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We consider families of general four-point quadrature formulae using a generalization of the Mont-
gomery identity via Taylor’s formula. The results are applied to obtain some sharp inequalities for

functions whose derivatives belong to L, spaces. Generalizations of Simpson’s 3/8 formula and
the Lobatto four-point formula with related inequalities are considered as special cases.

1. Introduction

The most elementary quadrature rules in four nodes are Simpson’s 3/8 rule based on the
following four point formula

Jf(t)dt 2@ (35 (52 + s - b0,

where ¢ € [a, b], and Lobatto rule based on the following four point formula

f_lf(wdt = %[f(—l) +5f<—%5> +5f<%5> +f(1)] e (O, (12
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where 1 € [-1,1]. Formula (1.1) is valid for any function f with a continuous fourth
derivative f® on [a,b] and formula (1.2) is valid for any function f with a continuous sixth
derivative f© on [-1,1].

Let f : [a,b] — R be differentiable on [a,b] and f': [a,b] — R integrable on [a, b].
Then the Montgomery identity holds (see [1])

1 b b
f(x) = mj f(t)dt+j P(x,t)f'(t)dt, (1.3)
where the Peano kernel is
t—a
b_a ast<x,
PGt)=q (14)
m, x<t<b.

In [2], Pecaric¢ proved the following weighted Montgomery identity

b b
f(x) =f w(t) f (1)t + f Po(x,t)f (1), (15)

where w : [a,b] — [0,00) is some probability density function, that is, integrable function,
satisfying f: w(t)dt =1, and W(t) = _[; w(x)dx fort € [a,b], W(t) =0fort <aand W(t) =1
for t > b and Py (x,t) is the weighted Peano kernel defined by

W (t), a<t<ux,

(1.6)
W(t) -1, x<t<b.

P, (x,t) = {

Now, let us suppose that I is an open interval in R, [a,b] C I, f : I — Ris such that f™ is
absolutely continuous for some n > 2, w : [a,b] — [0, 00) is a probability density function.
Then the following generalization of the weighted Montgomery identity via Taylor’s formula
states (given by Agli¢ Aljinovi¢ and Pecaric¢ in [3])

b n-2 (i+1)(x) b o
f(x) = L w(t)f(H)dt - gf(l )1 L w(s)(s —x)"ds
(1.7)
b
+ ﬁ J‘ Twn(x, s)f(")(s)ds,
where x € [a,b] and

JS wu)(u-s)"'du, a<s<x,

Twn(x,s) = a (1.8)

b
—I w(u)(u—-s)"'du, x<s<b.
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If we take w(t) =1/(b—a), t € [a,b], equality (1.7) reduces to

n-2 b- x)i+2 _ (a _ x)i+2

fla)= fb Fhdt- 3 FiD ()
" b-a), (i+2)(b-a)

i=0

(1.9)
1 b
M f Ta(x,s) f™ (s)ds,
where x € [a,b] and
(a-9)"
_n(b_a)/ aSSSx/
Tu(x,s) = (1.10)
(b-9)"
—m, x<s<b.

For n =1, (1.9) reduces to the Montgomery identity (1.3).

In this paper, we generalize the results from [4]. Namely, we use identities (1.7) and
(1.9) to establish for each number x € (a, (a + b) /2] a general four-point quadrature formula
of the type

b
[Cwisw=(5-400) @+ £(0)
+A(x)[f(x) + f(a+b-x)] + R(f,w; x),

(1.11)

where R(f, w; x) is the remainder and A : (a, (a + b)/2] — R is a real function. The obtained
formula is used to prove a number of inequalities which give error estimates for the general
four-point formula for functions whose derivatives are from L,-spaces. These inequalities are
generally sharp. As special cases of the general non-weighted four-point quadrature formula,
we obtain generalizations of the well-known Simpson’s 3/8 formula and Lobatto four-point
formula with related inequalities.

2. General Weighted Four-Point Formula

Let f : [a,b] — R be such that f"V exists on [a,b] for some n > 2. We introduce the
following notation for each x € (a, (a + b) /2]:

D(x) = <% —A(x)) [f(a) + f(b)] + A(x)[f(x) + f(a+b-x)],
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n—2f(i+1)(x) b i
ton(x) = A(x) [% ) L w(s)(s — x) 1ds
n-2 £(i+l) _ b
+ZW J w(s)(s—a—-b+ x)i“ds]
i=0 : a

1 n—2f(i+1)(a) b .

+<§—A(x)>[i§ i) Lw(s)(s—a) ds
n-2 f(i+1)(b)
< (i +1)!

b
f w(s)(s - b)”lds],
~ 1
Twn(x,s) = — (E - A(x)) [Twn(a,s) + Twn(b,s)] = A(x)[Twn(x,8) + Tywn(a+b-x,s)]

(_<% + A(x)> Jj w(u)(u—s)"du

+<%—A(x)) wa(u)(u-s)"-ldu, a<s<yx,

Il
.

a

s b
_% U w(u)(u—-s)""'du —f w(u)(u - S)"_ld”]r x<s<at+b-x,

_<% - A(x)> r w(u)(u - 5)" " du

b
+<%+A(x)>f w(u)(u—s)"du, a+b-x<s<b.

\

2.1)

In the next theorem we establish the general weighted four-point formula.

Theorem 2.1. Let I be an open interval in R, [a,b] C I, and let w : [a,b] — [0,00) be some
probability density function. Let f : I — R be such that f®V is absolutely continuous for some
n > 2. Then for each x € (a, (a + b) /2] the following identity holds

b b
L w(t) f(£)dt = D(x) + by (x) + ﬁ f Twn(x,8) f™ (s)ds. (2.2)

Proof. Weputx=a, x=x, x=a+b-xand x =bin (1.7) to obtain four new formulae. After
multiplying these four formulae by 1/2 - A(x), A(x), A(x) and 1/2 — A(x), respectively, and
adding, we get (2.2). O

Remark 2.2. Identity (2.2) holds true in the case n = 1. It can also be obtained by taking
X=a,x=x,x=a+b-xand x = b in (1.5), multiplying these four formulae by 1/2 —
A(x), A(x), A(x) and 1/2 — A(x), respectively, and adding. In this special case we have

b

b
I w(t) f(t)dt = D(x) +I Tw,l(x,s)f'(s)ds, (2.3)

a
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where

fwll(x, s) = — (% - A(x)> [Twala,s) + Tywa(b,s)] — A(x)[Twi(x,8) + Tyi(a+b-x,s)]

- (% - A(x)) [P(a,5) + Pu(b,5)] = A(x)[Pu(x,5) + Pu(a+b-x,5)]

.
%—A(x)—W(s), a<s<ux,
1

=<§_W(s), x<s<a+b-x,

\%+A(x)—W(s), a+b-x<s<b.
(2.4)

Theorem 2.3. Suppose that all assumptions of Theorem 2.1 hold. Additionally, assume that (p, q) is
a pair of conjugate exponents, that is, 1 < p, g < o, 1/p+1/q =1, let f™ € LP[a,b] for some
n > 1. Then for each x € (a, (a + b) /2] we have

b
1 _
_ — - . (m)

L w(®) f ()t = D) ~ tun ()| < =gy, |Ton(x, )||q|| £ - (2.5)
Inequality (2.5) is sharp for 1 < p < co.
Proof. By applying the Holder inequality we have

L’[‘bfwn(x s)f™(s)ds| < #”Twn(x 5 | ”f(") . (2.6)

(n-1t), = T (n-DHETEE Mg p

By using the above inequality from (2.2) we obtain estimate (2.5). Let us denote Uj(s) =
Ty n(x, s). For the proof of sharpness, we will find a function f such that

b
' [ uzer s opas] = w0 7)
For 1 < p < oo, take f to be such that
f0(s) = signUi(s) - 15 (s) 077, (28)
where for p = co we put
f(") (s) = signU;,(s). (2.9)
O

Remark 2.4. Inequality (2.5) for A(x) = 1/4 was proved by Agli¢ Aljinovi¢ et al. in [4].
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3. Non-Weighted Four-Point Formula and Applications

Here we define

(b _ x)i+2 _ (a _ x)i+2

ba(x) = A(x)f[f““’(x) + (D) @+ b-x)]
i=0

(i+2)\(b-a)
1 (3.1)
b i+
Tu(x,s) = — n{ (% - A(x)> [Tu(a,s) + Tu(b,s)] + A(X)[Tu(x,s) + Tu(a+b - x,S)]}
(/1 (a—s)" 1 (b-s)"
<§+A(x)>m+<§—A(x)> b-a) a<s<x, 62
= 3 <“_3)<1t(f>_s’", x<ss<a+b-x

1 (a-s)" 1 b-9)"
k(E—A(x)>m+<§+A(x)>W, a+b-x<s<b.

Theorem 3.1. Let I be an open interval in R, [a,b] C I, and let f : I — R be such that f("‘l) is
absolutely continuous for some n > 1. Then for each x € (a, (a + b) /2] the following identity holds

b b
ﬁ j f(t)dt = D(x) + £, (x) + % f T, (x,s) f™ (s)ds. (3.3)

Proof. We take w(t) =1/(b—a), t € [a,b] in (2.2). O

Theorem 3.2. Suppose that all assumptions of Theorem 3.1 hold. Additionally, assume that (p, q) is
a pair of conjugate exponents, thatis, 1 < p, g < oo, 1/p+1/q = 1 and f™ € LP[a,b] for some
n > 1. Then for each x € (a, (a + b) /2] we have

1 (* _
_— — — (n)
‘b — L f(t)dt —D(x) —t,(x)| < (3.4)
Inequality (3.4) is sharp for 1 < p < co.
Proof. We take w(t) =1/(b—a), t € [a,b] in (2.5). O
Now, we set
~ (b-a)? a+b
A(X) = m, X € <11, T . (35)

This special choice of the function A enables us to consider generalizations of the well-known
Simpson’s 3/8 formula (1.1) and Lobatto formula (1.2)
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3.1.x=R2a+b)/3

Suppose that all assumptions of Theorem 3.1 hold. Then the following generalization of
Simpson’s 3/8 formula reads

. f:fu)dt _ D(2”3+ b) +fn<2”3+ b ) . f’ T,,<2“3+ b,s)ﬂ")(s)ds, (3.6)

where

D<2a3+b> 1<f() 3f< a+b> 3f<a+2b>+f(b)),

m<2a+b>::%§%[(HD<2a+b)+%_Dﬂ{ﬂﬁn<agzb)]P”2+é;3jﬂ;;—aYH

1n . ) (b_a)i+1
- (1+1) _1\i+1 £(i+1)
8%” (@) + (D" @) 2
(3.7)
<2a+b ): —f[nxms)+3n(%5igs)+3n<a+2@s>+14hsﬂ
8 3 3
7(a—s)"+(b-s)" a<s<2a+b
8(b-a) -0 - 37
) (@a-s)"+({b-9)" 2a+b<s<a+2b
B 2(b - a) ’ 3 - 3 7
(a-9)"+7(b-s)" a+2b
| 8(b-a) 5 <ssb

In the next corollaries we will use the beta function and the incomplete beta function
of Euler type defined by

1 r
B(x,y) = I 1 (1-1¥'dt, B, (x,y) = f £l -1 tdt, x,y>0. (3.8)
0 0
Corollary 3.3. Suppose that all assumptions of Theorem 3.1 hold. Additionally, assume that (p, q) is

a pair of conjugate exponents and n € N.

a) If f™ € L*°[a,b], then

1 (" 2a+b
‘mJ-a f(t)dt_D< 3 )‘ - 288(b a)”f ”oo’
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‘b}_af:f(t)dt_l)ca;b)_?n<2a3+b>|

L1 [37+1 43271 4+ 3(-1)"] (b - a)"
= (n+1)! 4. 3n

b-a\"[ ()" +1 )
) [l e
(3.9)
(b) If f™ € L?[a,b], then
1 (* 2a+b\ - /2a+b
‘—b_ajf(t)dt—D< . )t( . )'
p 1 [32n+5,22n+1+11] (b_a)ZH—l . (_1)n(b_a)2n—1
= nl 32-321(2n + 1) 32
1/2
x[7B(n+1,n+1)+9Bz/3(n+1,n+1)—9B1/3(n+1,n+1)]) ||f<"> ,
(3.10)
(c) If f™ € L'[a,b], then
1 (* 2a+b\ - /2a+b 1 2a+b
L _ _ 2 (n)
‘b—aLf(t)dt D< 3 ) t"< 3 )‘Sn!K"< 3 >||f yo G

where K1((2a+b)/3) =5/24, K»((2a+b)/3) = (5/18) (b-a), K3((2a+b)/3) = (7/54)(b - a)*
and K,,((2a +b)/3) = (1/8)(b - a)" ™, for n > 4.
The first and the second inequality are sharp.

Proof. We apply (3.4) with x = (2a+b)/3 and p =

b (2a+b)/3 n n
~ [2a+Db 3 7(a-39)"+(b-s)
[RAGSDI S sh-a) |
(a+2b)/3 o\ o\ b o\ o\
+I (a=98)"+((b-59) ds +J‘ (a=s)"+7(b-5s) ds
(2a+b)/3 2(b-a) (a+2b)/3 8(b-a)

[37+1 —2m+1 1 7. (=1)"] (b - a)"

=2
8371 (n+1)
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(2"+1 + (—1)”*1) (b -a)" (1 + (—1)"“) (b-a)"
3n+(n + 1) - 2n+1 (4 1)

[3*1+3- 2014 3(-1)"|(b-a)"  /b-a\"[(-1)"" +1
4371 (n+ 1) _< 2 > 2(n+1) |

(3.12)

forn >2and

25
= (b-a). 3.13
ds = 5ec(b—a) (3.13)

b
~ /2a+Db
Ln( 3 ’S)

To obtain the second inequality we take p =2

by 2 (2a+b)/3 o\ o\ 2
J‘ Tn<2a+b,s> _ J‘ 7(a—-s)"+(b-s) ds
a 3 a S(b - a)
(a+2b)/3 o\ a2 b o\ a2
+J‘ (a=35)"+(b-5s) ds+f (a-s)"+7(b->s) ds
(2a+b)/3 2(b-a) (a+2b)/3 8(b-a)
_Bres 2t nj(e-a™ ()" - )
32-321(2n +1) 32
x[7B(n+1,n+1)+9By3(n+1,n+1)-9By,3(n+1,n+1)].
(3.14)
If p =1, we have
sup Tn<2u+b,s>': max sup 7(a-3)"+(b-ys) ,
s€[ab] 3 se[a,(2a+b) /3] 8(b—a)
(a=s)"+({b-5)"
su 3.15
s€[(2a+b) /3§u+2b) /3] 2(b-a) ( )

(a-=s)"+7(b-3s)"
8(b—a)

sup
se[(a+2b)/3,b]

I

By an elementary calculation we get

(a-s)+7(b-5s)
8(b-a)

sup 7(a-s)+(b-5s)

5
=57 (b - [1),
sela,2a+b) /3] 8(b-a) 24

= sup
s€[(a+2b)/3,b]
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7(a—s)*+(b-s)’ —8)2+7(b-9)?| 11
sup (a=s)"+(b-s)"| _ sup (a-5)°+7(b-s)"| _ LI
sela(2a+b)/3] 8(b-a) sel(as2b)/3] 8(b-a) 72
7(a—-s)"+ (b (a-s)"+7(b-s)"| (b-a)"!
sup sup = ,
sela,2a+b) /3] 8(b-a) sel(a+2b)/3] 8(b-a) 8
(3.16)

forn > 3. The functiony : [a,b] — R, y(x) = (a-x)"+(b - x)",is decreasing on (a, (a+b)/2)
and increasing on ((a + b)/2,b) if n is even, and decreasing on (a, b) if n is odd. Thus

—s)" " 1" +2") (b - a)"!
sup (a-s)"+(b = (1) )y(l 4) . (3.17)
se[(2a+b)/3,(a+2b)/3] 2(b-a) 2-3
Finally,
sup T <2a+b s) > (3.18)
1 s = 54 .
s€la,b] 3 24
and forn >2
2a+b i 1 2"+ (-1)"
el L(557)| - -t man{ 555 G192

2. [a,b] =[-1,1], x =—-/5/5

Suppose that all assumptions of Theorem 3.1 hold. Then the following generalization of
Lobatto formula reads

! 1
SRLES D<_?> oo <'?> ol T <‘§'S>f M(s)ds,  (3:20)

D<—“§> - 12<f< 1 +5f<—£> +5f<\/;> +f(1)>,
/t\n< ?) — _zrglif(l+l)< \/§> " (—1)i+1f(i+1)<?>:|

<5 N \@>i+2 N (_1)i+1 (5 3 \@>i+2
2-502(i +2)!

where

X

n-2
+ 1122[f(1+1)( 1)+ (- 1)1+1f(z+1) (1)]

pr (i +2)"
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. v/5 n V5 V5
T, <_?,s> = - E[Tn(—l,s) +5Tn<—?,s> +5Tn<?,s> +Tn(1rs)]

n n
11(-1-8)"+(1-5s) _1<s<_\/_§,
24 =7= 5
_J(1-9)"+(1-5) —§<SS§,
4 5 5
(-1-9)"+11(1-5)" /5
— <
o7 5 <s<1

(3.21)

Corollary 3.4. Suppose that all assumptions of Theorem 3.1 hold. Additionally, assume that (p, q) is
a pair of conjugate exponents and n € N.

(a) if f™ € L*[-1,1], then

1 (! V5 101 /5 :
[ roa-n(-2)|< (G- 2.

1
b oeo)5(%)

n+l n+l 3.22
_ 2’”1-5"+<5+\@>+—<—5+\/5>+ (22
= (n+1)! 1257
1+ (-1)™! )
| P
(b) if f™ € L2[~1,1], then
1 V5\ <[ V5
oo 9)(F)
2n+1 2n+1
| o2 (35(5+5) +85(5-+5) +107
< .
—n! 3 10241 (2n + 1)
(3.23)

+(-D"[11B(n+1,n+1) +25Bs. 5 10(n+1,n+1)

1/2

~25B(5_/5)/10(n +1,n+1)] ”f(n)

y
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() if f € L'[-1,1], then

1
b oo ) (D)t

where K1(=+/5/5) =1/(2V/5), K2(-v/5/5) = 3/5, K3(~v/5/5) = 8/ (5V/5), Ka(~v/5/5) = 28/25,
K5(=+/5/5) = 88/(25v/5), K, (—V/5/5) = 2"3/3, for n > 6.
The first and the second inequality are sharp.

p (3.24)

Proof. Applying (3.4) with [a,b] = [-1,1], x = —v/5/5and p = co,p = 2,p = 1 and carrying
out the same analysis as in Corollay 3.3 we obtain the above inequalities. O

References

[1] D. S. Mitrinovi¢, J. E. Pecari¢, and A. M. Fink, Inequalities Involving Functions and Their Integrals
and Derivatives, vol. 53 of Mathematics and its Applications (East European Series), Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1991.

[2] J. E. Pecari¢, “On the Cebyéev inequality,” Buletinul Stiintific al Universitdtii Politehnica din Timisoara.
Seria Matematici-Fizicd, vol. 25, no. 39, pp. 10-11, 1980.

[3] A. Agli¢ Aljinovi¢ and J. Pecari¢, “On some Ostrowski type inequalities via Montgomery identity and
Taylor’s formula,” Tamkang Journal of Mathematics, vol. 36, no. 3, pp. 199-218, 2005.

[4] A. Agli¢ Aljinovi¢, J. Petari¢, and M. Ribi¢i¢ Penava, “Sharp integral inequalities based on general
two-point formulae via an extension of Montgomery’s identity,” The ANZIAM Journal, vol. 51, no. 1,
pp- 67-101, 2009.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



