Moreover Fz;us = (1 /2) (aufgos + ausgoj - auog]-s) gor’ thus
auirzj.us = (1/2)(Ouivi §rs +Ouius §rj — Ouiwr §js)- Similarly, we have at P : auiFZ;u, = (1/2)(0yiyi §rs +
Ouiwr §sj — Ouins gjr)- Consequently, we deduce that 0, grs = au,-r;,’.us + au,-r;j.u,. Hence, we have
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S+m

at Pp: aululgsg =20, F” —20,,T"
that at P;

Besides, Ogs¢p = (1/4) (Oysus @ + Oysemys+m(p), which infers

plystm*

Z Gk 1 S('/\'(Pl)) us S+m
BuwFly ; or(L(Py)) < 20w 26u11"u1u5+m> (6.40)

X }I(ausus(l) + au5+mus+m (/))

Consequently, the inequality (6.38) becomes

& OF 1 & 0k-1,s(M(P1))
Oy < [‘P i O — _Z s
i=1 arl-]- 2 )L(Pl)) (6.41)
(aulr et O rulum) X (B + Byssmysm ).
6.5.6. Differentiation of the Functional @,
We differentiate twice the functional @;:
(Vz‘/’)n(P) 1
O(P)= ——F—+
WP =)
9, (V2 v? 0,11 (P
8,/®,(P) = i1(V29), 3 (V)4 ’gzll( ) + 1 y
g11(P) g1 (P) 2
Oyini (V2 0, (V2¢) .0, g11(P)
8,y @1 (P) = (V) _ (V) y u2311 (6.42)
g1 (P) g11(P)
3 aui(vz‘l’)llaufgll (P) + (Vz‘/’)n (P)0yivig11(P)
gu(P)?
(V) (PBugn(P)ou | —— ) + 504 (V) oI}
. “\guepy ) 201ty
Hence, at P; in the chart ¢, we obtain
1 2
Bu®1 = 34 (V) = (V29) | (P)Buuign + 50 | (Vo) ol (Py). (6.43)
Let us now calculate the different terms of this formula (at P; in the chart ¢s):
auiu/ qu) = aufu/ aulul(p - Fqul aus(p
(5°), =5 ) »

= 6 iyl ul(p a u]r 6,45()0 6,4;1"“1”1 6uiustp — auirziul aujus(P.

ulu!
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Besides, we have szl-ul = (1/2)(0ui gs1 + 011 gsj — Ous j1) &% therefore we deduce that auirzj.ul =
(1/2)(0yii §s1 + Ouint §sj — Ouivss gjl)g51 +0 = (1/2)0,i,i g11; namely, 0,1 g1 = zauirzj.ul . Moreover,
we have at P;

2m
Buiui | (Vo) p|§ = By < S 0o (P>

r,s=1

2m

Z 0uini & °0urp Ous P + & °0yirinr P Ousp

r,s=1

+ 8704 Ouins P + § 0uinr 9 Oyiyis P + 8 0ur 9 Oyinyis (6.45)

2m 2m
— Z auiujgrsau,(l) aus(p +2 Z auiujus(p aus(p
r,s=1 s=1
2m
+2 Z Ouiyys (P Oyiyys P
s=1

s

But at Pi, 0,i,i " = —0,i,i Grs, in addition at this point 0,1, grs = 0yl Z]'.us + 0,1 ,; therefore

we obtain at P; in the chart ¢

2m 2m
Bua (Vo)ply = =2 3 0Ty, 0 @i +2 3, dunurpOucp
r,5=1 s=1

(6.46)
2m
+ 2 Z auius(p aujus(p.

s=1

Henceforth, and in order to lighten the notations, we use 0; instead of 0, and l"f]. instead of

I, s0 we have

3y ®1 = dy1p — OyT5,05p - 0T, Dustp — T390 ~ 20T, (V) | (P1)

11
2m 2m 2m (6.47)
- Z_l 0:T7,0, Os¢p + Zl Dijstp Ostp + Zl istp Ojstp-
Let us now consider the second order linear operator:
2m
= oF
L= — |¢]0j. )
25, (o]0 (6.48)
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Since the functional @; assumes its maximum at the point P;, we have i((I)l) <0 at Pj in the

chart ¢s1. Besides, combining the inequalities (6.41) and (6.47), we obtain

- 2m aF s ;
2 L0y -0uv > 3 =[] [Oup - ;15,05 — 0,17, 0gp

A ij=1 or;j
- aT], 959 - 20,1, (V) | (P1)
2m
- D, 00,905 (6.49)
r,s=1
2m . )
+ Z aijs(P Os(p + 5? (aiitp> - anij(/’]
s=1
1 & Ok-1, S(.)L(Pl)) s sim
+ 2 SZ or(A(P)) (alrls + alr1(s+m)> (aSS‘P + a(S+m)(S+m)(P)'
The fourth derivatives are simplified. Moreover, we have at P;:0,v = (OF/oul)[¢p] +

> L1 (0F/0r3j) [¢] Osijep with (OF/du')(P1, D*¢(P1)) = 0, consequently:

2m
0> 0110+ Z 050 Osp

s=1

ar; 91| - 20T} (V) | (P1) = 3T}, 955 - 8T} dugp
i, 1
" (6.50)

j 2
Z 0ij17,0s¢p — Z O F 3,4 0sp + 6! (Diitp)

r,5=1

Ok-1,s(M(P1)) 7 som
T2 Z or(M(PY)) (alrls + alrl(s+m)> (Bssp + Osem) (s+m)P)-

Let us now express the quantities o,I'! v 0; 1"]11, o.Tt

11, 0i il and 0;;I']; using the components of
the Riemann curvature (at the point P; in the normal chart ¢):

1

1
ol = 2| Rmi+ Rimn | = zRji,
%3 —— 3

=0
i1 2
o), = g(leli + Ryjtj) = §R1j1i,

2
SR,

oIt =
]+ 11 3

1
ol = §(R]'rsi + Rjisr),
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1 1
alris = § <Rlssl + Rllss> = §R1551,
=0

all—‘1(s+m) 3R1(S+m)(s+m)1,
1
0;;Iy, = Z(Vilels + ViRis1j + VjRys1; + V,-Rms)

1 1 1
- ﬁ(vsRlﬂj + VsRijii) = E(ViRlsli + VjRisi) - gvsRm]’-

(6.51)
We then obtain
2m
0>0nov+ Z 050 Os(p
s=1
2m
oF -2 )
+WZ: ors [¢] [ 3 ]111<V <P> (P1) - leh 0ji¢p — 3R111] Biitp
1
- Z V iRiqij + 3 V iRusti = gvsRlilj Ostp (6.52)

- Z (RIVS’ + R]’Sr)ar(P 0 s+ 6] (an‘P) ]

rsl

Z Ok-1,s(A(P1)) 1
"2

ox(AM(Py)) 3 (R1551 + Ri(ssm)(s+m) (aSS(P + O(stm)(s+m)P)-

6.5.7. The Uniform Upper Bound of p1 = (V2¢) p, (&1,¢1)

By the uniform estimate of the gradient we have [0;¢;| < Cs for all 1 < j < 2m. Moreover, at
Py in the chart ¢: [(Vz(P)ij(pl)]lgi,jg2m = [aij(p(Pl)]lsi,jSZm = diag(p, ..., Pom). Consequently

2m
0> d11v+ Y, 00350

s=1

oF ’
+ Z a rij [ ] [51] (ﬂl) ]H:ﬂl Rl]lzﬁ] Rlll]ﬂl - Z (R]rs, + R]lsr)ar(P (')S(p

b=l rsl
12m

1
_E Z (vl'RlSl]‘ + Vlesli - §V5R1i1j>as¢]

i Ok-1, I(A(Pl))

’ e (A(PY))

1
6 4 x (Ruiit + Rigiemy(ivmn ) (Bi + Piem)-
l

(6.53)
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But for F[¢] = Fk([ 4 g/ 6lg(p]1<l j<m) since Ogsp = (1/4)(Ousus + Oysemyson), we Obtain at Py in
the chart ¢ that

m 1 a<rss + T(s+m) s+m))
] = z; 5. (6.54)
Then
OF
<i#j< =
V1<i#j<2m arl] [¢] =0,
, OF OF 10F , ..
V1<i< — = = - —— (diag(A(P

sism o-lol O (o) i) lv] 433;( fag(A(P1))) (6.55)

_ 10k, (M)

4 or(M(Pr))
—_———
>0since A(P; )€l
Hence
aF
0> 0119+ >, 050050 +
110 ; U Osp Za Tii
1
[(ﬂl) + Rlzll (ﬁl zﬁl) +3 Z Rzrls ar‘/’ as‘P Z(V Rlslz - EV R1111>as‘/’] (656)
r s=1
1 & ok1,i(MP)) o, o 4B
+ G Z o (M(P) (Rlul + R1(1+m)(1+m)1) (,31 + ﬂz+m)'

i=

But at Py in the chart g5y, [|R||% = §%8% g 8% RabeaRijrs = Sy, ¢, 41 (Rabea)’; then [Rapeal < [IR|l,
foralla,b,c,d € {1,...,2m}, consequently

Z erls ar(P as(P

rsl

2}ww<ca ——amfwwgcaz
rs=l (6.57)

4
= Sn(CsPIRl

Besides, at P, in the chart ¢;, we have ||VR||§ = g% g% ¢ ¢V RapeaViRijrs =
> e de1(VeRabea)®, 50 |VeRabea| < |VR|, forall e, a,b,c,d € {1,...,2m)}, therefore

7
< Z IVRIl,Cs = 2m” ¢ IVRIl;Cs
= (6.58)

7
= ZmCs|[ VR,

n 1
Z <V Rlsll - V R1111> s@
s=1
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Hence at P in the chart ¢, we obtain

2m
~ton f - tZ OsfOsp 2 Z gf (o] [(ﬂi)z + gRlili(ﬁl - Zﬁi)]

Z Ok-1,i(A(Pr))
6

or(A(Py)) x (Ruiit + Riemy(iemn ) (Bi + Pism) — (6.59)

’ <Z 191 x [ CoIRL = St |

But [011f (P < [l fllc2(arys 105 f (PO] < [ fllc2ary and [0s¢p| < Cs for all s then

2m
~t011f =t 3,05 f 05 < || f [l oy (1 + 2mCs). (6.60)
s=1
Besides
& OF . OF OF Ok-1,i(A(P1))
v = o U — 6.61
= Orij o] ; Tii o] 5T(i+m)(i+m) ZZ ox(A(Py)) (661)

Consequently, we obtain

e 1+ 2mC5) > = [g] (1) + za 9] Ruse (1~ 26)

m

1 &G ok-1,i(M(Py))
Z ok (A(Pr))

1/ & ok-1,i(A(Pr)) 4 5, 2 7
+ §<Z W> x [—gm (Cs)“IIRIl - ng5||VR||g

i=1

x (Rt + Ri(iemy+my1) (Bi + Pim) (6.62)

Let us now estimate |§;| for 1 < i < m using f;. We follow the same method as for
the proof of Theorem 6.13. For all (P,¢) € UT, we have the inequality (VZ¢;)p(¢,¢) <
p1 + (1/2)(Cs)?; then at P in a holomorphic g-normal g-adapted chart ¢p, namely, a chart
such that [gi;(P)]lsi,jSm = I, agg,;(P) = 0 and [§i]ﬁ(P)]1§i,]-Sm = diag(Mi(P), ..., Am(P)), we
deduce that forall j € {1,...,m}

Oyi Oyi
ouni®=2(v), (35 75

Byiyipr(P) < 2B1 + (Cs)™.

> < 2p1 +(Cs)?,
(6.63)
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Since \;(P) > —(m - 1)C,, we infer the following inequalities:

Vie(l,...,m} Ouupi(P)>-4[(m-1)Cy+1] =2p; - (C5)?,

(6.64)
Byiyipr(P) > —4[(m - 1)Ch + 1] — 21 — (Cs)*.
Consequently
V1<i,j<2m |8,upi(P)| < 4P1 +2(Cs)? +4[(m - 1)Ch +1], (6:65)
[ ——— .
=IC9
in the chart ¢p.
Hence we infer that
2 2 138 2 2 2 2
|(v "’f>p|g =1 > @ua(P)* <m [4ﬁ1 +2(Cs)? + cg] VP. (6.66)

ij=1
But at P; in the chart s, |(V2¢;) P |§ = Zfﬂ (auiui(Pt(Pl))z = Zfz”} (ﬁ,-)z; consequently we obtain

Vi<i<om |B] <m(4pr+2(Cs)’ +Co). (6.67)

Thus
| (Ruini) (B1 - 26:) | < [Ruiwil (| ] +2|Bi])
(6.68)
< 3m| Rl (461 +2(Cs)* + Co).
Besides
| (Ruiir + Ri(ism)ismy1) (Bi + Bizm) | < (IRuiit] + | Rigiemyiemy1|) (| Bi] + | Biem]|)
(6.69)

< 4m||R|, (461 +2(C5)* + C).
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Hence

1 ok-1,1(A(Py))
i o) P

< Ok-1,i(A(P1))
+ <Z W) (=m)||Rllg (461 +2(Cs)* + Co )

Al @ +2mC5) >

i=1

Ok-1,i(A(P1))
+<21: ok (A(PD)) >< >|Rll 4y +2(Cs) + Co )

. (Z O 1,(1(1’1))) [ mCs||VR|l, - —mz(C5) IR ]

(6.70)

= ox(MP1))

Then

1 0x-1,1(A(P1))
i aam) P

Ok-1,i(A(P1))
(S S rr-0) o

i=1

Ok-1,i(A(P1))
' <Z W) [-emCsIVRI, - SRl

i=1

”fHCZ(M) (1+2mCs) >

But using the uniform ellipticity and the inequalities e~2lIfl., (™) < o (M(P)) < 2l fllm( "), we
obtain

Z’”: o1, i(MP)) _ me/-Fy

“ o(MP)) () (6.72)
o (M(P)) e,
, 6.73
GAP)) = (1) (6.73)
Then at P; in the chart ¢, we have
1e?WleEy o melflaFy /5
0> i P ( > IR]| <4ﬂ1 +2(Cs)? +C9> -

medlfl.E, 17 )
- 2P G VRl + 2RI = s (1 + 2mC)
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The previous inequality means that some polynomial of second order in the variable f; is
negative:

1 e 21l E me2lfll F 20
> (1) + ° (=3 ) IRl

4o YT
- % EmC|VRI, + 3m2(Co> IR, + 2mIRl (2(C3)? + cg)] (6.75)
=1 fllc2ay (1 + 2mCs).
Set
I:= i—0m2e4“f“w£—2||1<||g >0,
J = 4mze4”f”w£—2 gCSHVR“g " %m(C5)2||R||g " g(z(cs)2 +C) ||R||g] (6.76)
+ %Ib‘llcw)u +2mCs) > 0.
The previous inequality writes then:
(1)’ ~1p1 — ] <O. 6.77)

The discriminant of this polynomial of second order is equal to A = I? + 4] > 0, which gives
an upper bound for f;.

7. A C%>F A Priori Estimate

We infer from the C? estimate a C*># estimate using a classical Evans-Trudinger theorem
[18, Theorem 17.14 page 461], which achieves the proof of Theorem 1.2. Let us state this
Evans-Trudinger theorem; we use Gilbarg and Trudinger’s notations for classical norms and
seminorms of Holder spaces (cf. [18] and [9, page 137]).

Theorem 7.1. Let Q be a bounded domain (i.e., an open connected set) of R, n > 2. Let one denote
by R™" the set of real n x n symmetric matrices. u € C*(Q,R) is a solution of

Glu] = G(x, D2u> =0 on Q (E')

where G € C?(Q x R™™ R) is elliptic with respect to u and satisfies the following hypotheses.

(1) G is uniformly elliptic with respect to u, that is, there exist two real numbers A, A > 0 such
that

VxeQ, VéeR", A <G <x, Dzu(x)>§i§]~ < AR~ (7.1)
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(2) G is concave with respect to u in the variable r. Since G is of class C?, this condition of
concavity is equivalent to

Vx e Q W R, Gijke(x, D*u(x))gijes < 0. (7.2)

Then for all Q' CC Q, one has the following interior estimate:

[D2u] 4o <G (7.3)

where B € 10, 1] depends only on n, A, and A and C > 0 depends only on n, A, A, |ulz,qr, dist(€2', 0Q),
Gx, Gy, Gux et Gyyx. The notation G, used here denotes the matrix Gyx = [Gij x,]; je=1-n evaluated
at (x, D?u(x)). It is the same for the notations Gy, G,, and G [18, page 457].

7.1. The Evans-Trudinger Method

Let us suppose that there exists a constant Cy; > 0 such that for all i € N, we have
llollc2(ar gy < Cr1- In the following, we remove the index i from ¢, to lighten the notations.

In order to construct a C># estimate with 0 < ff < 1, we prepare the framework of application
of Theorem 7.1.

Let R = (Uj, ¢;)1<j<n be a finite covering of the compact manifold M by charts, and let
D = (0))1<j<n be a partition of unity of class C* subordinate to this covering. The family of
continuity equations writes in the chart (Us, ¢s) where 1 < s < N is a fixed integer as follows:

T BN (VLY ) O ~
Fk<[6i +8/% o g (X)W(x) o —tfods (x) —In(A;) =0

(Ei)

x € ¢s(U,) C R?™,

Besides, we have 0/0z,0zy = (1/4)(Dap + D (asm)bsm) + iDawem) — iD(armyp) Where the Dgps
denotes real derivatives; thus our equation writes:

G(X/ D? (‘Pt ° (I)?)) =0 x€ds(Us) CR™ with, (EZQ

i1 3 . .
G(x,r) = Fy < [5,] + Zng <¢;1(x)) (Fie + T(ixm)(e4m) + iTi(erm) — lr(i+m)e)] >
1<i, j<m (7.4)
—tfod. (x) —In(Ay).

This map G is concave in the variable r as the map F appearing in the C? estimate (cf. (6.36)),
(namely, for all fixed x of ¢s(Us), G(x,-) is concave on p(;l ) (A1 (T%)) C Som(R)). For all

s€{1,...,N}, let us consider Qg a bounded domain of R*™ strictly included in ¢ (Us):

Qg CC ¢ps(Us). (7.5)
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The notation S’ CC S means that S’ is strictly included in S, namely, that S c S. We will
explain later how these domains Q; are chosen. The map G is of class C? and the solution

@i = ¢ o Pl € CHQ, R) since ¢y € C**(M) with € > 5. The equation <Ez,t> on Qg C
¢s(Us) is now written in the form corresponding to the Theorem 7.1; it remains to check the
hypotheses of this theorem on Q,, namely, that

(1) G is uniformly elliptic with respect to ¢¢ = ¢; o ¢;1; that is, there exist two real
numbers Ay, Ag > 0 such that

Vx € Q,, V& €R¥™, AP <Gy <x, Dz(qrf)(x)>§i§,- < AP (7.6)

Moreover, we will impose ourselves to find real numbers \;, A; independent of ¢.

(2) Gis concave with respect to ¢sf in the variable r. Since G is of class C?, this concavity
condition is equivalent to

Vx € Q,, VG R Gy ke (x, Dz(qff)(x)>§ij§ke <0. (7.7)

This has been checked before.
(3) The derivatives Gy, G;, Gxx, and G, are controlled (these quantities are evaluated
at (x, D*(¢7)(x))).

Once these three points checked, and since we have a C? estimate of ¢ by C11, Theorem 7.1
allows us to deduce that for all open set Qi CC Q there exist two real numbers f; € ]0,1] and
Cste; > 0 depending only on m, A, A, dist(€2}, 0Q;), on the uniform estimate of ¢ |»,0;, and
on the uniform estimates of the quantities Gy, G,, Gxx, and G,4, so in particular ff; and Cste;
are independent of ¢, such that

[DZ(‘PtS)]ﬂs;g; < Cste,. (7.8)

The Choice of Qg and €,

Let us denote by K; the support of the function 6, o ¢;!:
K, = supp(@s o ¢;1> = ¢s(supp 0s) C Pps(Us). (7.9)

The set K, is compact, and it is included in the open set ¢, (U;) of R2" and R2™" is separated
locally compact; then by the theorem of intercalation of relatively compact open sets, applied
twice, we deduce the existence of two relatively compact open sets s and € such that

Ks c Q) cc Qs cC ¢ps(Us). (7.10)

The set Qg is required to be connected: for this, it suffices that K be connected even after
restriction to a connected component in Q; of a point of K; indeed, this connected component
is an open set of Q, since Q; is locally connected (as an open set of R*"); moreover it is
bounded since Q; is bounded.
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Application of the Theorem

Let f := min f; the norm || - || 24 is submultiplicative; then

o = 3500 dt) x (poo0)],
=1 (7.11)

N
< >|6s 0 ¢!
=1

2 |‘I’f|2,ﬂ;9's'

But, by (7.8) we have |¢7] 5.0 = g7l + [D*(¢7)]p,0, < lg5flaq, + Cstes < Cste, where
Cste;, depends only on m, A, A, dist(€2}, 0Qs), Cq1 (the constant of the C? estimate) and the
uniform estimates of the quantities Gy, G,, Gyx, and G,,. We obtain consequently the needed
C2%P estimate:

N
”‘Pt”gr,Z(M) < Z 050 ¢3!
s=1

250 X CSte; =: C12. (712)

Let us now check the hypotheses 1 and 3 above.

7.2, Uniform Ellipticity of G on Q;

Let x € Qg and ¢ € R*™:

2m

>, Gij(x, 1&g = d(G(x, ), (M) with M = [&g],; .., € Sam(R)
i,j=1
4 <Fk opy m)f M) (7.13)

= d(Fk)p¢;1<x)(r) . d(pd);l(x))r(M)

Let us recall that pp(r) = [6] + (1/4) 32,1 (§7/2(P))ig(§7/2(P)) o; (Feo + F(esmy(osm) + iTe(orm) —
ir(¢+myo) l1<i, j<m (cf. (6.36)); we consequently obtain

3 Gy (3 D) ()¢,

i, j=1

:d(Fk)pd,;l(x)(Dz(qxf)(x))' I:jI > (g_l/z(‘i’;l(x)))ie(g_l/z( El(x)>> . (7.14)

Z,0=1 o]

x(Mgo + M gamyorm) + iMe(osm) — iM(e+m)o)]

1<i, j<m
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In the following, we denote M := [(1/4)(Mgs + Mesmy(stm) + iMe(sim) — iM(esmys) l1<e s<m-

Thus

=~ =

M='<a§+gng+@gm—mmgﬂ € n(C)

1<¢,s<m

- |3 igeom) (g + i)
- = 1<, s<m

[1= ~
= _deés

] 1<€,s<m

(7.15)

Besides, let us denote d; = 0_1,/[A(g7 g (51 (x)))]/ 0k [M(g7' gy, (¢35 (x)))] and g~/? instead
of g7/2(¢;'(x)) in order to lighten the formulas. We obtain by the invariance formula (2.7)

that

2m

i,j=1

S G (x, DX (4 (1) )ity = d(Fi) g, e - ([817*M[g] ™)

ro1-1/27551 .1-1/
= d(Fi)gign,.. - (U] M[g] 1)
where U € U,,(C) with
Ulg] &, [s]7°U = diag(A1, ..., Aw)

we are at the point ¢, (x)

= i di(‘Ufg] " Mlg] M u)

11

(7.16)
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But by Proposition 6.10 and the inequalities e/l () < op(M(g7' g, (P))) < eVll= (), we
have for (6.72)

2l 211,
e B 487k (7.17)

(%) )

Combining (7.16) and (7.17), we obtain

2llfll 2m
‘116 (k)EO (Zl| ol > s ,Z_lcii<fo2(‘lff)(x)>§i§j
l N (7.18)
le2|\f|\m1:0 m P
Siom <§|cx1| >
But
2
2l = 3.6 ([s1 )
i=1 i=1 | j=1 ji
m m 12 m o =Ya
= ;(; ]([ ] U>ﬁ> <; §g<[g] ll>€1>
] f,;l{z-l (I ]*”2u>ﬁ<[ ]1/211)&}5,;@
— < -1/2 <t 172 ~=
) j;1<<[g] u> <[g] u>)je] ¢
(7.19)
And ([g]™/2) < (g1 720) =[] AUT g7 = (g1 gl 7 = (91211 = 917
then
Dl = >, ([g]_1> 5= Z ol ;1(x)>§g~ (7.20)
i=1 je=1 fe

Consequently, and since [¢|> = ]2, the checking of the hypothesis of uniform ellipticity of the
Theorem 7.1 is reduced to find two real numbers 19, A9 > 0 such that

| Z (97 (0) ey < A 5|2- (7.21)

VxeQ,, VieC", A°
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By the min-max principle applied on C™ to the Hermitian form <X,Y> o1 (,)=

g“g((j);l (x) XY, relatively to the canonical one, we have

b |87 (87 @) JHT < 3 e (97 )8

ab=1 (7.22)
SN PRI

1<a,b<m

1<a,b<m

But the functions P — Amin [g“E(P)]Ka,bSm and P — )Lmax[g“E(P)]lga,bSm are continuous on

$51(Qs) € U which is compact since it is a closed set of the compact manifold M (cf. (7.5) for
the choice of the domains €;), so these functions are bounded and reach their bounds; thus

<P51;;i?9s))tmin [gaE(P)] 1Sa,b§m> % ‘§|2 < a,bZ=1 gug <¢;l (x)>§agb

- -/

=g

(7.23)
b ~2
< )‘max ab P .
- <Pe% [g ( )]1<a,b<m> X |§|
e
By the inequalities (7.18) and (7.23), we deduce that
o 2 2
As é| <> GiJ'(fo (‘I’ts)(x)>§i§j < As §|
ij=1
=21 fllo
with 1= 2 =Fojo 7.24)
4 ()
1eLF,

N M

The real numbers A; and A, depend on k, m, ||f||_, Eo, Fo, g (Us, $s), and Qg and are
independent of f, x and ¢, which achieves the proof of the global uniform ellipticity.

7.3. Uniform Estimate of G,, G,, G,,, and G,

In this subsection, we estimate uniformly the quantities Gy, G;,Gxx, and G, (recall that these
quantities are evaluated at (x, D*(¢?)(x))) by using the same technique as in the previous
subsection for the proof of uniform ellipticity (7.24).

We have

2m aG
GsP = [[GxJicizan|” = 21Gu* where Gy, = 22 (x, D2(¢) (). (7.25)
i=1 t
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For (7.14), we obtain

m (')(gq"’ ¢ >
G = d(Fi) g1, 9 o1 ° ;a—xl(x)aof“’t(‘l’s (x)
| - 1<0,qsm (7.26)
Mo
o(fo¢i')
—ta—xi(x)

and for (7.16), we infer then by the invariance formula (2.7) that

d;(‘um° —t—=($; (x)),
;1 j(umeu) -tz (90 () (7.27)
where U € U,(C) such that (‘U g*1§¢t(¢s (en]Uu = diag(Ay,...,Ap) and d; =

Ok-1,i[Mg 7 8y, (51 (X)) ]/ 0k [Mg 7' Gy, (P51 (x)))]. We can then write:

Gy, = Z AU U 4 MG, - ﬂ( ;1(x))

i

jpq=1
~ m - m agq? 5 ) ., af B
- j/%:ld]uplufﬁ <; W( s (x)>apg‘;0t< s (x)> _t$< s (x))
2[1f1los
Thus |Gy,| < eV -F T, juy| (7.28)
X 1<a, bg:néi(slﬁmp;;% ”‘Pt”cZ(M,R) + 1l (MR)"
But U € U, (C); then [U,j| < 1forall 1 <g, j < m, consequently
2fl F, 1
|G| < 1 (k) As el ez + 1 leaamy- (7.29)

<C11(C? estimate)

which gives the needed uniform estimate for G,:

NN
Gt Vot SN + e ) o0
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Similarly
) P 2m 9
|Gr| = |[qu]1§p,q§2m| = Z |qu ’
p.a=1 (7.31)
oG
where G,, = — x,D2<<lfs)(x) .
Pa aﬁw< ¢ )

And we have

“ (7.32)

-

e

Gpq = d(Fi) (g1, 051 [Z g (9:') (E;;)ié] ’
1<, j<m

=M!

where E,; is the m x m matrix whose all coefficients are equal to zero except the coefficient

pq which is equal to 1, and the matrix (E;;) is obtained from E,; by the formula M =
[(1 /4) (Mes + M(€+m)(s+m) + iMé(s+m) - iM(€+m)s)]15€,sgm/ thus

m
Gpg = D, d;(UM'U);, (7.33)
j=1

where U and d; are as before for G,.
Since |(Epq) ;31 <1 forall 1 <i,€ < m, we obtain for G, that

2
LA Ey

Gpg| <M —=5— A5,
|P‘1| (k) s

(7.34)

where A2 = maxj<, p< Max | g“E(P) |, which gives the needed uniform estimate for G,:

Pep;H(Qs)

|G| < 2m ezl(ng 0A2, (7.35)
Concerning G, we have
Gerl” = “Gx’gxq]kpqum 2 ) p§1 G 2’
s (7.36)
where Gy, = %(x, D? (qrf)(x)).
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A calculation shows that

Gy = 6x7’6fx‘1 <¢5 (x )>

+i,j,n; 10 aFk( _1%( _1 >]>a?;‘gg;< ;1(x)>aiz(/)t<¢s_l(x)>
s PR (15 (7.37)
i ij, Z,#Zo,vzl 932625 <[g 1 " ( (x)>]>
)

x %L; (') %%i: (9510 tpe (957 () ) 00pe (451 () )-

All the terms are uniformly bounded; it remains to justify that the term in second derivative
¢ is also uniformly bounded:

& = d*(Fy) - (Euo, Eij)  then by the invariance formula (2.7)

(8718, (¢35 (x))]
z"’: 0%Fy
a,b,c,d=1 aBbaBd

[diag(A1, ..., Am) ] (UEU) 5 (UE;U) o, (7.38)

where U € U,,(C) is like before.

But we know the second derivatives of Fi at a diagonal matrix by (2.5). Besides, we have
0 < ok1,i(A)/ox(V) = d; < eAflwFy/ () by (7.17), and since e 2Mfll= (%) < ok ()), it remains
only to control the quantities |ok_2,j(A)| with i #j to prove that £ is uniformly bounded. But
since A € I'y, we have ox_»,;j(1) > 0 [11]. Moreover, by the pinching of the eigenvalues, we
deduce automatically that

o2y < (123 = F, (7.39)

which achieves the checking of the fact that Gy, is uniformly bounded.
Similarly, we establish a uniform estimate of G, using this calculation:

Gy pg = m(x/D (7))

2[5 (7)) o (97 ) (),

z]é:la
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N o°F -
+iff'frv244,y=1 W;qug "o (¢sl(x)>]>

X

98 (8510 (471 (0) 7 (81 9) (Brn)
(7.40)

which achieves the proof of the C> estimate.
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