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Tripled fixed points are extensions of the idea of coupled fixed points introduced in a recent paper
by Berinde and Borcut, 2011. Here using a separate methodology we extend this result to a triple
coincidence point theorem in partially ordered metric spaces. We have defined several concepts
pertaining to our results. The main results have several corollaries and an illustrative example.
The example shows that the extension proved here is actual and also the main theorem properly
contains all its corollaries.

1. Introduction and Preliminaries

In recent times coupled fixed point theory has experienced a rapid growth in partially ordered
metric spaces. The speciality of this line of research is that the problems herein utilize both
order theoretic and analytic methods. References [1–19] are some instances of these works.

Definition 1.1 (see [14]). A function g : R → R is said to be monotone nondecreasing (or
increasing) if x ≥ y implies g(x) ≥ g(y).

Definition 1.2 (see [14]). Let X be a nonempty set. Let F : X × X → X be a mapping. An
element (x, y) is called a coupled fixed point of F if

F
(
x, y

)
= x, F

(
y, x

)
= y. (1.1)
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Recently, Berinde and Borcut [20] extended the idea of coupled fixed points to tripled
fixed points. The definition is as follows.

Definition 1.3 (see [20]). Let X be a nonempty set. Let F : X ×X ×X → X be a mapping. An
element (x, y, z) is called a tripled fixed point of F if

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (1.2)

They also extended the mixed monotone property to functions with three arguments.

Definition 1.4 (see [20]). Let (X,�) be a partially ordered set and F : X × X × X → X. The
mapping F is said to have the mixed monotone property if for any x, y, z ∈ X

x1, x2 ∈ X, x1 � x2 =⇒ F
(
x1, y, z

) � F(x2, y, z
)
,

y1, y2 ∈ X, y1 � y2 =⇒ F
(
x, y1, z

) � F(x, y2, z
)
,

z1, z2 ∈ X, z1 � z2 =⇒ F
(
x, y, z1

) � F(x, y, z2
)
.

(1.3)

Our purpose here is to establish tripled coincidence point results in metric spaces with
partial ordering. For that purpose we define mixed g-monotone property in the following.
Mixed g-monotone property was already defined in the context of coupled fixed points [14].
Here in the spirit of Definition 1.4 we have made an extension of that.

Definition 1.5. Let (X,�) be a partially ordered set. Let g : X → X and F : X × X × X → X.
The mapping F is said to have the mixed g-monotone property if for any x, y, z ∈ X.

x1, x2 ∈ X, gx1 � gx2 =⇒ F
(
x1, y, z

) � F(x2, y, z
)
,

y1, y2 ∈ X, gy1 � gy2 =⇒ F
(
x, y1, z

) � F(x, y2, z
)
,

z1, z2 ∈ X, gz1 � gz2 =⇒ F
(
x, y, z1

) � F(x, y, z2
)
.

(1.4)

Coupled coincidence point was defined by Lakshmikantham and Ćirić [14]. We also
extend the concept of coupled coincidence point to tripled coincidence point in the following.

Definition 1.6. LetX be any nonempty set. Let g : X → X and F : X×X×X → X. An element
(x, y, z) is called a tripled coincidence point of g and F if

F
(
x, y, z

)
= gx, F

(
y, x, y

)
= gy, F

(
z, y, x

)
= gz. (1.5)

We extend the concept of commuting mappings given by Lakshmikantham and Ćirić
[14], in the following definition.

Definition 1.7. Let X be a nonempty set. Then one says that the mappings g : X → X and
F : X ×X ×X → X are commuting if for all x, y, z ∈ X

g
(
F
(
x, y, z

))
= F

(
gx, gy, gz

)
. (1.6)
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The following is the definition of compatible mappings which is an extension of the
compatibility defined by Choudhury and Kundu in [8].

Definition 1.8 (see [8]). Let (X, d) be a metric space. The mappings g and F, where g : X → X
and F : X ×X ×X → X are said to be compatible if

lim
n→∞

d
(
gF

(
xn, yn, zn

)
, F

(
gxn, gyn, gzn

))
= 0,

lim
n→∞

d
(
gF

(
yn, xn, yn

)
, F

(
gyn, gxn, gyn

))
= 0,

lim
n→∞

d
(
gF

(
zn, yn, xn

)
, F

(
gzn, gyn, gxn

))
= 0,

(1.7)

whenever {xn}, {yn}, {zn} are sequences in X such that

lim
n→∞

F
(
xn, yn, zn

)
= gxn = x,

lim
n→∞

F
(
yn, xn, yn

)
= gyn = y,

lim
n→∞

F
(
zn, yn, xn

)
= gzn = z.

(1.8)

2. Main Results

Theorem 2.1. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Suppose F : X × X × X → X and g : X → X are such that, g is
monotone increasing, F has the mixed g-monotone property and

d
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ ψ(max
{
d
(
gx, gu

)
, d

(
gy, gv

)
, d

(
gz, gw

)})
(2.1)

for all x, y, z ∈ X for which gx � gu, gy � gv and gz � gw, where ψ : [0,+∞) → [0,+∞) is such
that ψ(t) is monotone, ψ(t) < t and limr→ t+ψ(r) < t for all t > 0. Suppose F(X ×X ×X) ⊆ g(X), g
is continuous, and {g, F} is a compatible pair. Suppose either

(a) F is continuous or

(b) X has the following properties:

(i) if a nondecreasing sequence {αn} → α, then αn � α for all n,

(ii) if a nonincreasing sequence {βn} → β, then βn � β for all n.

If there exist x0, y0, z0 ∈ X such that gx0 � F(x0, y0, z0), gy0 � F(y0, x0, y0), and gz0 �
F(z0, y0, x0), then there exist x, y, z ∈ X such that

F
(
x, y, z

)
= gx, F

(
y, x, y

)
= gy, F

(
z, y, x

)
= gz, (2.2)

that is, g and F have a tripled coincidence point.
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Proof. By a condition of the theorem, there exist x0, y0, z0 ∈ X such that gx0 � F(x0, y0, z0),
gy0 � F(y0, x0, y0), and gz0 � F(z0, y0, x0). Since F(X × X × X) ⊆ g(X), we can choose
x1, y1, z1 ∈ X such that

gx1 = F
(
x0, y0, z0

)
, gy1 = F

(
y0, x0, y0

)
, gz1 = F

(
z0, y0, x0

)
. (2.3)

Continuing this process, we can construct sequences {xn}, {yn}, and {zn} in X such that

gxn+1 = F
(
xn, yn, zn

)
, gyn+1 = F

(
yn, xn, yn

)
, gzn+1 = F

(
zn, yn, xn

)
. (2.4)

Next we will show that, for n ≥ 0,

gxn � gxn+1, gyn � gyn+1, gzn � gzn+1. (2.5)

Since, gx0 � F(x0, y0, z0), gy0 � F(y0, x0, y0), and gz0 � F(z0, y0, x0), by (2.3), we get

gx0 � gx1, gy0 � gy1, gz0 � gz1, (2.6)

that is, (2.5) holds for n = 0.
We presume that (2.5) holds for some n = m > 0. As F has the mixed g-monotone

property and gxm � gxm+1, gym � gym+1 and gzm � gzm+1, we obtain

gxm+1 = F
(
xm, ym, zm

)

� F(xm+1, ym, zm
)

� F(xm+1, ym, zm+1
)

� F(xm+1, ym+1, zm+1
)
= gxm+2,

(2.7)

gym+1 = F
(
ym, xm, ym

)

� F(ym, xm, ym+1
)

� F(ym+1, xm, ym+1
)

� F(ym+1, xm+1, ym+1
)
= gym+2,

(2.8)

gzm+1 = F
(
zm, ym, xm

) � F(zm+1, ym, xm
)

� F
(
zm+1, ym+1, xm

)

� F
(
zm+1, ym+1, xm+1

)
= gzm+2.

(2.9)

Thus, (2.5) holds for n = m + 1. Then, by induction, we conclude that (2.5) holds for n ≥ 1.
If for some n ∈ N,

gxn = gxn+1, gyn = gyn+1, gzn = gzn+1, (2.10)
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then, by (2.4), (xn, yn, zn) is a tripled coincidence point of g and F. Therefore we assume, for
any n ∈ N,

(
gxn, gyn, gzn

)
/=
(
gxn+1, gyn+1, gzn+1

)
. (2.11)

Set δn = max{d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}.
Then

δn > 0 ∀n ≥ 0. (2.12)

Then, by (2.1), (2.4) and (2.5), we have

d
(
gxn, gxn+1

)
= d

(
F
(
xn−1, yn−1, zn−1

)
, F

(
xn, yn, zn

))

≤ ψ
(
max

{
d
(
gxn−1, gxn

)
, d

(
gyn−1, gyn

)
, d

(
gzn−1, gzn

)})
,

d
(
gyn, gyn+1

)
= d

(
F
(
yn−1, xn−1, yn−1

)
, F

(
yn, xn, yn

))

≤ ψ
(
max

{
d
(
gyn−1, gyn

)
, d

(
gxn−1, gxn

)
, d

(
gyn−1, gyn

)})
,

d
(
gzn, gzn+1

)
= d

(
F
(
zn−1, yn−1, xn−1

)
, F

(
zn, yn, xn

))

≤ ψ
(
max

{
d
(
gzn−1, gzn

)
, d

(
gyn−1, gyn

)
, d

(
gxn−1, gxn

)})
.

(2.13)

Thus, from (2.13) we obtain that

δn = max
{
d
(
gxn, gxn+1

)
, d

(
gyn, gyn+1

)
, d

(
gzn, gzn+1

)}

≤ ψ(max
{
d
(
gxn−1, gxn

)
, d

(
gyn−1, gyn

)
, d

(
gzn−1, gzn

)})
.

(2.14)

It then follows from (2.12) and a property ψ, that for all n ≥ 1,

δn ≤ ψ(δn−1) < δn−1. (2.15)

Thus, {δn} is a monotone decreasing sequence of nonnegative real numbers. So, there exist a
δ ≥ 0 such that

lim
n→∞

δn = δ. (2.16)

Suppose δ > 0. Letting n → ∞ in (2.14), using (2.15), (2.16), and a property of ψ, we get

δ ≤ ψ(δ) < δ, (2.17)

which is a contradiction. Thus δ = 0, or

lim
n→∞

δn = 0, (2.18)
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or

lim
n→∞

d
(
gxn+1, gxn

)
= 0,

lim
n→∞

d
(
gyn+1, gyn

)
= 0,

lim
n→∞

d
(
gzn+1, gzn

)
= 0.

(2.19)

Now, we will prove that {gxn}, {gyn}, and {gzn} are Cauchy sequences. Suppose, to the
contrary, that at least one of {gxn}, {gyn}, and {gzn} is not a Cauchy sequence. So, there
exists an ε > 0 for which we can find subsequences {gxn(k)} of {gxn}, {gyn(k)} of {gyn}, and
{gzn(k)} of {gzn} with n(k) > m(k) ≥ k such that

αk = max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)
, d

(
gzn(k), gzm(k)

)} ≥ ε. (2.20)

Additionally, corresponding to m(k), we may choose n(k) such that it is the smallest integer
satisfying (2.20). Then, for all k ≥ 0,

max
{
d
(
gxn(k)−1, gxm(k)

)
, d

(
gyn(k)−1, gym(k)

)
, d

(
gzn(k)−1, gzm(k)

)}
< ε. (2.21)

By using (2.20) and (2.21) we have for k ≥ 0,

ε ≤ αk = max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)
, d

(
gzn(k), gzm(k)

)}

≤ max
{
d
(
gxn(k), gxn(k)−1

)
+ d

(
gxn(k)−1, gxm(k)

)
, d

(
gyn(k), gyn(k)−1

)

+d
(
gyn(k)−1, gym(k)

)
, d

(
gzn(k), gzn(k)−1

)
+ d

(
gzn(k)−1, gzm(k)

)}

≤ max
{
d
(
gxn(k), gxn(k)−1

)
, d

(
gyn(k), gyn(k)−1

)
, d

(
gzn(k), gzn(k)−1

)}
+ ε

≤ δn(k)−1 + ε.

(2.22)

Letting k → ∞ in (2.22), and using (2.19), we get

lim
k→∞

αk = lim
k→∞

max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)
, d

(
gzn(k), gzm(k)

)}
= ε. (2.23)

Let, for k ≥ 0,

βk = max
{
d
(
gxn(k)+1, gxm(k)+1

)
, d

(
gyn(k)+1, gym(k)+1

)
, d

(
gzn(k)+1, gzm(k)+1

)}
. (2.24)
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Again, for all k ≥ 0,

αk = max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)
, d

(
gzn(k), gzm(k)

)}

≤ max
{
d
(
gxn(k), gxn(k)+1

)
+ d

(
gxn(k)+1, gxm(k)+1

)
+ d

(
gxm(k)+1, gxm(k)

)
,

(
gyn(k), gyn(k)+1

)
+ d

(
gyn(k)+1, gym(k)+1

)
+ d

(
gym(k)+1, gym(k)

)
,

d
(
gzn(k), gzn(k)+1

)
+ d

(
gzn(k)+1, gzm(k)+1

)
+ d

(
gzm(k)+1, gzm(k)

)}

≤ max
{
d
(
gxn(k), gxn(k)+1

)
, d

(
gyn(k), gyn(k)+1

)
, d

(
gzn(k), gzn(k)+1

)}

+max
{
d
(
gxn(k)+1, gxm(k)+1

)
, d

(
gyn(k)+1, gym(k)+1

)
, d

(
gzn(k)+1, gzm(k)+1

)}

+max
{
d
(
gxm(k), gxm(k)+1

)
, d

(
gym(k), gym(k)+1

)
, d

(
gzm(k), gzm(k)+1

)}

≤ δn(k)+1 + βk + δm(k)+1.

(2.25)

Analogously we have for k ≥ 0,

βk = max
{
d
(
gxn(k)+1, gxm(k)+1

)
, d

(
gyn(k)+, gym(k)+1

)
, d

(
gzn(k)+1, gzm(k)+1

)}

≤ max
{
d
(
gxn(k)+1, gxn(k)

)
+ d

(
gxn(k), gxm(k)

)
+ d

(
gxm(k), gxm(k)+1

)
,

d
(
gyn(k)+1, gyn(k)

)
+ d

(
gyn(k), gym(k)

)
+ d

(
gym(k), gym(k)+1

)
,

d
(
gzn(k)+1, gzn(k)

)
+ d

(
gzn(k), gzm(k)

)
+ d

(
gzm(k), gzm(k)+1

)}

≤ max
{
d
(
gxn(k), gxn(k)+1

)
, d

(
gyn(k), gyn(k)+1

)
, d

(
gzn(k), gzn(k)+1

)}

+max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)
, d

(
gzn(k), gzm(k)

)}

+max
{
d
(
gxm(k), gxm(k)+1

)
, d

(
gym(k), gym(k)+1

)
, d

(
gzm(k), gzm(k)+1

)}

≤ δn(k)+1 + αk + δm(k)+1.

(2.26)

Letting k → ∞ in (2.25) and (2.26), we get that

lim
k→∞

max
{
d
(
gxn(k)+1, gxm(k)+1

)
, d

(
gyn(k)+1, gym(k)+1

)
, d

(
gzn(k)+1, gzm(k)+1

)}

= lim
k→∞

βk = ε = lim
k→∞

αk.
(2.27)

Since n(k) > m(k), for k ≥ 0, we have

gxn(k) � gxm(k), gyn(k) � gym(k),

gzn(k) � gzm(k).
(2.28)
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Then from (2.1), (2.4), and (2.28), we have for k ≥ 0,

d
(
gxn(k)+1, gxm(k)+1

)
= d

(
F
(
xn(k), yn(k), zn(k)

)
, F

(
xm(k), ym(k), zm(k)

))

≤ ψ
(
max

{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)
, d

(
gzn(k), gzm(k)

)})
,

d
(
gyn(k)+1, gym(k)+1

)
= d

(
F
(
yn(k), xn(k), yn(k)

)
, F

(
ym(k), xm(k), ym(k)

))

≤ ψ
(
max

{
d
(
gyn(k), gym(k)

)
, d

(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)})
,

d
(
gzn(k)+1, gzm(k)+1

)
= d

(
F
(
zn(k), yn(k), xn(k)

)
, F

(
zm(k), ym(k), xm(k)

))

≤ ψ
(
max

{
d
(
gzn(k), gzm(k)

)
, d

(
gyn(k), gym(k)

)
, d

(
gxn(k), gxm(k)

)})
.

(2.29)

From (2.29) for k ≥ 0, we get

βk ≤ ψ(max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)
, d

(
gzn(k), gzm(k)

)})
= ψ(αk). (2.30)

Letting k → ∞ in (2.30), using (2.20), (2.27), and a property of ψ, we get

ε ≤ ψ(ε) < ε, (2.31)

which is a contradiction. This shows that {gxn}, {gyn}, and {gzn} are Cauchy sequences.
Since X is complete, there exist x, y, z ∈ X such that

lim
n→∞

gxn = x, lim
n→∞

gyn = y, lim
n→∞

gzn = z. (2.32)

From (2.4) and (2.32), using the continuity of g, we have

gx = lim
n→∞

g
(
gxn+1

)
= lim

n→∞
g
(
F
(
xn, yn, zn

))
, (2.33)

gy = lim
n→∞

g
(
gyn+1

)
= lim

n→∞
g
(
F
(
yn, xn, yn

))
, (2.34)

gz = lim
n→∞

g
(
gzn+1

)
= lim

n→∞
g
(
F
(
zn, yn, xn

))
. (2.35)

Now we will show that gx = F(x, y, z), gy = F(y, x, y), and gz = F(z, y, x).
Since g and F are compatible, in addition with (2.33), (2.34), and (2.35), respectively

imply

lim
n→∞

d
(
g
(
F
(
xn, yn, zn

))
, F

(
g(xn), g

(
yn

)
, g(zn)

))
= 0, (2.36)

lim
n→∞

d
(
g
(
F
(
yn, xn, yn

))
, F

(
g
(
yn

)
, g(xn), g

(
yn

)))
= 0, (2.37)

lim
n→∞

d
(
g
(
F
(
zn, yn, xn

))
, F

(
g(zn), g

(
yn

)
, g(xn)

))
= 0. (2.38)

Suppose now the assumption (a) holds, that is, F is continuous.
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For all n ≥ 0, we have

d
(
gx, F

(
gxn, gyn, gzn

)) ≤ d(gx, g(F(xn, yn, zn
)))

+ d
(
g
(
F
(
xn, yn, zn

))
, F

(
gxn, gyn, gzn

))
.

(2.39)

Taking the limit as n → ∞, using (2.32), (2.33), (2.36), and the facts that g and F are
continuous, we have d(gx, F(x, y, z)) = 0.

Similarly, by using (2.32), (2.34), and (2.37) and (2.32), (2.35), and (2.38), respectively,
and also the facts that g and F are continuous, we have d(gy, F(y, x, y)) = 0 and
d(gz, F(z, y, x)) = 0.

Thus we have proved that g and F have a tripled coincidence point.
Suppose that the assumption (b) holds. Since {gxn}, {gzn} are nondecreasing and

gxn → x with gzn → z and also {gyn} is nonincreasing with gyn → y, by assumption (b)
we have for all n

gxn � x, gyn � y, gzn � z. (2.40)

By virtue of monotone increasing property of g we have

ggxn � gx, ggyn � gy, ggzn � gz. (2.41)

Now using (2.4)we have

d
(
gx, F

(
x, y, z

)) ≤ d
(
gx, g

(
gxn+1

))
+ d

(
g
(
g(xn+1)

)
, F

(
x, y, z

))

≤ d
(
gx, g

(
gxn+1

))
+ d

(
g
(
F
(
xn, yn, zn

))
, F

(
gxn, gyn, gzn

))

+ d
(
F
(
gxn, gyn, gzn

)
, F

(
x, y, z

))

≤ d
(
gx, g

(
gxn+1

))
+ d

(
g
(
F
(
xn, yn, zn

))
, F

(
gxn, gyn, gzn

))

+ ψ
(
max

{
d
(
ggxn, gx

)
, d

(
ggyn, gy

)
, d

(
ggzn, gz

)})
,

(
by(2.1), (2.41)

)
.

(2.42)

Taking the limit as n → ∞ in the above inequality, using (2.33), (2.36), and (2.41)we have

d
(
gx, F

(
x, y, z

)) ≤ lim
n→∞

ψ
(
max

{
d
(
ggxn, gx

)
, d

(
ggyn, gy

)
, d

(
ggzn, gz

)})
. (2.43)

By (2.33), (2.34), (2.35), and the property of ψ, we have

d
(
gx, F

(
x, y, z

)) ≤ ψ(0) = 0, (2.44)

that is

gx = F
(
x, y, z

)
. (2.45)
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In a similar manner using (2.33), (2.34), (2.35), and (2.36), (2.37), (2.38), respectively, we
obtain

gy = F
(
y, x, y

)
,

gz = F
(
z, y, x

)
.

(2.46)

Thus, we proved that g and F have a tripled coincidence point.
This completes the proof of the theorem.

Corollary 2.2. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Suppose F : X ×X ×X → X and g : X → X are such that F has
the mixed g-monotone property and

d
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ ψ(max
{
d
(
gx, gu

)
, d

(
gy, gv

)
, d

(
gz, gw

)})
(2.47)

for any x, y, z ∈ X for which gx � gu, gy � gv and gz � gw, where ψ : [0,+∞) → [0,+∞) be
such that ψ(t) is monotone, ψ(t) < t and limr→ t+ψ(r) < t for all t > 0. Suppose F(X×X×X) ⊆ g(X),
g is continuous, and F and g are commuting. Suppose either

(a) F is continuous, or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn � x for all n,
(ii) if a nonincreasing sequence {yn} → y, then yn � y for all n.

If there exist x0, y0, z0 ∈ X such that gx0 � F(x0, y0, z0), gy0 � F(y0, x0, y0), and gz0 �
F(z0, y0, x0), then there exist x, y, z ∈ X such that

F
(
x, y, z

)
= gx, F

(
y, x, y

)
= gy, F

(
z, y, x

)
= gz, (2.48)

that is, F and g have a tripled coincidence point.

Proof. Since a commuting pair is also a compatible pair, the result of the Corollary 2.2 follows
from Theorem 2.1.

Later, by an example, we will show that the Corollary 2.2 is properly contained in
Theorem 2.1.

Corollary 2.3. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Suppose F : X×X×X → X be such that F has the mixed monotone
property and

d
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ ψ(max
{
d(x, u), d

(
y, v

)
, d(z,w)

})
(2.49)

for any x, y, z ∈ X for which x � u, y � v and z � w, where ψ : [0,+∞) → [0,+∞) be such that
ψ(t) is monotone, ψ(t) < t and limr→ t+ψ(r) < t for all t > 0. Suppose
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(a) F is continuous, or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn � x for all n,
(ii) if a nonincreasing sequence {yn} → y, then yn � y for all n.

If there exist x0, y0, z0 ∈ X such that x0 � F(x0, y0, z0), y0 � F(y0, x0, y0), and
z0 � F(z0, y0, x0), then there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z, (2.50)

that is, F has a tripled fixed point.

Proof. Taking g(x) = x in Theorem 2.1 we obtain Corollary 2.3.

Corollary 2.4. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Suppose F : X ×X ×X → X and g : X → X are such that F has
the mixed monotone property and

d
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ kmax
{
d(x, u), d

(
y, v

)
, d(z,w)

}
(2.51)

for any x, y, z ∈ X for which x � u, y � v and z � w, where 0 < k < 1. Suppose either

(a) F is continuous, or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn � x for all n,
(ii) if a nonincreasing sequence {yn} → y, then yn � y for all n.

If there exist x0, y0, z0 ∈ X such that x0 � F(x0, y0, z0), y0 � F(y0, x0, y0), and z0 �
F(z0, y0, x0), then there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z, (2.52)

that is, F has a tripled coincidence point.

Proof. Taking ψ(t) = kt, t > 0 where 0 < k < 1, in Corollary 2.3 we obtain Corollary 2.4.

The following corollary is the result of Berinde and Borcut in [20].

Corollary 2.5. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Suppose F : X×X×X → X be such that F has the mixed monotone
property and

d
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ a1d(x, u) + a2d
(
y, v

)
+ a3d(z,w) (2.53)

for any x, y, z ∈ X for which x � u, y � v and z � w, where a1 + a2 + a3 < 1. Suppose either
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(a) F is continuous, or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn � x for all n
(ii) if a nonincreasing sequence {yn} → y, then yn � y for all n.

If there exist x0, y0, z0 ∈ X such that x0 � F(x0, y0, z0), y0 � F(y0, x0, y0), and
z0 � F(z0, y0, x0), then there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z, (2.54)

that is, F has a tripled fixed point.

Proof. The proof follows from Corollary 2.4, since the inequality in Corollary 2.5 implies that
Corollary 2.4.

Remark 2.6. The method used in the proof of Corollary 2.5 is different from that used by
Berinde and Borcut [20].

Next we discuss an example.

Example 2.7. LetX = �. Then (X,�) is a partially ordered set with the partial ordering defined
by x � y if and only if |x| ≤ |y| and x · y ≥ 0.

Let d(x, y) = |x − y| for x, y ∈ �. Then (X, d) is a complete metric space.
Let g : X → X be defined as g(x) = x2/10, for all x ∈ X.
Let F : X ×X ×X → X be defined as

F
(
x, y, z

)
=
x2 − y2 + z2

9
, ∀x, y, z ∈ X. (2.55)

Then F obeys the mixed g-monotone property.
Let ψ : [0,∞) → [0,∞) be defined as ψ(t) = (1/3)t for all t ∈ [0,∞).
Let, {xn}, {yn}, and {zn} be three sequences in X such that

lim
n→∞

F
(
xn, yn, zn

)
= lim

n→∞
g(xn) = a,

lim
n→∞

F
(
yn, xn, yn

)
= lim

n→∞
g
(
yn

)
= b,

lim
n→∞

F
(
zn, yn, xn

)
= lim

n→∞
g(zn) = c.

(2.56)

Then explicitly,

lim
n→∞

x2
n − y2

n + z
2
n

9
= lim

n→∞
x2
n

10
, ∀x, y, z ∈ X,

or,

10a − 10b + 10c
9

= a imply a − 10b + 10c = 0.

(2.57)
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Again,

lim
n→∞

y2
n − x2

n + y
2
n

9
= lim

n→∞
y2
n

10
, ∀x, y, z ∈ X,

or,

10b − 10a + 10b
9

= b imply 11b − 10a = 0.

(2.58)

And

lim
n→∞

z2n − y2
n + x

2
n

9
= lim

n→∞
z2n
10
, ∀x, y, z ∈ X,

or,

10c − 10b + 10a
9

= c imply c − 10b + 10a = 0.

(2.59)

Then from the above relations we have, a = 0, b = 0, and c = 0.
Therefore,

d
(
g
(
F
(
xn, yn, zn

))
, F

(
gxn, gyn, gzn

)) −→ 0 as n −→ ∞,

d
(
g
(
F
(
yn, xn, yn

))
, F

(
gyn, gxn, gyn

)) −→ 0 as n −→ ∞,

d
(
g
(
F
(
zn, yn, xn

))
, F

(
gzn, gyn, gxn

)) −→ 0 as n −→ ∞.

(2.60)

Hence, the pair (g, F) is compatible in X.
Also, x0 = 0, z0 = c(> 0), and y0 = 0 are three points in X such that g(x0) = g(0) =

0 < c2/9 = F(0, 0, c) = F(x0, y0, z0), g(y0) = g(0) = 0 = F(0, 0, 0) = F(y0, x0, y0), and g(z0) =
g(c) = c2/10 < c2/9 = F(c, 0, 0) = F(z0, y0, x0).

We next verify inequality (2.1) of Theorem 2.1. We take x, y, z, u, v,w ∈ X, such that
gx � gu, gz � gw and gy � gv, that is, x2 ≤ u2, z2 ≤ w2, and y2 ≥ v2.

LetA = max{d(gx, gu), d(gy, gv), d(gz, gw)} = max{|(x2−u2)|, |(y2−v2)|, |(z2−w2)|}.
Then d(F(x, y, z), F(u, v,w)) = d((x2 − y2 + z2)/9, (u2 − v2 + w2)/9) = (|(x2 − u2) −

(y2 − v2) + (z2 −w2))/3| ≤ (|(x2 − u2)| + |(y2 − v2)| + |(z2 −w2)|)/9 ≤ 3A/9 = A/3 = ψ(A) =
ψ(max{d(gx, gu), d(gy, gv), d(gz, gw)}).

Thus it is verified that the functions g, F, and ψ satisfy all the conditions of
Theorem 2.1. Here (0, 0, 0) is the tripled coincidence point of g and F in X.

Remark 2.8. It is observed that in Example 2.7 the function F and g do not commute, but
they are compatible. Hence Corollary 2.2 cannot be applied to this example. This shows that
Theorem 2.1 properly contains Corollary 2.2. Also g /= I, so the results of Berinde and Borcut
[20] cannot be applied to this example. This shows that result in [20] is effectively generalised.
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[6] L. Ćirić and V. Lakshmikantham, “Coupled random fixed point theorems for nonlinear contractions
in partially ordered metric spaces,” Stochastic Analysis and Applications, vol. 27, no. 6, pp. 1246–1259,
2009.

[7] B. S. Choudhury, N. Metiya, and A. Kundu, “Coupled coincidence point theorems in ordered metric
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