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We determine the coeffcient bounds for functions in certain subclasses of analytic functions of
complex order, which are introduced here by means of a certain non-homogeneous Cauchy–Euler
type differential equation of order m. Relevant connections of some of the results obtained with
those in earlier works are also provided.

1. Introduction, Definitions and Preliminaries

Let R = (−∞,∞) be the set of real numbers, let C be the set of complex numbers,

N := {1, 2, 3, . . .} = N0 \ {0} (1.1)

be the set of positive integers and

N
∗ := N \ {1} = {2, 3, 4, . . .}. (1.2)

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n (1.3)
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which are analytic in the unit disk:

U = {z ∈ C : |z| < 1}. (1.4)

Recently, Komatu [1] introduced a certain integral operator Lδ
a defined by

Lδ
af(z) =

aδ

Γ(δ)

∫1

0
ta−2
(
log

1
t

)δ−1
f(zt)dt, z ∈ U; a > 0; δ ≥ 0; f(z) ∈ A. (1.5)

Thus, if f ∈ A is of the form (1.3), then it is easily seen from (1.5) that (see [1])

Lδ
af(z) = z +

∞∑

n=2

(
a

a + n − 1

)δ

anz
n, a > 0; δ ≥ 0. (1.6)

Using the relation (1.6), it is easily verfied that

z
(
Lδ+1
a f(z)

)′
= aLδ

af(z) − (a − 1)Lδ+1
a f(z),

Lδ
a

(
zf ′(z)

)
= z
(
Lδ
af(z)

)′
.

(1.7)

We note that:

(i) for a = 1 and δ = k (k is any integer), the multiplier transformation Lk
1f(z) = Ikf(z)

was studied by Flett [2] and Sălageăn [3];

(ii) for a = 1 and δ = −k (k ∈ N0), the differential operator L−k
1 f(z) = Dkf(z) was

studied by Sălageăn [3];

(iii) for a = 2 and δ = k (k is any integer), the operator Lk
2f(z) = Lkf(z) was studied by

Uralegaddi and Somanatha [4];

(iv) for a = 2, the multiplier transformation Lδ
2f(z) = Iδf(z) was studied by Jung et al.

[5].

Using the operator Lδ
a, we now introduce the following classes.

Definition 1.1. One says that a function f ∈ A is in the class Sa,δ(b, β) if

Re

{
1 +

1
b

(
z
(
Lδ
af(z)

)′

Lδ
af(z)

− 1

)}
> β, (1.8)

where z ∈ U; a > 0; δ ≥ 0; 0 ≤ β < 1; b ∈ C \ {0}.

Definition 1.2. One says that a function f ∈ A is in the class Ca,δ(b, β) if

Re

⎧
⎪⎨

⎪⎩
1 +

1
b

z
(
Lδ
af(z)

)′′
(
Lδ
af(z)

)′

⎫
⎪⎬

⎪⎭
> β, (1.9)

where z ∈ U;a > 0; δ ≥ 0; 0 ≤ β < 1; b ∈ C \ {0}.
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Note that

f ∈ Ca,δ

(
b, β
)⇔ zf ′ ∈ Sa,δ

(
b, β
)
. (1.10)

In particular, the classes

Sa,δ(b, 0) ≡ Sa,δ(b), Ca,δ(b, 0) ≡ Ca,δ(b) (1.11)

introduced by Bulut [6].
Making use of the Komatu integral operator Lδ

a, we now introduce each of the
following subclasses of analytic functions.

Definition 1.3. One denotes by Sa,δ(λ, b,A, B) the class of functions f ∈ A satisfying

1 +
1
b

⎛
⎜⎝

z
(
λz
(
Lδ
af(z)

)′ + (1 − λ)Lδ
af(z)

)′

λz
(
Lδ
af(z)

)′
+ (1 − λ)Lδ

af(z)
− 1

⎞
⎟⎠ ≺ 1 +Az

1 + Bz
, (1.12)

where z ∈ U;a > 0; δ ≥ 0; −1 ≤ B < A ≤ 1; 0 ≤ λ ≤ 1; b ∈ C \ {0}.

Definition 1.4. A function f ∈ A is said to be in the class Ba,δ(λ, b,A, B,m;u) if it satisfies the
following non-homogenous Cauchy-Euler differential equation:

zm
dmw

dzm
+
(
m
1

)
(u +m − 1)zm−1d

m−1w
dzm−1 + · · · +

(
m
m

)
w

m−1∏

j=0

(
u + j

)
= g(z)

m−1∏

j=0

(
u + j + 1

)

(
w = f(z) ∈ A; g ∈ Sa,δ(λ, b,A, B); m ∈ N

∗; u ∈ (−1,∞)
)
.

(1.13)

Remark 1.5. If we set δ = 0 in the classes Sa,δ(λ, b,A, B) and Ba,δ(λ, b,A, B,m;u), then we have
the classes

S(λ, b,A, B), K(λ, b,A, B,m;u) (1.14)

introduced by Srivastava et al. [7], respectively.
If we take A = 1 − 2β (0 ≤ β < 1) and B = −1 in the class Sa,δ(λ, b,A, B), then we have

a new class consisting of functions f ∈ A which satisfy the condition

Re

⎧
⎪⎨

⎪⎩
1 +

1
b

⎛
⎜⎝

z
(
λz
(
Lδ
af(z)

)′ + (1 − λ)Lδ
af(z)

)′

λz
(
Lδ
af(z)

)′
+ (1 − λ)Lδ

af(z)
− 1

⎞
⎟⎠

⎫
⎪⎬

⎪⎭
> β, z ∈ U. (1.15)

We denote this class by Sa,δ(λ, b, β). Also we denote by Ba,δ(λ, b, β,m;u) for corresponding
class to Ba,δ(λ, b, 1 − 2β,−1, m;u).
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Note that taking λ = 0 and λ = 1 for the class Sa,δ(λ, b, β), we have the classes Sa,δ(b, β)
and Ca,δ(b, β), respectively. In particular, the classes

Sa,0
(
λ, b, β

) ≡ SC(b, λ, β), Ba,0
(
λ, b, β, 2;u

) ≡ B(b, λ, β;u) (1.16)

are studied by Altıntaş et al. [8].
In this work, by using the principle of subordination, we obtain coefficient bounds for

functions in the subclasses

Sa,δ(λ, b,A, B), Ba,δ(λ, b,A, B,m;u) (1.17)

of analytic functions of complex order, which we have introduced here. Our results would
unify and extend the corresponding results obtained earlier by Robertson [9], Nasr and Aouf
[10], Altıntaş et al. [8] and Srivastava et al. [7].

In our investigation, we will make use of the principle of subordination between
analytic functions, which is explained in Definition 1.6 below (see [11]).

Definition 1.6. For two functions f and g, analytic in U, one says that the function f(z) is
subordinate to g(z) in U, and write

f(z) ≺ g(z), z ∈ U, (1.18)

if there exists a Schwarz function w(z), analytic in U, with

w(0) = 0, |w(z)| < 1, z ∈ U, (1.19)

such that

f(z) = g(w(z)), z ∈ U. (1.20)

In particular, if the function g is univalent in U, the above subordination is equivalent to

f(0) = g(0), f(U) ⊂ g(U). (1.21)

In order to prove our main results (Theorems 2.1 and 2.2 in Section 2), we first recall
the following lemma due to Rogosinski [12].

Lemma 1.7. Let the function g given by

g(z) =
∞∑

k=1

bkz
k, z ∈ U, (1.22)
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be convex in U. Also let the function f given by

f(z) =
∞∑

k=1

akz
k, z ∈ U, (1.23)

be holomorphic in U. If

f(z) ≺ g(z), z ∈ U, (1.24)

then

|ak| ≤ |b1|, k ∈ N. (1.25)

2. The Main Results and Their Demonstration

We now state and prove each of our main results given by Theorems 2.1 and 2.2 below.

Theorem 2.1. Let the function f ∈ A be defined by (1.3). If the function f is in the class
Sa,δ(λ, b,A, B), then

|an| ≤
(
a + n − 1

a

)δ
∏n−2

j=0
[
j + |b|(A − B)

]

(n − 1)!(1 + λ(n − 1))
, n ∈ N

∗. (2.1)

Proof. Let the function f ∈ A be given by (1.3). Define a function

h(z) = λz
(
Lδ
af(z)

)′
+ (1 − λ)Lδ

af(z), z ∈ U. (2.2)

We note that the function h is of the form

h(z) = z +
∞∑

n=2

Anz
n, z ∈ U, (2.3)

where, for convenience,

An = (1 + λ(n − 1))
(

a

a + n − 1

)δ

an, n ∈ N
∗. (2.4)

From Definition 1.3 and (2.2), we obtain that

1 +
1
b

(
zh′(z)
h(z)

− 1
)

≺ 1 +Az

1 + Bz
, z ∈ U. (2.5)
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Let us set

g(z) =
1 +Az

1 + Bz
(2.6)

and define the function p(z) by

p(z) = 1 +
1
b

(
zh′(z)
h(z)

− 1
)
, z ∈ U. (2.7)

Therefore, we have

p(z) ≺ g(z), z ∈ U. (2.8)

Hence, by Definition 1.6, we deduce that

p(z) =
1 +Aw(z)
1 + Bw(z)

(w(0) = 0; |w(z)| < 1). (2.9)

Note that

p(0) = g(0) = 1, p(z) ∈ g(U), z ∈ U. (2.10)

Also from (2.7), we find

zh′(z) =
[
1 + b

(
p(z) − 1

)]
h(z). (2.11)

Let

p(z) = 1 + c1z + c2z
2 + · · · , z ∈ U. (2.12)

Since A1 = 1, in view of (2.3), (2.11) and (2.12), we obtain

(n − 1)An = b{cn−1 + cn−2A2 + · · · + c1An−1} (2.13)

for n ∈ N
∗. On the other hand, according to the Lemma 1.7, we obtain

∣∣∣∣∣
p(m)(0)
m!

∣∣∣∣∣ ≤ A − B, m ∈ N. (2.14)
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By combining (2.14) and (2.13), for n = 2, 3, 4, we obtain

|A2| ≤ |b|(A − B),

|A3| ≤ |b|(A − B)(1 + |b|(A − B))
2!

,

|A4| ≤ |b|(A − B)(1 + |b|(A − B))(2 + |b|(A − B))
3!

,

(2.15)

respectively. Using the principle of mathematical induction, we obtain

|An| ≤
∏n−2

j=0
[
j + |b|(A − B)

]

(n − 1)!
, n ∈ N

∗. (2.16)

Now from (2.4), it is clear that

|an| ≤
(
a + n − 1

a

)δ
∏n−2

j=0
[
j + |b|(A − B)

]

(n − 1)!(1 + λ(n − 1))
, n ∈ N

∗. (2.17)

This evidently completes the proof of Theorem 2.1.

Theorem 2.2. Let the function f ∈ A be defined by (1.3). If the function f is in the class
Ba,δ(λ, b,A, B,m;u), then

|an| ≤
(
a + n − 1

a

)δ
∏n−2

j=0
[
j + |b|(A − B)

]

(n − 1)!(1 + λ(n − 1))

∏m−1
j=0
(
u + j + 1

)

∏m−1
j=0
(
u + j + n

) , n ∈ N
∗. (2.18)

Proof. Let the function f ∈ A be given by (1.3). Also let

q(z) = z +
∞∑

n=2

Bnz
n ∈ Sa,δ(λ, b,A, B), (2.19)

so that

an =

∏m−1
j=0
(
u + j + 1

)

∏m−1
j=0
(
u + j + n

)Bn, n ∈ N
∗, u ∈ (−1,∞). (2.20)

Thus, by using Theorem 2.1, we obtain

|an| ≤
(
a + n − 1

a

)δ
∏n−2

j=0
[
j + |b|(A − B)

]

(n − 1)!(1 + λ(n − 1))

∏m−1
j=0
(
u + j + 1

)

∏m−1
j=0
(
u + j + n

) . (2.21)

This completes the proof of Theorem 2.2.
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3. Corollaries and Consequences

In this section, we apply our main results (Theorems 2.1 and 2.2) in order to deduce each of
the following corollaries and consequences.

It is easy to see that

j + |b|(A − B) ≤ j +
2|b|(A − B)

1 − B
, j ∈ N

∗, −1 ≤ B < A ≤ 1, b ∈ C \ {0}, (3.1)

which would obviously yield significant improvements over Theorems 2.1 and 2.2 (see
Srivastava et al. [7]).

Setting A = 1 − 2β (0 ≤ β < 1) and B = −1 in Theorems 2.1 and 2.2, we have

Corollary 3.1. Let the function f ∈ A be defined by (1.3). If the function f is in the classSa,δ(λ, b, β),
then

|an| ≤
(
a + n − 1

a

)δ
∏n−2

j=0
[
j + 2|b|(1 − β

)]

(n − 1)!(1 + λ(n − 1))
, n ∈ N

∗. (3.2)

Remark 3.2. Taking δ = 0 in Corollary 3.1, we have [8, Theorem 1].

Corollary 3.3. Let the function f ∈ A be defined by (1.3). If the function f is in the class
Ba,δ(λ, b, β,m;u), then

|an| ≤
(
a + n − 1

a

)δ
∏n−2

j=0
[
j + 2|b|(1 − β

)]

(n − 1)!(1 + λ(n − 1))

∏m−1
j=0
(
u + j + 1

)

∏m−1
j=0
(
u + j + n

) , n ∈ N
∗. (3.3)

Remark 3.4. Taking δ = 0 and m = 2 in Corollary 3.3, we have [8, Theorem 2].

Letting λ = 0 and λ = 1 in Corollary 3.1, we get following corollaries, respectively.

Corollary 3.5. Let the function f ∈ A be defined by (1.3). If the function f is in the class Sa,δ(b, β),
then

|an| ≤
(
a + n − 1

a

)δ
∏n−2

j=0
[
j + 2|b|(1 − β

)]

(n − 1)!
, n ∈ N

∗. (3.4)

Corollary 3.6. Let the function f ∈ A be defined by (1.3). If the function f is in the class Ca,δ(b, β),
then

|an| ≤
(
a + n − 1

a

)δ
∏n−2

j=0
[
j + 2|b|(1 − β

)]

n!
, n ∈ N

∗. (3.5)

For other related results, see also [9, 10].
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