
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2012, Article ID 313675, 11 pages
doi:10.1155/2012/313675

Research Article
Fixed Point of T-Hardy-Rogers
Contractive Mappings in Partially Ordered
Partial Metric Spaces

Mujahid Abbas,1 Hassen Aydi,2 and Stojan Radenović3
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We prove some fixed point theorems for a T-Hardy-Rogers contraction in the setting of partially
ordered partial metric spaces. We apply our results to study periodic point problems for such
mappings. We also provide examples to illustrate the results presented herein.

1. Introduction and Preliminaries

The notion of a partial metric space was introduced by Matthews in [1]. In partial metric
spaces, the distance of a point in the self may not be zero. After the definition of a partial
metric space, Matthews proved the partial metric version of Banach fixed point theorem.
A motivation behind introducing the concept of a partial metric was to obtain appropriate
mathematical models in the theory of computation and, in particular, to give a modified
version of the Banach contraction principle, more suitable in this context [1]. Subsequently,
several authors studied the problem of existence and uniqueness of a fixed point for
mappings satisfying different contractive conditions (e.g., [2–21], [22]). Existence of fixed
points in partially ordered metric spaces has been initiated in 2004 by Ran and Reurings
[23]. Subsequently, several interesting and valuable results have appeared in this direction
[14]. The aim of this paper is to study the necessary conditions for existence of fixed point of
mapping satisfying T -Hardy-Rogers conditions in the framework of partially ordered partial
metric spaces. Our results extend and strengthen various known results [8, 24]. In the sequel,
the letters R, R

+, and N will denote the set of real numbers, the set of nonnegative real
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numbers, and the set of nonnegative integer numbers, respectively. The usual order on R

(resp., on R
+)will be indistinctly denoted by ≤ or by ≥.

Consistent with [1, 8] (see [25–29]) the following definitions and results will be needed
in the sequel.

Definition 1.1 (see [1]). A partial metric on a nonempty set X is a mapping p : X × X → R
+

such that for all x, y, z ∈ X,

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
onX. If p(x, y) = 0, then (p1) and (p2) imply that x = y. But converse does not hold always. A
trivial example of a partial metric space is the pair (R+, p), where p : R

+ ×R
+ → R

+ is defined
as p(x, y) = max{x, y}. Each partial metric p on X generates a T0 topology τp on X which has
as a base the family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x, x) + ε}.

On a partial metric space the concepts of convergence, Cauchy sequence, complete-
ness, and continuity are defined as follows.

Definition 1.2 (see [1]). Let (X, p) be a partial metric space and let {xn} be a sequence in X.
Then (i) {xn} converges to a point x ∈ X if and only if p(x, x) = limn→∞ p(x, xn) (wemay still
write this as limn→∞xn = v or xn → v); (ii) {xn} is called a Cauchy sequence if there exists
(and is finite) limn,m→∞ p(xn, xm).

Definition 1.3 (see [1]). A partial metric space (X, p) is said to be complete if every Cauchy
sequence {xn} in X converges to a point x ∈ X, such that p(x, x) = limn,m→∞p(xn, xm). If p
is a partial metric on X, then the function ps : X × X → R+ given by ps(x, y) = 2p(x, y) −
p(x, x) − p(y, y) is a metric on X.

Lemma 1.4 (see [1, 20]). Let (X, p) be a partial metric space. Then

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric
space (X, ps);

(b) (X, p) is complete if and only if the metric space (X, ps) is complete. Furthermore,
limn→∞ ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm). (1.1)

Remark 1.5. (1) (see [19]) Clearly, a limit of a sequence in a partial metric space does not
need to be unique. Moreover, the function p(·, ·) does not need to be continuous in the sense
that xn → x and yn → y implies p(xn, yn) → p(x, y). For example, if X = [0,+∞) and
p(x, y) = max{x, y} for x, y ∈ X, then for {xn} = {1}, p(xn, x) = x = p(x, x) for each x ≥ 1
and so, for example, xn → 2 and xn → 3 when n → ∞.

(2) (see [7])However, if p(xn, x) → p(x, x) = 0 then p(xn, y) → p(x, y) for all y ∈ X.
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Definition 1.6 (see [30]). Suppose that (X, p) is a partial metric space. Denote τ(p) its topology.
We say T : (X, p) → (X, p) is continuous if both T : (X, τ(p)) → (X, τ(p)) and T :
(X, τ(ps)) → (X2, τ(ps)) are continuous.

Remark 1.7. It is worth to notice that the notions p-continuous and ps-continuous of any
function in the context of partial metric spaces are incomparable, in general. Indeed, if
X = [0,+∞), p(x, y) = max{x, y}, ps(x, y) = |x − y|, f0 = 1, and fx = x2 for all x > 0
and gx = | sinx|, then f is a p-continuous and ps-discontinuous at point x = 0; while g is a
p-discontinuous and ps-continuous at x = π .

According to [31], we state the following definition.

Definition 1.8. Let (X, p) be a partial metric space. A mapping T : X → X is said to be

(i) sequentially convergent if for any sequence {yn} inX such that {Tyn} is convergent
in (X, ps) implies that {yn} is convergent in (X, ps),

(ii) subsequentially convergent if for any sequence {yn} in X such that {Tyn} is
convergent in (X, ps) implies that {yn} has a convergent subsequence in (X, ps).

Consistent with [24, 31] we define a T -Hardy-Rogers contraction in the framework of
partial metric spaces.

Definition 1.9. Let (X, p) be a partial metric space and T, f : X → X be two mappings. A
mapping f is said to be a T -Hardy-Rogers contraction if there exist ai ≥ 0, i = 1, . . . , 5 with
a1 + a2 + a3 + a4 + a5 < 1 such that for all x, y ∈ X

p
(
Tfx, Tfy

) ≤ a1p
(
Tx, Ty

)
+ a2p

(
Tx, Tfx

)
+ a3p

(
Ty, Tfy

)

+ a4p
(
Tx, Tfy

)
+ a5p

(
Ty, Tfx

)
.

(1.2)

Putting a1 = a4 = a5 = 0 and a2 = a3 /= 0, (resp., a1 = a2 = a3 = 0 and a4 = a5 /= 0) in the
previous definition, then the inequality (1.2) is said a T -Kannan (resp., T -Chatterjea) type
contraction. Also, if a4 = a5 = 0 and a1, a2, a3 /= 0, (1.2) is said the T -Reich type contraction.

Definition 1.10. Let X be a nonempty set. Then (X, p,�) is called a partially ordered partial
metric space if and only if (i) p is a partial metric on X and (ii) � is a partial order on X.

Let (X, p) be a partial metric space endowed with a partial order � and let f : X → X
be a given mapping. We define sets Δ,Δ1 ⊂ X ×X by

Δ =
{(

x, y
) ∈ X ×X : x � y or y � x

}
,

Δ1 =
{
(x, x) ∈ X ×X : x � fx or fx � x

}
.

(1.3)

A point x ∈ X is called a fixed point of mapping f : X → X if x = fx. The set of all
fixed points of the mapping f is denoted by Ff .
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2. Fixed Point Results

In this section, we obtain fixed point results for a mapping satisfying a T -Hardy-Rogers con-
tractive condition defined on a partially ordered partial metric space which is complete.

We start with the following result.

Theorem 2.1. Let (X,�, p) be an partially ordered partial metric space which is complete. Let T :
X → X be a continuous, injective mapping and f : X → X a nondecreasing T -Hardy-Rogers con-
traction for all (x, y) ∈ Δ. If there exists x0 ∈ X with x0 � fx0, and one of the following two
conditions is satisfied

(a) f is a continuous self-map on X;

(b) for any nondecreasing sequence {xn} in (X,�) with limn→∞ ps(z, xn) = 0 it follows xn �
z for all n ∈ N;

then Ff /=φ provided that T is subsequentially or sequentially convergent. Moreover, f has a unique
fixed point if Ff × Ff ⊂ Δ.

Proof. As f is nondecreasing, therefore by given assumption, we have

x1 = fx0 � f2x0 � · · · � fnx0 � fn+1x0 � · · · (2.1)

Define a sequence {xn} in X with xn = fnx0 and so xn+1 = fxn for n ∈ N. Since (xn−1, xn) ∈ Δ
therefore by replacing x by xn−1 and y by xn in (1.2), we have

p(Txn, Txn+1) = p
(
Tfxn−1, Tfxn

)

≤ a1p(Txn−1, Txn) + a2p
(
Txn−1, Tfxn−1

)
+ a3p

(
Txn, Tfxn

)

+ a4p
(
Txn−1, Tfxn

)
+ a5p

(
Txn, Tfxn−1

)

= a1p(Txn−1, Txn) + a2p(Txn−1, Txn) + a3p(Txn, Txn+1)

+ a4p(Txn−1, Txn+1) + a5p(Txn, Txn)

≤ (a1 + a2)p(Txn−1, Txn) + a3p(Txn, Txn+1)

+ a4
[
p(Txn−1, Txn) + p(Txn, Txn+1) − p(Txn, Txn)

]
+ a5p(Txn, Txn)

= (a1 + a2 + a4)p(Txn−1, Txn) + (a3 + a4)p(Txn, Txn+1)

+ (a5 − a4)p(Txn, Txn),

(2.2)

that is,

(1 − a3 − a4)p(Txn, Txn+1) ≤ (a1 + a2 + a4)p(Txn−1, Txn) + (a5 − a4)p(Txn, Txn). (2.3)

Similarly, replacing x by xn and y by xn−1 in (1.2), we obtain

(1 − a2 − a5)p(Txn, Txn+1) ≤ (a1 + a3 + a5)p(Txn−1, Txn) + (a4 − a5)p(Txn, Txn). (2.4)
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Summing (2.3) and (2.4), we obtain p(Txn, Txn+1) ≤ δp(Txn−1, Txn), where δ = (2a1 + a2 +
a3 + a4 + a5)/(2 − a2 − a3 − a4 − a5). Obviously 0 ≤ δ < 1. Therefore, for all n ≥ 1,

p(Txn, Txn+1) ≤ δp(Txn−1, Txn) ≤ · · · ≤ δnp(Tx0, Tx1). (2.5)

Now, for any m ∈ N withm > n, we have

p(Txn, Txm) ≤ p(Txn, Txn+1) + p(Txn+1, Txn+2) + · · · + p(Txm−1, Txm)

≤
(
δn + δn+1 + · · · + δm−1

)
p(Tx0, Tx1) ≤ δn

1 − δ
p(Tx0, Tx1),

(2.6)

which implies that p(Txn, Txm) → 0 as n,m → ∞. Hence {Txn} is a Cauchy sequence in
(X, p) and in (X, ps). Since (X, p) is complete, therefore from Lemma 1.4, (X, ps) is a complete
metric space. Hence {Txn} converges to some v ∈ X with respect to the metric ps, that is,

lim
n→∞

ps(Txn, v) = 0, (2.7)

or equivalently,

p(v, v) = lim
n→∞

p(Txn, v) = lim
n,m→∞

p(Txn, Txm) = 0. (2.8)

Suppose that T is subsequentially convergent, therefore convergence of {Txn} in (X, ps) im-
plies that {xn} has a convergent subsequence {xni} in (X, ps). So

lim
i→∞

ps(xni , u) = 0, (2.9)

for some u ∈ X. As T is continuous, so (2.9) and Definition 1.6. imply that limi→∞ ps

(Txni , Tu) = 0. From (2.7) and by the uniqueness of the limit in metric space (X, ps), we
obtain Tu = v. Consequently,

0 = p(Tu, Tu) = lim
i→∞

p(Txni , Tu) = lim
i, j→∞

p
(
Txni , Txnj

)
. (2.10)

(1◦) If f is a continuous self-map on X, then fxni → fu and Tfxni → Tfu as i → ∞.
Since Txni → Tu as i → ∞, we obtain that Tfu = Tu. As T is injective, so we have
fu = u.

(2◦) If f is not continuous then by given assumption we have xn � u for all n ∈ N. Thus
for a subsequence {xni} of {xn}we have xni � u and (xni , u) ∈ Δ. Now,

p
(
Tfu, Tu

) ≤ p
(
Tfu, Tfxni

)
+ p

(
Tfxni , Tu

) − p
(
Tfxni , Tfxni

)

≤ a1p(Txni , Tu) + a2p
(
Txni , Tfxni

)
+ a3p

(
Tu, Tfu

)
+ a4p

(
Txni , Tfu

)

+ a5p
(
Tu, Tfxni

)
+ p

(
Tfxni , Tu

) − p
(
Tfxni , Tfxni

)
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= a1p(Txni , Tu) + a2p(Txni , Txni+1) + a3p
(
Tu, Tfu

)
+ a4p

(
Txni , Tfu

)

+ a5p(Tu, Txni+1) + p(Txni+1, Tu) − p(Txni+1, Txni+1)

≤ a1p(Txni , Tu) + a2p(Txni , Txni+1) + a3p
(
Tu, Tfu

)

+a4
[
p(Txni , Tu) + p

(
Tu, Tfu

) − p(Tu, Tu)
]
+ a5p(Tu, Txni+1)

+ p(Txni+1, Tu) − p(Txni+1, Txni+1).

(2.11)

On taking limit as i → ∞ and applying Remark 1.5. (2) we get

p
(
Tu, Tfu

) ≤ a1p(Tu, Tu) + a2p(Tu, Tu) + a3p
(
Tu, Tfu

)

+ a4
[
p(Tu, Tu) + p

(
Tu, Tfu

) − p(Tu, Tu)
]

+ a5p(Tu, Tu) + p(Tu, Tu) − p(Tu, Tu)

= (a1 + a2 + a5)p(Tu, Tu) + (a3 + a4)p
(
Tu, Tfu

)

≤ (a1 + a2 + a3 + a4 + a5)p
(
Tu, Tfu

)

< p
(
Tu, Tfu

)
,

(2.12)

which implies that p(Tu, Tfu) = 0, and so Tu = Tfu. Now injectivity of T gives u = fu.
Following similar arguments to those given above, the result holds when T is sequentially
convergent.

Suppose that Ff × Ff ⊂ Δ. Let w be a fixed point of f . As Ff × Ff ⊂ Δ, therefore
(u,w) ∈ Δ. From (1.2), we have

p(Tu, Tw) = p
(
Tfu, Tfw

)

≤ a1p(Tu, Tw) + a2p
(
Tu, Tfu

)
+ a3p

(
Tw, Tfw

)
+ a4p

(
Tu, Tfw

)
+ a5p

(
Tw, Tfu

)

= a1p(Tu, Tw) + a2p(Tu, Tu) + a3p(Tw, Tw) + a4p(Tu, Tw) + a5p(Tw, Tu)

≤ (a1 + a2 + a3 + a3 + a4 + a5)p(Tu, Tw)

< p(Tu, Tw),
(2.13)

and hence p(Tu, Tw) = 0, which further implies that u = w as T is injective.
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Example 2.2. Let X = [0, 1] be endowed with usual order and let p be the complete partial
metric on X defined by p(x, y) = max{x, y} for all x, y ∈ X. Let T, f : X → X be defined by
Tx = 4x/5 and fx = x/4. Note that Δ = X ×X. For any (x, y) ∈ Δ, we have

p
(
Tfx, Tfy

)
= max

{
x

5
,
y

5

}
=

1
5
max

{
x, y

} ≤ 12
35

max
{
x, y

}

≤ 2
7
max

{
4x
5
,
4y
5

}
+
1
7
max

{
4x
5
,
x

5

}
+
1
7
max

{
4y
5
,
y

5

}

+
1
7
max

{
4x
5
,
y

5

}
+
1
7
max

{
4y
5
,
x

5

}

= a1p
(
Tx, Ty

)
+ a2p

(
Tx, Tfx

)
+ a3p

(
Ty, Tfy

)

+ a4p
(
Tx, Tfy

)
+ a5p

(
Ty, Tfx

)
.

(2.14)

Therefore, f is a T -Hardly-Rogers contraction with a1 = 2/7, a2 = a3 = a4 = a5 = 1/7. Obvi-
ously, T is continuous and sequentially convergent. Thus, all the conditions of Theorem 2.1
are satisfied. Moreover, 0 is the unique fixed point of f .

Example 2.3. Let X = [0,∞) be endowed with usual order and let p be a partial metric on X
defined by p(x, y) = max{x, y} for all x, y ∈ X. Define T, f : X → X by Tx = x2 and fx =
x/3. Note that Δ = X ×X. For any (x, y) ∈ Δ, we have

p
(
Tfx, Tfy

)
= max

{
x2

9
,
y2

9

}

=
1
9
max

{
x2, y2

}
≤ 1

6
max

{
x2, y2

}

= a1p
(
Tx, Ty

) ≤ a1p
(
Tx, Ty

)
+ a2p

(
Tx, Tfx

)
+ a3p

(
Ty, Tfy

)

+ a4p
(
Tx, Tfy

)
+ a5p

(
Ty, Tfx

)
.

(2.15)

Therefore, f is a T -Hardly-Rogers contraction with a1 = a2 = a3 = a4 = a5 = 1/6. Also, T is
continuous and sequentially convergent. Thus all the conditions of Theorem 2.1 are satisfied.
Moreover, 0 is the unique fixed point of f .

Taking Tx = x in (1.2) and Theorem 2.1, we get the Hardy-Rogers type [32] (and so
the Kannan, Chatterjea, and Reich) fixed point theorem on partially ordered partial metric
spaces.

Corollary 2.4. Let (X,�, p) be a partially ordered partial metric space which is complete. Let f : X →
X be a nondecreasing mapping such that for all (x, y) ∈ Δ, we have

p
(
fx, fy

) ≤ a1p
(
x, y

)
+ a2p

(
x, fx

)
+ a3p

(
y, fy

)
+ a4p

(
x, fy

)
+ a5p

(
y, fx

)
, (2.16)

where ai ≥ 0, i = 1, . . . , 5 with a1 + a2 + a3 + a4 + a5 < 1. If there exists x0 ∈ X with x0 � fx0, and
one of the following two conditions is satisfied.

(a) f is a continuous self map on X;

(b) for any nondecreasing sequence {xn} in (X,�) with limn→∞ ps(z, xn) = 0 it follows xn �
z for all n ∈ N; then Ff /=φ. Moreover, f has a unique fixed point if Ff × Ff ⊂ Δ.
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Remark 2.5. Corollary 2.4 corresponds to Theorem 2 of Altun et al. [8] in partially ordered
partial metric spaces. For particular choices of the coefficients (ai)i=1,...,5 in Theorem 2.1, we
obtain the T -Kannan, T -Chatterjea, and T -Reich type fixed point theorems. Also, Theorem 2.1
is an extension of Theorem 2.1 of Filipović et al. [24] from the cone metric spaces to partial
metric spaces.

3. Periodic Point Results

Let f : X → X. If the map f satisfies Ff = Ffn for each n ∈ N, then it is said to have the pro-
perty P , for more details see [33].

Definition 3.1. Let (X,�) be a partially ordered set. A mapping f is called (1) a dominating
map on X if x � fx for each x in X and (2) a dominated map on X if fx � x for each x in X.

Example 3.2. Let X = [0, 1] be endowed with usual ordering. Let f : X → X defined by
fx = x1/3, then x ≤ x1/3 = fx for all x ∈ X. Thus f is a dominating map.

Example 3.3. Let X = [0,∞) be endowed with usual ordering. Let f : X → X defined by
fx = n

√
x for x ∈ [0, 1) and let fx = xn for x ∈ [1,∞), for any n ∈ N, then for all x ∈ X,

x ≤ fx that is f is the dominating map. Note that Δ1 /=φ if f is a dominating or a dominated
mapping.

We have the following result.

Theorem 3.4. Let (X,�, p) be a partially ordered partial metric space which is complete. Let T : X →
X be an injective mapping and f : X → X a nondecreasing such that for all (x, x) ∈ Δ1, we have

p
(
Tfx, Tf2x

)
≤ λp

(
Tx, Tfx

)
, (3.1)

for some λ ∈ [0, 1) and for all x ∈ X, x /= fx. Then f has the property P provided that Ff is nonempty
and f is a dominating map on Ffn .

Proof. Let u ∈ Ffn for some n > 1. Now we show that u = fu. Since f is dominating on
Ffn , therefore u � fu which further implies that fn−1u � fnu as f is nondecreasing. Hence
(fn−1u, fn−1u) ∈ Δ1. Now by using (3.1), we have

p
(
Tu, Tfu

)
= p

(
Tffn−1u, Tf2fn−1u

)

≤ λp
(
Tfn−1u, Tfnu

)
= λp

(
Tffn−2u, Tf2fn−2u

)
.

(3.2)

Repeating the above process, we get

p
(
Tu, Tfu

) ≤ λnp
(
Tu, Tfu

)
. (3.3)

Taking limit as n → ∞, we obtain p(Tu, Tfu) = 0 and Tu = Tfu. As T is injective, so u = fu,
that is, u ∈ Ff .
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Theorem 3.5. Let (X,�, p) be a partially ordered partial metric space which is complete. let T, f :
X → X be mappings satisfy the condition of Theorem 2.1. If f is dominating on X, then f has the
property P .

Proof. From Theorem 2.1, Ff /= ∅. We will prove that (3.1) is satisfied for all (x, x) ∈ Δ1.
Indeed, f is a dominating map so that x � fx and also f is nondecreasing so that fx � f2x
and hence (x, fx) ∈ Δ. Now from (1.2),

p
(
Tfx, Tf2x

)
= p

(
Tfx, Tffx

) ≤ a1p
(
Tx, Tfx

)
+ a2p

(
Tx, Tfx

)
+ a3p

(
Tfx, Tf2x

)

+ a4p
(
Tx, Tf2x

)
+ a5p

(
Tfx, Tfx

)

≤ (a1 + a2)p
(
Tx, Tfx

)
+ a3p

(
Tfx, Tf2x

)

+ a4

(
p
(
Tx, Tfx

)
+ p

(
Tfx, Tf2x

)
− p

(
Tfx, Tfx

))
+ a5p

(
Tfx, Tfx

)
,

(3.4)

that is,

(1 − a3 − a4)p
(
Tfx, Tf2x

)
≤ (a1 + a2 + a4)p

(
Tx, Tfx

)
+ (a5 − a4)p

(
Tfx, Tfx

)
. (3.5)

Again by using (1.2), we have

p
(
Tf2x, Tfx

)
= p

(
Tffx, Tfx

) ≤ a1p
(
Tfx, Tx

)
+ a2p

(
Tfx, Tf2x

)
+ a3p

(
Tx, Tfx

)

+ a4p
(
Tfx, Tfx

)
+ a5p

(
Tx, Tf2x

)

≤ (a1 + a3)p
(
Tx, Tfx

)
+ a2p

(
Tfx, Tf2x

)
+ a4p

(
Tfx, Tfx

)

+ a5

(
p
(
Tx, Tfx

)
+ p

(
Tfx, Tf2x

)
− p

(
Tfx, Tfx

))
,

(3.6)

which implies that

(1 − a2 − a5)p
(
Tfx, Tf2x

)
≤ (a1 + a3 + a5)p

(
Tx, Tfx

)
+ (a4 − a5)p

(
Tfx, Tfx

)
. (3.7)

Summing (3.5) and (3.7) implies p(Tfx, Tf2x) ≤ λp(Tx, Tfx), λ = (2a1+a2+a3+a4+a5)/(2−
a2 − a3 − a4 − a5). Obviously, λ ∈ [0, 1). By Theorem 3.4, f has the property P .
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S. Radenović is thankful to The Ministry of Science and Technology Development of Serbia.



10 International Journal of Mathematics and Mathematical Sciences

References

[1] S. G. Matthews, “Partial metric topology,” Annals of the New York Academy of Sciences, vol. 728, pp.
183–197, 1994.

[2] M. Abbas, T. Nazir, and S. Romaguera, “Fixed point results for generalized cyclic contraction map-
pings in partial metric spaces,” Revista de la Real Academia de Ciencias Exactas, vol. 106, no. 2, pp.
287–297, 2012.

[3] T. Abdeljawad, “Fixed points for generalized weakly contractive mappings in partial metric spaces,”
Mathematical and Computer Modelling, vol. 54, no. 11-12, pp. 2923–2927, 2011.
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[12] L. Ćirić, B. Samet, H. Aydi, and C. Vetro, “Common fixed points of generalized contractions on partial
metric spaces and an application,” Applied Mathematics and Computation, vol. 218, pp. 2398–2406, 2011.

[13] C. Di Bari and P. Vetro, “Fixed points for weak φ-contractions on partial metric spaces,” International
Journal of Engineering, Contemporary Mathematics and Sciences, vol. 1, no. 1, pp. 4–9, 2011.
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[15] D. Ilić, V. Pavlović, and V. Rakočević, “Some new extensions of Banach’s contractions principle in
partial metric spaces,” Applied Mathematics Letters, vol. 24, no. 8, pp. 1326–1330, 2011.
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