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The Dirichlet problem for the 2D Helmholtz equation in an exterior domain with cracks is studied.
The compatibility conditions at the tips of the cracks are assumed. The existence of a unique
classical solution is proved by potential theory. The integral representation for a solution in the
form of potentials is obtained. The problem is reduced to the Fredholm equation of the second kind
and of index zero, which is uniquely solvable. The asymptotic formulae describing singularities of
a solution gradient at the edges (endpoints) of the cracks are presented. The weak solution to the
problem may not exist, since the problem is studied under such conditions that do not ensure
existence of a weak solution.

1. Introduction

The 2D Dirichlet boundary value problem for the Helmholtz equation in an exterior multiply
connected domain bounded by closed curves is considered in monographs on mathematical
physics, for instance, in [1–3]. The review on studies of the Dirichlet problem for this equation
in the exterior of cracks is given in [4]. The present paper is an attempt to combine these
problems and to consider exterior domains containing cracks. From a practical stand point
such domains have great significance, because cracks model both cracks in solids and wings
or double-sided screens in fluids.

So, we study Dirichlet problem in an exterior domain bounded by closed curves and
cracks. The theorems on existence and uniqueness of a classical solution are proved. The
integral representation for a solution to a problem in the form of potentials is obtained. The
problem is reduced to the uniquely solvable Fredholm integral equation of the second kind
and index zero. To derive uniquely solvable integral equation on the whole boundary we use
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themodified integral equation approach [5, 6] on the closed curves. Since the derived integral
equation of the 2nd kind is uniquely solvable, we may obtain its numerical solution in a very
simple way, just by discretization and inversion of thematrix. Substituting numerical solution
of the integral equation into potentials, we obtain numerical solution to the exterior Dirichlet
problem in a very simple way as well. The integral representation for a solution presented in
the present paper enables us to derive asymptotic formulae for singularities of a gradient of
the solution at the tips of the cracks.

The Dirichlet problem for the Helmholtz equation in the exterior of several closed
curves in a plane and the Dirichlet problem for the Helmholtz equation in the exterior of
several curvilinear cracks in a plane are particular cases of our problem.

It is important to stress that the boundary data on the closed curves in the present
paper is assumed to be only continuous. This means that weak solution may not exist in our
problem, though classical solution exists. In other words, the problem in this paper is studied
under conditions, which are not sufficient for existence of a weak solution in H1

loc and weak
solution may not exist, but these conditions are sufficient for existence of a classical solution.
This curious fact follows from the Hadamard example of a nonexistence of a weak solution to
the Dirichlet problem for Laplacian in the unit disc with continuous boundary data (classical
solution exists in this example). Roughly speaking, continuity of a Dirichlet data on smooth
closed curves does not ensure existence of a weak solution in the Dirichlet problem. The
Hadamard example of existence of a classical solution and nonexistence of a weak solution
is presented and is discussed in the book [7, section 12.5] by Sobolev himself, who invented
Sobolev’s spaces for analysis of weak solvability of boundary value problems.

Numerical methods for the Dirichlet and Neumann problems for the Laplace and
Helmholtz equations in the exterior of cracks in a plane have been developed in [8, 9] on
the basis of boundary integral equations. Numerical simulation for engineering problems
with cracks is presented in [10–12] using boundary element method. Problems with a crack
in electromagnetoelasticity have been reduced to integral equations in [13], and numerical
solutions for some model problems have been obtained. The Dirichlet problem for elasticity
equations in an exterior of several arbitrary curvilinear cracks in a plane has been reduced to
the uniquely solvable integral equations in [14].

2. Formulation of the Problem

By an open curve we mean a simple smooth nonclosed arc of finite length without self-
intersections [15]. In the plane x = (x1, x2) ∈ R2 we consider an exterior multiply connected
domain bounded by simple open curves Γ11, . . . ,Γ

1
N1

∈ C2,λ and simple closed curves
Γ21, . . . ,Γ

2
N2

∈ C2,λ, λ ∈ (0, 1], so that the curves do not have common points; in particular,

they do not have common endpoints. Suppose that N1 + N2 > 0. We set Γ1 =
⋃N1

n=1 Γ
1
n,

Γ2 =
⋃N2

n=1 Γ
2
n, and Γ = Γ1 ∪ Γ2. The exterior connected domain bounded by Γ2 will be denoted

by D. We assume that each curve Γkn is parametrized by the arc length s:

Γkn =
{
x : x = x(s) = (x1(s), x2(s)), s ∈

[
ak
n, b

k
n

]}
, n = 1, . . . ,Nk, k = 1, 2, (2.1)

so that a1
1 < b11 < · · · < a1

N1
< b1N1

< a2
1 < b21 < · · · < a2

N2
< b2N2

and the domain D is
to the right when the parameter s increases on Γ2n. Therefore points x ∈ Γ and values of
the parameter s are in one-to-one correspondence except for a2

n and b2n, which correspond
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Figure 1: An example of an exterior domain.

to the same point x for n = 1, . . . ,N2. Below the sets of the intervals on the Os axis
⋃N1

n=1[a
1
n, b

1
n],
⋃N2

n=1[a
2
n, b

2
n],
⋃2

k=1
⋃Nk

n=1[a
k
n, b

k
n]will be denoted by Γ1,Γ2, and Γ also.

We set C0(Γ2n) = {F(s) : F(s) ∈ C0[a2
n, b

2
n], F(a2

n) = F(b2n)}, and

C0
(
Γ2
)
=

N2⋂

n=1

C0
(
Γ2n
)
. (2.2)

The tangent vector to Γ at the point x(s) is denoted by τx = (cosα(s), sinα(s)), where
cosα(s) = x′

1(s), and sinα(s) = x′
2(s). Let nx = (sinα(s),− cosα(s)) be the normal vector to Γ

at x(s). The direction of nx is chosen such that it will coincide with the direction of τx if nx is
rotated anticlockwise through an angle of π/2.

We consider Γ1 as a set of cracks. The side of Γ1 which is on the left, when the parameter
s increases, will be denoted by (Γ1)+ and the opposite side will be denoted by (Γ1)−.

We say that the function w(x) belongs to the smoothness class K if

(1) w ∈ C0(D \ Γ1) ∩ C2(D \ Γ1),
(2) ∇w ∈ C0(D \ Γ1 \ Γ2 \ X), where X is a point-set, consisting of the endpoints

of Γ1 : X =
⋃N1

n=1(x(a
1
n) ∪ x(b1n)),

(3) in the neighbourhood of any endpoint x(d) ∈ X for some constants C > 0, ε > −1
the inequality

|∇w| ≤ C|x − x(d)|ε (2.3)

holds, where x → x(d) and d = a1
n or d = b1n for n = 1, . . . ,N1.

Remark 2.1. By C0(D \ Γ1 \ Γ2 \ X) we denote the class of continuous in D \ Γ1 functions,
which are continuously extensible to the sides of the cracks Γ1 \X from the left and from the
right, but their limiting values on Γ1 \ X can be different from the left and from the right, so
that these functions may have a jump on Γ1 \ X. The functions of class C0(D \ Γ1 \ Γ2 \ X)
belong to the class C0(D \ Γ1) if they are continuously extensible to Γ2 from D and if they are
continuously extensible to the tips of the cracks Γ1.

Let us formulate the Dirichlet problem for the Helmholtz equation in the exterior
domain D \ Γ1 (see Figure 1).
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ProblemU. Find a function u(x) of the class K which satisfies the Helmholtz equation:

ux1x1(x) + ux2x2(x) + β2u(x) = 0, x ∈ D \ Γ1, β = const > 0, (2.4a)

the boundary conditions:

u(x(s))|(Γ1)+ = F+(s), u(x(s))|(Γ1)− = F−(s), u(x(s))|Γ2 = F(s), (2.4b)

and the radiating conditions at infinity:

u = O
(
|x|−1/2

)
,

∂u

∂|x| − iβu = o
(
|x|−1/2

)
, |x| =

√
x2
1 + x2

2 −→ ∞. (2.4c)

All conditions of the Problem U must be satisfied in the classical sense. Problem U
includes two particular cases. In the first particular case, there are no cracks Γ1 (i.e., Γ1 = ∅),
then we get the Dirichlet problem for the Helmholtz equation in the exterior of several closed
curves Γ2 in a plane (see [1–3]). In another particular case, there are no closed curves Γ2 (i.e.,
Γ2 = ∅), and we obtain the Dirichlet problem for the Helmholtz equation in the exterior of
several curvilinear cracks Γ1 in a plane [4].

By
∫

Γk · · ·dσ we mean
∑Nk

n=1

∫bkn
akn

· · ·dσ. On the basis of the Rellich lemma [1], energy
equalities [2], and the regularity of the solution to the homogeneous Dirichlet problem near
the boundary Γ2 (see [16, lemma 6.18]), we can easily prove the following assertion.

Theorem 2.2. If Γ ∈ C2,λ, λ ∈ (0, 1], then the ProblemU has at most one solution.

Proof. It is sufficiently to prove that the homogeneous Problem U admits the trivial solution
only. Let u0(x) be a solution to the homogeneous Problem U with F+(s) ≡ F−(s) ≡ 0 and
F(s) ≡ 0. Let Sr be an open disc with a center in the origin and with sufficiently large radius
r. Assume that Γ ⊂ Sr0 for some r0 and assume that r > r0.

Since Γ2 ∈ C2,λ, u0(x) ∈ C0(D \ Γ1) (remind that u0(x) ∈ K), and since u0|Γ2 = 0 ∈
C2,λ(Γ2), and owing to the lemma on regularity of solutions of elliptic equations near the
boundary [16, lemma 6.18], we obtain u0(x) ∈ C1(D \ Γ1). Since u0(x) ∈ K, we observe that
u0(x) ∈ C1(D \ Γ1 \ X). We envelope each crack Γ1n (n = 1, . . . ,N1) by a closed contour and
write first Green’s formula for u0(x) in a domain, bounded by these contours, by Γ2 and
by ∂Sr . Then we allow to shrink closed contours onto cracks Γ1 and use smoothness of the
function u0(x). In this way we arrive at the identity for u0(x) in the domain D ∩ Sr \ Γ1

‖∇u0‖2L2(D∩Sr\Γ1) − β2‖u0‖2L2(D∩Sr\Γ1) =
∫

Γ1
(u0)

+
(
∂u0

∂nx

)+

ds −
∫

Γ1
(u0)

−
(
∂u0

∂nx

)−
ds

−
∫

Γ2
u0

∂u0

∂nx
ds +

∫

∂Sr

u0
∂u0

∂|x|dl,
(∗)

which is true for any r > r0, where r0 is some constant. The curviliniear integral of the 1st
kind is taken over ∂Sr . By u0(x) the complex conjugate function to u0(x) is denoted. Clearly,
u0(x) belongs to class K and satisfies homogeneous boundary conditions.
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By the superscripts + and − we denote the limiting values of functions on (Γ1)+ and
on (Γ1)−, respectively. Since u0(x) satisfies the homogeneous boundary condition (2.4b) on Γ,
we rewrite identity (∗) in the following form:

‖∇u0‖2L2(D∩Sr\Γ1) − β2‖u0‖2L2(D∩Sr\Γ1) =
∫

∂Sr

u0(x)
∂u0(x)
∂|x| dl. (2.5)

Taking the imaginary part, we obtain the identity

Im
∫

∂Sr

u0(x)
∂u0(x)
∂|x| dl = 0, (2.6)

which is true for any r > r0. Tending r → ∞ in this identity and taking into account condi-
tions (2.4c) at infinity, we obtain

lim
r→∞

Im
∫

∂Sr

u0(x)
∂u0(x)
∂|x| dl = β lim

r→∞

∫

∂Sr

|u0|2dl = 0. (2.7)

Since β > 0, we have

lim
r→∞

∫

∂Sr

|u0|2dl = 0, (2.8)

whence u0(x) ≡ 0 in D \ Γ1 on the basis of the Rellich lemma [1, section 229]. Thus, u0(x) is a
trivial solution to the homogeneous ProblemU. Consequently, the homogeneous ProblemU
has only the trivial solution, and the theorem is proved owing to the linearity of the Problem
U.

3. Integral Equations at the Boundary

To prove existence of a solution to the Problem U, we assume that

F+(s) ∈ C1,λ
(
Γ1
)
, F−(s) ∈ C1,λ

(
Γ1
)
, F(s) ∈ C0

(
Γ2
)
, λ ∈ (0, 1], (3.1a)

F+
(
a1
n

)
= F−

(
a1
n

)
, F+

(
b1n

)
= F−

(
b1n

)
, n = 1, . . . ,N1. (3.1b)

The conditions (3.1b) are compatibility conditions for functions F+(s) and F−(s) at the tips of
the cracks. To solve Problem U we discuss some preliminary matter.

If B1(Γ1) and B2(Γ2) are Banach spaces of functions given on Γ1 and Γ2, then
for functions given on Γ we introduce the Banach space B1(Γ1) ∩ B2(Γ2) with the norm
‖ · ‖B1(Γ1)∩B2(Γ2) = ‖ · ‖B1(Γ1) + ‖ · ‖B2(Γ2).
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We consider the angular potential from [4] for (2.4a) on Γ1:

v1[ν](x) =
i

4

∫

Γ1
ν(σ)V (x, σ)dσ. (3.2)

The kernel V (x, σ) is defined on each curve Γ1n, n = 1, . . . ,N1, by

V (x, σ) =
∫σ

a1n

∂

∂ny
H(1)

0

(
β
∣
∣x − y(ξ)

∣
∣
)
dξ, σ ∈

[
a1
n, b

1
n

]
, (3.3)

where H(1)
0 (z) is the Hankel function of the first kind [3]:

H(1)
0 (z) =

√
2 exp(iz − iπ/4)

π
√
z

∫∞

0
exp(−t)t−1/2

(

1 +
it

2z

)−1/2
dt,

y = y(ξ) =
(
y1(ξ), y2(ξ)

)
,

∣
∣x − y(ξ)

∣
∣ =
√
(
x1 − y1(ξ)

)2 +
(
x2 − y2(ξ)

)2
.

(3.4)

Here in after we suppose that ν(σ) belongs to C0,λ(Γ1) and satisfies the following
additional conditions:

∫b1n

a1n

ν(σ)dσ = 0, n = 1, . . . ,N1. (3.5)

As shown in [4], for such ν(σ) the angular potential v1[ν](x) belongs to the classK. In
particular, the condition (2.3) is satisfied for any ε ∈ (0, 1). Moreover, integrating v1[ν](x) by
parts and using (3.5) we express the angular potential in terms of a double-layer potential:

v1[ν](x) = − i

4

∫

Γ1
ρ(σ)

∂

∂ny
H(1)

0

(
β
∣
∣x − y(σ)

∣
∣
)
dσ (3.6)

with the density

ρ(σ) =
∫σ

a1n

ν(ξ)dξ, σ ∈
[
a1
n, b

1
n

]
, n = 1, . . . ,N1. (3.7)

Consequently, v1[ν](x) satisfies both equation (2.4a) outside Γ1 and the conditions at infinity
(2.4c).

Let us construct a solution to the Problem U. This solution can be obtained with the
help of potential theory for the Helmholtz equation (2.4a). We look for a solution to the
problem in the following form:

u
[
ν, μ
]
(x) = v1[ν](x) +w

[
μ
]
(x), (3.8)
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where v1[ν](x) is given by (3.2), (3.6), and

w
[
μ
]
(x) = w1

[
μ
]
(x) +w2

[
μ
]
(x),

w1
[
μ
]
(x) =

i

4

∫

Γ1
μ(σ)H(1)

0

(
β
∣
∣x − y(σ)

∣
∣
)
dσ,

w2
[
μ
]
(x) =

i

4

∫

Γ2
μ(σ)

(
∂

∂ny
− i

)

H(1)
0

(
β
∣
∣x − y(σ)

∣
∣
)
dσ.

(3.9)

The density ν(σ) must belong to C0,λ(Γ1) and must satisfy conditions (3.5).
We will look for μ(s) in the Banach space Cω

q (Γ
1) ∩ C0(Γ2), ω ∈ (0, 1], q ∈ [0, 1) with

the norm ‖ · ‖Cω
q (Γ1)∩C0(Γ2) = ‖ · ‖Cω

q (Γ1) + ‖ · ‖C0(Γ2). We say that μ(s) belongs to the Banach space
Cω

q (Γ
1)with some ω ∈ (0, 1] and q ∈ [0, 1) if

μ(s)
N1∏

n=1

∣
∣
∣s − a1

n

∣
∣
∣
q∣∣
∣s − b1n

∣
∣
∣
q ∈ C0,ω

(
Γ1
)
, (3.10)

where C0,ω(Γ1) is a Hölder space with the exponent ω. The norm in the Banach space Cω
q (Γ

1)
is defined by

∥
∥μ(·)∥∥Cω

q (Γ1)
=

∥
∥
∥
∥
∥
μ(·)

N1∏

n=1

∣
∣
∣· − a1

n

∣
∣
∣
q∣∣
∣· − b1n

∣
∣
∣
q
∥
∥
∥
∥
∥
C0,ω(Γ1)

. (3.11)

It can be checked directly with the help of [4] that for such μ(s) the function w1[μ](x)
satisfies (2.4a) and belongs to the class K. In particular, the inequality (2.3) holds with ε = −q
if q ∈ (0, 1). The potentialw2[μ](x) satisfies (2.4a) and belongs toC0(D)∩C2(D). It is clear that
the function (3.8) satisfies conditions at infinity (2.4c). So, the function (3.8) with densities
μ(s) and ν(s) subject to requirements described before satisfies all conditions of the Problem
U except for the boundary conditions (2.4b).

To satisfy the boundary conditionswe substitute (3.8) in (2.4b) and arrive at the system
of integral equations for the densities μ(s) and ν(s):

±1
2
ρ(s)+

i

4

∫

Γ1
ν(σ)V (x(s), σ)dσ +

i

4

∫

Γ1
μ(σ)H(1)

0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ

+
i

4

∫

Γ2
μ(σ)

(
∂

∂ny
− i

)

H(1)
0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ = F±(s), s ∈ Γ1,

(3.12a)
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i

4

∫

Γ1
ν(σ)V (x(s), σ)dσ+

i

4

∫

Γ1
μ(σ)H(1)

0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ +

1
2
μ(s)

+
i

4

∫

Γ2
μ(σ)

(
∂

∂ny
− i

)

H(1)
0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ = F(s), s ∈ Γ2,

(3.12b)

where ρ(s) is defined in terms of ν(s) in (3.7).
To derive limit formulas for the angular potential, we used its expression in the form

of a double-layer potential (3.6).
Equation (3.12a) is obtained as x → x(s) ∈ (Γ1)± and comprises two integral

equations. The upper sign denotes the integral equation on (Γ1)+, and the lower sign denotes
the integral equation on (Γ1)−.

In addition to the integral equations written before we have the conditions (3.5).
Subtracting the integral equations (3.12a) and using (3.7), we find

ρ(s) =
(
F+(s) − F−(s)

) ∈ C1,λ
(
Γ1
)
,

ν(s) =
(
F

′+(s) − F
′−(s)
)
∈ C0,λ

(
Γ1
)
, F

′±(s) =
d

ds
F±(s).

(3.13)

We note that ν(s) is found completely and satisfies all required conditions, in
particular, conditions (3.5). Hence, the angular potential of (3.2) and (3.6) is found completely
as well.

We introduce the function f(s) on Γ by

f(s) = F(s) − i

4

∫

Γ1

(
F

′+(σ) − F
′−(σ)

)
V (x(s), σ)dσ, s ∈ Γ, (3.14)

where F(s) is specified on Γ2 in (2.4b) and F(s) = (1/2)(F+(s) + F−(s)) if s ∈ Γ1. As shown in
[4], if s ∈ Γ1, then f(s) ∈ C1,p0(Γ1) where p0 = λ if 0 < λ < 1 and p0 = 1 − ε0 for any ε0 ∈ (0, 1)
if λ = 1. Consequently, f(s) ∈ C1,p0(Γ1) ∩ C0(Γ2).

We set

δ(s) =

{
0 if s ∈ Γ1,
1 if s ∈ Γ2.

(3.15)

Adding the integral equations (3.12a) and taking into account (3.12b) we obtain the integral
equation for μ(s) on Γ:

i

4

∫

Γ1
μ(σ)H(1)

0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ +

1
2
δ(s)μ(s)

+
i

4

∫

Γ2
μ(σ)

(
∂

∂ny
− i

)

H(1)
0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ = f(s), s ∈ Γ,

(3.16)

where f(s) is given in (3.14).
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Thus, if μ(s) is a solution of (3.16) in the space Cω
q (Γ

1) ∩ C0(Γ2), ω ∈ (0, 1], q ∈ [0, 1),
then the potential (3.8) with ν(s) from (3.13) satisfies all conditions of the Problem U. We
arrive at the following statement.

Theorem 3.1. If Γ ∈ C2,λ, if conditions (3.1a) and (3.1b) hold, and if equation (3.16) has a solution
μ(s) from the Banach space Cω

q (Γ
1) ∩ C0(Γ2), ω ∈ (0, 1], q ∈ [0, 1), then a solution to the Problem

U exists and is given by formula (3.8), where ν(s) is defined in (3.13).

If s ∈ Γ2, then (3.16) is an equation of the second kind. If s ∈ Γ1, then (3.16) is an
equation of the first kind and its kernel has a logarithmic singularity, because

H(1)
0 (z) =

2i
π

ln
z

β
+ h(z), (3.17)

where h(z) is a smooth function. Indeed, as z → 0 + 0,

h(z) = const +O
(
z2 ln z

)
, h′(z) = O(z ln z), h′′(z) = O(ln z). (3.18)

Our further treatment will be aimed to the proof of the solvability of equation (3.16)
in the Banach space Cω

q (Γ
1) ∩ C0(Γ2). Moreover, we reduce equation (3.16) to a Fredholm

equation of the second kind and of index zero, which can be easily computed by classical
methods.

By differentiating equation (3.16) on Γ1 we reduce it to the following singular integral
equation on Γ1:

∂

∂s
w
[
μ
]
(x(s)) =

1
2π

∫

Γ1
μ(σ)

sinϕ0
(
x(s), y(σ)

)

∣
∣x(s) − y(σ)

∣
∣

dσ

+
i

4

∫

Γ1
μ(σ)

∂

∂s
h
(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ

+
i

4

∫

Γ2
μ(σ)

(
∂

∂ny
− i

)
∂

∂s
H(1)

0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ = f ′(s), s ∈ Γ1,

(3.19a)

where the function h(z) is defined by (3.17), and ϕ0(x, y) is the angle between the vector �xy
and the direction of the normal nx. The angle ϕ0(x, y) is taken to be positive if it is measured
anticlockwise from nx and negative if it is measured clockwise from nx. Besides, ϕ0(x, y) is
continuous in x, y ∈ Γ if x /=y.

Equation (3.16) on Γ2 we rewrite in the following form:

μ(s) +
∫

Γ
μ(σ)A2(s, σ)dσ = 2f(s), s ∈ Γ2, (3.19b)
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where

A2(s, σ) =

{
i

2
(1 − δ(σ))H(1)

0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
+

i

2
δ(σ)

(
∂

∂ny
− i

)

H(1)
0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
}

=
i

π
δ(σ) ln

∣
∣x(s) − y(σ)

∣
∣ + I1

(
x(s), y(σ)

)

=
i
π
δ(σ)

I2
(
x(s), y(σ)

)

∣
∣x(s) − y(σ)

∣
∣1/3

+ I1
(
x(s), y(σ)

)
.

(3.20)

Here I1(x(s), y(σ)) ∈ C0(Γ2 × Γ) (see [3, page 339]),

I2
(
x(s), y(σ)

)
=
∣
∣x(s) − y(σ)

∣
∣1/3 ln

∣
∣x(s) − y(σ)

∣
∣ ∈ C0

(
Γ2 × Γ2

)
. (3.21)

We note that (3.19a) is equivalent to (3.16) on Γ1 if and only if (3.19a) is accompanied by the
following additional conditions:

w
[
μ
](

x
(
a1
n

))
= f
(
a1
n

)
, n = 1, . . . ,N1. (3.22)

The system of (3.19a), (3.19b), and (3.22) is equivalent to (3.16).
It can be easily proved (see [4] for details) that

(
sinϕ0

(
x(s), y(σ)

)

∣
∣x(s) − y(σ)

∣
∣

− 1
σ − s

)

∈ C0,λ
(
Γ1 × Γ1

)
. (3.23)

Therefore we can rewrite (3.19a) in the following form:

2
∂

∂s
w
[
μ
]
(x(s)) =

1
π

∫

Γ1
μ(σ)

dσ

σ − s
+
∫

Γ
μ(σ)Y (s, σ)dσ = 2f ′(s), s ∈ Γ1, (3.24)

where (see [4])

Y (s, σ) =

{

(1 − δ(σ))

[
1
π

(
sinϕ0

(
x(s), y(σ)

)

∣
∣x(s) − y(σ)

∣
∣

− 1
σ − s

)

+
i

2
∂

∂s
h
(
β
∣
∣x(s) − y(σ)

∣
∣
)
]

+
i

2
δ(σ)

(
∂

∂ny
− i

)
∂

∂s
H(1)

0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
}

∈ C0,p0
(
Γ1 × Γ

)
,

p0 = λ if 0 < λ < 1, and p0 = 1 − ε0 for any ε0 ∈ (0, 1) if λ = 1.

(3.25)
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4. The Fredholm Integral Equation and the Solution to the Problem

Inverting the singular integral operator in (3.24), we arrive at the following integral equation
of the second kind [4, 15]:

μ(s) +
1

Q1(s)

∫

Γ
μ(σ)A1(s, σ)dσ +

1
Q1(s)

N1−1∑

n=0

Gns
n =

1
Q1(s)

Φ1(s), s ∈ Γ1, (4.1)

where

A1(s, σ) = − 1
π

∫

Γ1

Y (ξ, σ)
ξ − s

Q1(ξ)dξ,

Q1(s) =
N1∏

n=1

∣
∣
∣
∣

√

s − a1
n

√

b1n − s

∣
∣
∣
∣ sign

(
s − a1

n

)
,

Φ1(s) = − 1
π

∫

Γ1

2Q1(σ)f ′(σ)
σ − s

dσ,

(4.2)

and G0, . . . , GN1−1 are arbitrary constants. We set sign(s − a1
n) = 1 as s = a1

n; then the function
sign(s − a1

n) belongs to C∞(Γ1) in s variable for n = 1, . . . ,N1.
It can be shown using the properties of singular integrals [15] that Φ1(s) and A1(s, σ)

are Hölder continuous functions if s ∈ Γ1 and σ ∈ Γ. Consequently, any solution of (4.1)
belongs to Cω

1/2(Γ
1) with some ω ∈ (0, 1], and here in after we look for μ(s) on Γ1 in this

space.
We set

Q(s) = (1 − δ(s))Q1(s) + δ(s), s ∈ Γ. (4.3)

Instead of μ(s) ∈ Cω
1/2(Γ

1) ∩ C0(Γ2) we introduce the new unknown function
μ∗(s) = μ(s)Q(s) ∈ C0,ω(Γ1) ∩ C0(Γ2) and rewrite (4.1) and (3.19b) in the form of one
equation:

μ∗(s) +
∫

Γ
μ∗(σ)Q−1(σ)A(s, σ)dσ + (1 − δ(s))

N1−1∑

n=0

Gns
n = Φ(s), s ∈ Γ, (4.4)

where

A(s, σ) = (1 − δ(s))A1(s, σ) + δ(s)A2(s, σ), Φ(s) = (1 − δ(s))Φ1(s) + 2δ(s)f(s). (4.5)

To derive equations for G0, . . . , GN1−1 we substitute μ(s) from (4.1) and (3.19b) in the
conditions (3.22); then in terms of μ∗(s) we obtain

∫

Γ
Q−1(ξ)μ∗(ξ)ln(ξ)dξ +

N1−1∑

m=0

BnmGm = Hn, n = 1, . . . ,N1, (4.6)
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where

ln(ξ) = −w
[
Q−1(·)A(·, ξ)

](
a1
n

)
, Hn = −w

[
Q−1(·)Φ(·)

](
a1
n

)
+ f
(
a1
n

)
,

Bnm = −w
[
Q−1(·)(1 − δ(·))(·)m

](
a1
n

)
.

(4.7)

By · we denote the variable of integration in the potential w[μ](x) in (3.9).
Thus, the system of (3.19a), (3.19b), and (3.22) for μ(s) has been reduced to the system

of (4.4) and (4.6) for the function μ∗(s) and constants G0, . . . , GN1−1. It is clear from our
consideration that any solution of system of (4.4) and (4.6) generates a solution to the system
of (3.19a), (3.19b), and (3.22).

As noted before, Φ1(s) and A1(s, σ) are Hölder continuous functions if s ∈ Γ1, and
σ ∈ Γ. More precisely (see [4]), Φ1(s) ∈ C0,p(Γ1), p = min{1/2, λ}, and A1(s, σ) belongs
to C0,p(Γ1) in s uniformly with respect to σ ∈ Γ. Using these properties we can prove the
following.

Lemma 4.1. If Γ ∈ C2,λ, λ ∈ (0, 1], Φ(s) ∈ C0,p(Γ1) ∩C0(Γ2), p = min{λ, 1/2}, and if μ∗(s) from
C0(Γ) satisfies equation (4.4), then μ∗(s) ∈ C0,p(Γ1) ∩ C0(Γ2).

The condition Φ(s) ∈ C0,p(Γ1) ∩ C0(Γ2) holds if conditions (3.1a) and (3.1b) hold.
Hence here in after we will look for μ∗(s) from C0(Γ).
Since A1(s, σ) ∈ C0(Γ1 × Γ), and due to the special representation for A2(s, σ) from

(3.19b), the integral operator from (4.4)

Aμ∗ =
∫

Γ
μ∗(σ)Q−1(σ)A(s, σ)dσ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

Γ
μ∗(σ)Q−1(σ)A1(s, σ)dσ if s ∈ Γ1,

∫

Γ
μ∗(σ)Q−1(σ)A2(s, σ)dσ if s ∈ Γ2,

(4.8)

is a compact operator mapping C0(Γ) into itself. Indeed, one can check using Arzela theorem
[17] that the integral operator with the kernel A1(s, σ) is a compact operator mapping
C0(Γ) into C0(Γ1), while the integral operator with the kernel A2(s, σ) is a compact operator
mapping C0(Γ1) into C0(Γ2). Moreover, it can be verified directly with the help of the Arzela
theorem that the integral operator

∫

Γ μ∗(σ)Q−1(σ)A2(s, σ)dσ is a compact operator mapping
C0(Γ2) into C0(Γ2). To verify equicontinuity in the Arzela theorem, we may use the property
of uniform continuity in x on Γ2 for the functions |x − y|1/3 and |x − y|1/3 ln |x − y|. In doing
so, we may use the Cauchy-Bunyakovski inequality for estimates.

We rewrite (4.4) in the following operator form:

(I +A)μ∗ + PG = Φ, (4.9)

where P is the operator of multiplication of the row P = (1 − δ(s)) (s0, . . . , sN1−1) by the
column G = (G0, . . . , GN1−1)

T . The operator P is finite-dimensional from EN1 into C0(Γ) and
therefore compact [18].
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Now we rewrite (4.6) in the following form:

IN1G + Lμ∗ + (B − IN1)G = H, (4.10)

where H = (H1, . . . ,HN1)
T is a column of N1 elements, IN1 is the identity operator in EN1 ,

B is a N1 × N1 matrix consisting of the elements Bnm from (4.7). The operator L acts from
C0(Γ) into EN1 , so that Lμ∗ = (L1μ∗, . . . , LN1μ∗)

T , where

Lnμ∗ =
∫

Γ
Q−1(ξ)μ∗(ξ)ln(ξ)dξ. (4.11)

The operators (B − IN1) and L are finite-dimensional and therefore compact [19].
We consider the columns

μ =
(
μ∗
G

)

, Φ =
(
Φ
H

)

(4.12)

in the Banach space C0(Γ) × EN1 with the norm ‖μ‖C0(Γ)×EN1
= ‖μ∗‖C0(Γ) + ‖G‖EN1

.
We write the system of (4.9) and (4.10) in the form of one equation:

(I + R)μ = Φ, R =
(
A P
L B − IN1

)

, (4.13)

where I is the identity operator in the spaceC0(Γ)×EN1 . It is clear thatR is a compact operator
mapping C0(Γ) × EN1 into itself, since it consists of compact operators. Therefore, (4.13) is
a Fredholm equation of the second kind and of index zero in the space C0(Γ) × EN1 (see
[17, 18, 20]).

Let us show that homogeneous equation (4.13) has only a trivial solution. Then,
according to Fredholm’s alternative [17, 18, 20], the inhomogeneous equation (4.13) has a
unique solution for any right-hand side. Let

μ0 =
(
μ0
∗

G0

)

∈ C0(Γ) × EN1 (4.14)

be an arbitrary solution of the homogeneous equation (4.13). According to Lemma 4.1,

μ0 =
(
μ0
∗

G0

)

∈ C0,p
(
Γ1
)
∩ C0
(
Γ2
)
× EN1 , p = min

{

λ,
1
2

}

. (4.15)

Therefore the function μ0(s) = μ0
∗(s)Q

−1(s) ∈ C
p

1/2(Γ
1) ∩ C0(Γ2) and the column G0 convert

the homogeneous equations (4.1), (3.19b) and (4.6) into identities. For instance, (3.19b) takes
the following form:

lim
x→x(s)∈Γ2

w
[
μ0
]
(x) = 0, x ∈ D. (4.16a)
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Using the homogeneous identities (4.1) and (3.19b), we check that the homogeneous
identities (4.6) are equivalent to

w
[
μ0
](

a1
n

)
= 0, n = 1, . . . ,N1. (4.16b)

Besides, acting on the homogeneous identity (4.1) with a singular operator with the kernel
(s − t)−1 we observe that μ0(s) satisfies the homogeneous equation (3.24):

∂

∂s
w
[
μ0
]
(x(s))

∣
∣
∣
∣
Γ1

= 0. (4.16c)

It follows from (4.16a), (4.16b) and (4.16c) that μ0(s) satisfies the homogeneous equation
(3.16). On the basis of Theorem 3.1, u[0, μ0](x) ≡ w[μ0](x) is a solution to the homogeneous
Problem U. According to Theorem 2.2, w[μ0](x) ≡ 0 for x ∈ D \ Γ1. Using the limit formulas
for normal derivatives of a single-layer potential on Γ1, we have

lim
x→x(s)∈(Γ1)+

∂

∂nx
w
[
μ0
]
(x) − lim

x→x(s)∈(Γ1)−
∂

∂nx
w
[
μ0
]
(x) = μ0(s) ≡ 0, s ∈ Γ1. (4.17)

Hence, w[μ0](x) = w2[μ0](x) ≡ 0 for x ∈ D, and μ0(s) satisfies (4.16a), which can be
written as

1
2
μ0(s) +

i

4

∫

Γ2
μ0(σ)

(
∂

∂ny
− i

)

H(1)
0

(
β
∣
∣x(s) − y(σ)

∣
∣
)
dσ = 0, s ∈ Γ2. (4.18)

It is shown in [5, page 502–504] and [6, page 187–189] that μ0(s) ≡ 0 is the unique
solution of (4.18) in C0(Γ2).

Consequently, if s ∈ Γ, then μ0(s) ≡ 0 and μ0
∗(s) = μ0(s)Q−1(s) ≡ 0. It follows from

the homogeneous identity (4.1) for μ0(s) and G0
0, . . . , G

0
N1−1 that G0 = (G0

0, . . . , G
0
N1−1)

T ≡ 0.
Hence, μ0 ≡ 0. Thus, the homogeneous Fredholm equation (4.13) has only a trivial solution
in C0(Γ) × EN1 .

We have proved the following assertion.

Theorem 4.2. If Γ ∈ C2,λ, λ ∈ (0, 1], then (4.13) is a Fredholm equation of the second kind and of
index zero in the space C0(Γ) × EN1 . Moreover, (4.13) has a unique solution

μ =
(
μ∗
G

)

∈ C0(Γ) × EN1 (4.19)

for any

Φ =
(
Φ
H

)

∈ C0(Γ) × EN1 . (4.20)

As a consequence of Theorem 4.2 and the Lemma 4.1 we obtain the following corollary.
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Corollary 4.3. If Γ ∈ C2,λ, λ ∈ (0, 1], then equation (4.13) has a unique solution:

μ =
(
μ∗
G

)

∈ C0,p
(
Γ1
)
∩ C0
(
Γ2
)
× EN1 (4.21)

for any

Φ =
(
Φ
H

)

∈ C0,p
(
Γ1
)
∩ C0
(
Γ2
)
× EN1 , (4.22)

where p = min{λ, 1/2}.

We recall that Φ belongs to the class of smoothness required in Corollary 4.3 if
conditions (3.1a) and (3.1b) hold. Besides, (4.13) is equivalent to the system of (4.4) and
(4.6). As mentioned before, if {μ∗(s), G0, . . . , GN1−1} is a solution of the system of (4.4) and
(4.6), and μ∗(s) ∈ C0,p(Γ1) ∩ C0(Γ2), then the function μ(s) = μ∗(s)Q−1(s) ∈ C

p

1/2(Γ
1) ∩ C0(Γ2)

is a solution of the system of (3.19a), (3.19b) and (3.22), and therefore μ(s) satisfies (3.16). We
obtain the following statement.

Theorem 4.4. If Γ ∈ C2,λ, and if conditions (3.1a) and (3.1b) hold, then equation (3.16) has a
solution μ(s) ∈ C

p

1/2(Γ
1) ∩ C0(Γ2), p = min{1/2, λ}. This solution is expressed by the formula

μ(s) = μ∗(s)Q−1(s), where the function μ∗(s) ∈ C0,p(Γ1) ∩ C0(Γ2) is found by solving the Fredholm
equation (4.13), which is uniquely solvable according to Corollary 4.3.

On the basis of Theorem 3.1 we arrive at the solvability theorem for the Problem U.

Theorem 4.5. If Γ ∈ C2,λ, and if conditions (3.1a) and (3.1b) hold, then the solution to the Problem
U exists and is given by (3.8), where ν(s) is defined in (3.13) and μ(s) is a solution of equation (3.16)
in C

p

1/2(Γ
1) ∩ C0(Γ2), p = min{1/2, λ} ensured by Theorem 4.4.

It can be checked directly that the solution to the Problem U satisfies condition (2.3)
with ε = −1/2. Explicit expressions for singularities of the solution gradient at the endpoints
of the cracks will be presented in the next section.

Theorem 4.5 ensures existence of a classical solution to the Problem U when Γ ∈ C2,λ,
λ ∈ (0, 1], and conditions (3.1a) and (3.1b) hold. The uniqueness of the classical solution
follows from Theorem 2.2. On the basis of our consideration we suggest the following scheme
for solving the Problem U. First, we find the unique solution of the Fredholm equation
(4.13) from C0(Γ) × EN1 . This solution automatically belongs to C0,p(Γ1) ∩ C0(Γ2) × EN1 ,
p = min{λ, 1/2}. Second, we construct the solution of (3.16) from C

p

1/2(Γ
1) ∩ C0(Γ2) by the

formula μ(s) = μ∗(s)Q−1(s). Finnaly, substituting ν(s) from (3.13) and μ(s) in (3.8)we obtain
the solution to the Problem U.

Remark 4.6. It is important to stress that the solution u(x) to the Problem U, ensured by
Theorem 4.5, is a classical solution, but it may be not a weak solution to the Problem U.
In other words, classical solution to the ProblemU exists and is ensured by Theorem 4.5, but
weak solution to the Problem U may not exist in H1

loc(D \ Γ1) space. This follows from the
fact that Dirichlet data on the closed curves Γ2 is assumed to be continuous only. Continuity
of a Dirichlet boundary data on closed curves is not sufficient for existence of a weak solution
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in H1
loc(D \ Γ1) space. The Hadamard example of a nonexistence of a weak solution to a

harmonic Dirichlet problem in a disc with continuous boundary data is given in the book [7,
section 12.5] by Sobolev himself (the classical solution exists in this example).

5. Singularities of the Gradient of the Solution at
the Endpoints of the Cracks

As noted at the end of Section 4, the gradient of the solution to ProblemU can be unbounded
at the endpoints of the cracks Γ1, so that the gradient of the solution to the ProblemU satisfies
estimate (2.3) with the exponent ε = −1/2. We will now make a detailed analysis of the
behaviour of ∇u(x) at the endpoints of Γ1.

Let u(x) be a solution to the Problem U ensured by Theorem 4.5 and given by (3.8).
Let x(d) ∈ X be one of the endpoints of Γ1. In the neighbourhood of x(d), we introduce the
system of polar coordinates:

x1 = x1(d) + |x − x(d)| cosϕ, x2 = x2(d) + |x − x(d)| sinϕ. (5.1)

We will assume that ϕ ∈ (α(d), α(d) + 2π) if d = a1
n and ϕ ∈ (α(d) − π, α(d) + π) if d = b1n. We

recall that α(s) is the angle between the direction of the Ox1 axis and the tangent vector τx to
Γ1 at the point x(s).

Hence, α(d) = α(a1
n + 0) if d = a1

n and α(d) = α(b1n − 0) if d = b1n.
Thus, the angle ϕ varies continuously in the neighbourhood of the endpoint x(d), cut

along Γ1.
We will use the notation μ1(s) = μ(s)|s − d|1/2 = Q−1(s)μ∗(s)|s − d|1/2 and put

μ1(d) = μ1(a1
n) = μ1(a1

n + 0) if d = a1
n, and μ1(d) = μ1(b1n) = μ1(b1n − 0) if d = b1n.

Using the representation of the derivatives of harmonic potentials in terms of Cauchy
type integrals (see [4]) and using the properties of these integrals near the endpoints of the
integration line, presented in [15], we can prove the following assertion.

Theorem 5.1. Let u(x) be a solution to the Problem U ensured by Theorem 4.5. Let x(d) be an
arbitrary endpoint of the cracks Γ1, that is, x(d) ∈ X and d = a1

n or d = b1n for some n = 1, . . . ,N1.
Then the derivatives of the solution to the ProblemU in the neighbourhood of x(d) have the following
asymptotic behaviour.

If d = a1
n, then

∂

∂x1
u(x) =

μ1
(
a1
n

)

2
∣
∣x − x(a1

n)
∣
∣1/2

sin

(
ϕ + α

(
a1
n

)

2

)

− ν
(
a1
n

)

2π

(
− sinα

(
a1
n

)
ln
∣
∣
∣x − x

(
a1
n

)∣
∣
∣ + ϕ cosα

(
a1
n

))
+O(1),

∂

∂x2
u(x) = − μ1

(
a1
n

)

2
∣
∣x − x(a1

n)
∣
∣1/2

cos

(
ϕ + α

(
a1
n

)

2

)

− ν
(
a1
n

)

2π

(
cosα

(
a1
n

)
ln
∣
∣
∣x − x

(
a1
n

)∣
∣
∣ + ϕ sinα

(
a1
n

))
+O(1).

(5.2)
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If d = b1n, then

∂

∂x1
u(x) = − μ1

(
b1n
)

2
∣
∣x − x

(
b1n
)∣
∣1/2

cos

(
ϕ + α

(
b1n
)

2

)

+
ν
(
b1n
)

2π

(
− sinα

(
b1n

)
ln
∣
∣
∣x − x

(
b1n

)∣
∣
∣ + ϕ cosα

(
b1n

))
+O(1),

(5.3)

∂

∂x2
u(x) = − μ1

(
b1n
)

2
∣
∣x − x(b1n)

∣
∣1/2

sin

(
ϕ + α

(
b1n
)

2

)

+
ν
(
b1n
)

2π

(
cosα

(
b1n

)
ln
∣
∣
∣x − x

(
b1n

)∣
∣
∣ + ϕ sinα

(
b1n

))
+O(1).

(5.4)

By O(1) one denotes functions which are continuous at the endpoint x(d). Moreover, the functions
denoted by O(1) are continuous in the neighbourhood of the endpoint x(d) cut along Γ1 and are
continuously extensible to (Γ1)+ and to (Γ1)− from this neighbourhood.

The formulas of the theorem demonstrate the following curious fact. In the general
case, the derivatives of the solution to the Problem U near the endpoint x(d) of cracks Γ1

behave as

O
(
|x − x(d)|−1/2

)
+O

(

ln
(

1
|x − x(d)|

))

. (5.5)

However, if μ1(d) = ν(d) = 0, then ∇u(x) will be bounded and even continuous at the
endpoint x(d) ∈ X.
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