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We establish some fixed (common fixed) and coincidence point results for mappings verifying
some expansive type contractions in conemetric spaces with the help of the concept of a c-distance.
Our results generalize, extend, and unify several well-known comparable results in the literature.
Some examples are also presented.

1. Introduction and Preliminaries

Huang and Zhang [1] reintroduced the notion of cone metric spaces and established fixed
point theorems for mappings on this space. After that, many fixed point theorems have been
proved in normal or nonnormal cone metric spaces by some authors (see e.g., [1–26] and
references contained therein).

We need to recall some basic notations, definitions, and necessary results from litera-
ture. Let R+ be the set of nonnegative real numbers. Let E be a real Banach space and 0E is the
zero vector of E.

Definition 1.1 (see [1]). A nonempty subset P of E is called a cone if the following conditions
hold:

(i) P is closed and P /= {0E},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P ,

(iii) x ∈ P, −x ∈ P ⇒ x = 0E.
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Given a cone P ⊂ E, a partial ordering ≤E with respect to P is naturally defined by
x ≤E y if and only if y − x ∈ P , for x, y ∈ E. We will write x <E y to indicate that x ≤E y but
x /=y, while x � y will stand for y − x ∈ intP , where intP denotes the interior of P . A cone
P is said solid if intP is non-empty.

Definition 1.2 (see [1]). Let X be a non-empty set and d : X ×X → P satisfies

(i) d(x, y) = 0E if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) ≤E d(x, z) + d(z, y) for all x, y, z ∈ E.

Then, the mapping d is called a cone metric on X and the pair (X, d) is called a cone metric
space.

Definition 1.3 (see [1]). Let (X, d) be a cone metric space, {xn} is a sequence in X and x ∈ X.

(i) If for every c ∈ E with 0E �E c there isN ∈ N such that d(xn, x) �E c for all n ≥ N,
then {xn} is said to be convergent to x. This limit is denoted by limn→+∞xn = x or
xn → x as n → +∞.

(ii) If for every c ∈ E with 0E �E c, there is N ∈ N such that d(xn, xm) �E c for all
n,m > N, then {xn} is called a Cauchy sequence in X.

(iii) If every Cauchy sequence in X is convergent in X, then (X, d) is called a complete
cone metric space.

Definition 1.4. Let (X, d) be a cone metric space and let T : X → X be a given mapping. We
say that T is continuous on x0 ∈ X if for every sequence {xn} is X, we have

xn −→ x0 as n −→ ∞ =⇒ Txn −→ Tx0 as n −→ ∞. (1.1)

If T is continuous on each point x0 ∈ X, then we say that T is continuous on X.

In 2011, Cho et al. [11] andWang and Guo [27] introduced a new concept of c-distance
in cone metric spaces, which is a cone version of w-distance of Kada et al. [16] and proved
some fixed point theorems for some contractive-type mappings in partially ordered cone
metric spaces using the c-distance. For other results, see [13, 24].

Definition 1.5 (see [11, 27]). Let (X, d) be a cone metric space. Then, a function q : X → E is
called a c-distance on X if the following are satisfied:

(q1) q(x, y) ≥E 0E for all x, y ∈ X,

(q2) q(x, z) ≤E q(x, y) + q(y, z) for all x, y, z ∈ X,

(q3) for each x ∈ X and n ≥ 1, if q(x, yn) ≤E u for some u = ux ∈ P , then q(x, y) ≤E u
whenever {yn} is a sequence in X converging to a point y ∈ X,

(q4) for all c ∈ E with 0E � c, there exists e ∈ E with 0E � e such that q(z, x) � e and
q(z, y) � e imply d(x, y) � c.

Remark 1.6 (see [11, 27]). The c-distance q is a w-distance on X if we take (X, d) is a metric
space, E = R+, P = [0,∞), and (q3) is replaced by the following condition. For any x ∈ X,
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q(x, ·) : X → R+ is lower semicontinuous. Moreover, (q3) holds whenever q(x, ·) is lower
semicontinuous. Thus, if (X, d) is a metric space, E = R+ and P = [0,∞), then every w-
distance is a c-distance. But the converse is not true in general case. Therefore, the c-distance
is a generalization of the w-distance.

Example 1.7 (see [11, 27]). Let (X, d) be a cone metric space and let P be a normal cone. Define
a mapping q : X ×X → E by q(x, y) = d(x, y) for all x, y ∈ X. Then, q is a c-distance.

Example 1.8 (see [11, 27]). Let (X, d) be a cone metric space and let P be a normal cone. Define
a mapping q : X × X → E by q(x, y) = d(u, y) for all x, y ∈ X, where u is a fixed point in X.
Then, q is a c-distance.

Example 1.9. Let (X, d) be a cone metric space and let P be a normal cone. Define a mapping q :
X ×X → E by q(x, y) = (d(x, u) + d(u, y))/2 for all x, y ∈ X, where u is a fixed point in X. Then
q is a c-distance.

Remark 1.10 (see [11, 27]). (1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X.
(2) q(x, y) = 0E is not necessarily equivalent to x = y for all x, y ∈ X.

Lemma 1.11 (see [11, 27]). Let (X, d) be a cone metric space and let q be a c-distance on X. Let
{xn} and {yn} be a sequences in X and x, y, z ∈ X. Suppose that {un} is a sequence in P converging
to 0E. The following hold.

(1) If q(xn, y) ≤E un and q(xn, z) ≤E un, then y = z.

(2) If q(xn, yn) ≤E un and q(xn, z) ≤E un, then {yn} converges to z.
(3) If q(xn, xm) ≤E un for all m > n, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) ≤E un, then {xn} is a Cauchy sequence in X.

Let f, g : X → X be two selfmaps on a nonempty set X. Recall that a point x ∈ X is
called a coincidence point of the pair (f, g) if fx = gx. The point y = fx = gx is called a point
of coincidence. If x = fx = gx, then x is said a common fixed point of f and g.

The purpose of this paper is to give some common fixed and coincidence point theo-
rems for mappings verifying some expansive type contractions on cone metric spaces via a
c-distance. Also, some examples are presented.

2. Main results

First, we present the following useful lemma, which is a variant of (2.2) in Lemma 1.11.

Lemma 2.1. Let (X, d) be a cone metric space and let q be a c-distance on X. Let {xn} be a sequence
in X. Suppose that {αn} and {βn} are tow sequences in P converging to 0E. If q(xn, y) ≤E αn and
q(xn, z) ≤E βn, then y = z.

Proof. Let c 
 0E be arbitrary. Since αn → 0E, so there exists N1 ∈ N such that αn � c/2
for all n ≥ N1. Similarly, there exists N2 ∈ N such that βn � c/2 for all n ≥ N1. Thus, for all
N ≥ max{N1,N2}, we have

q
(
xn, y

) � c

2
, q(xn, z) � c

2
. (2.1)

Take e = c/2, so by (q4), we get that d(y, z) � c for each c 
 0E, hence y = z.
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Now, we present coincidence point results in the frame work of cone metric spaces in
terms of a c-distance. Note that (2.2) is called an expansive type contraction.

Theorem 2.2. Let (X, d) be a cone metric space and let q be a c-distance on X. Let f, T : X → X be
two functions such that there are three nonnegative real numbers a, b, and c with a + b + c > 1 such
that

q
(
Tx, Ty

) ≥E aq
(
fx, fy

)
+ bq

(
Tx, fx

)
+ cq

(
Ty, fy

)
. (2.2)

Assume the following hypotheses:

(1) b < 1 and a/= 0,

(2) f(X) ⊆ T(X),

(3) (T(X), d) is a complete subset of (X, d).

Then T and f have a coincidence point, say u ∈ X. One has q(Tu, Tu) = 0E.
Also, if a > 1, then the point of coincidence x = Tu = fu is unique.

Proof. Let x0 ∈ X. Since f(X) ⊆ T(X), we can choose x1 ∈ X such that Tx1 = fx0. Again since
f(X) ⊆ T(X), we can choose x2 ∈ X such that Tx2 = fx1. Continuing this process, we can
construct a sequence {xn} in X such that Txn = fxn−1 for all n ≥ 1.

By (2.2), we have

q
(
fxn−1, fxn

)
= q(Txn, Txn+1)

≥E aq
(
fxn, fxn+1

)
+ bq

(
Txn, fxn

)
+ cq

(
Txn+1, fxn+1

)

= aq
(
fxn, fxn+1

)
+ bq

(
fxn−1, fxn

)
+ cq

(
fxn, fxn+1

)
.

(2.3)

Therefore,

(1 − b)q
(
fxn−1, fxn

) ≤E (a + c)q
(
fxn, fxn+1

)
. (2.4)

Set λ = (1 − b)/(a + c). By hypotheses, we have λ ∈ (0, 1). Also,

q
(
fxn, fxn+1

) ≤E λq
(
fxn−1, fxn

) ∀n ≥ 1. (2.5)

By induction, we get that

q
(
fxn, fxn+1

) ≤E λ
nq
(
fx0, fx1

) ∀n ≥ 0. (2.6)

Let m > n. By (q2), we have

q
(
fxn, fxm

) ≤E

m−1∑

i=n

q
(
fxi, fxi+1

)≤E
λn

1 − λ
q
(
fx0, fx1

)
. (2.7)
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Since λ < 1, so by Lemma 1.11(3), the sequence {Txn = fxn−1} is Cauchy in (T(X), d), which
is complete, hence there exists u ∈ X such that Txn → Tu. Thus, fxn → Tu as n → ∞, that
is,

lim
n→+∞

d(Txn, Tu) = lim
n→+∞

d
(
fxn, Tu

)
= 0. (2.8)

We claim that Tu = fu. Recall that q(fxn, fxm) ≤E(λn/(1 − λ))q(fx0, fx1) and fxn → Tu, so
by (q3) and asm → ∞, we get that

q
(
fxn, Tu

) ≤E
λn

1 − λ
q
(
fx0, fx1

)
. (2.9)

From (2.2), we have

q
(
fxn−1, Tu

)
= q(Txn, Tu)

≥E aq
(
fxn, fu

)
+ bq

(
Txn, fxn

)
+ cq

(
Tu, fu

)

≥E aq
(
fxn, fu

)
.

(2.10)

Since a/= 0, so it follows that

q
(
fxn, fu

) ≤E
1
a
q
(
fxn−1, Tu

)
. (2.11)

By (2.9), we obtain

q
(
fxn, fu

) ≤E
1
a
q
(
fxn−1, Tu

) ≤E
1
a

λn−1

1 − λ
q
(
fx0, fx1

)
. (2.12)

Set αn =: (λn/(1 − λ))q(fx0, fx1) and βn =: (1/a)(λn−1/(1 − λ))q(fx0, fx1). Since λ < 1, so
αn, βn → 0E as n → ∞. Thus, by (2.9), (2.12), and Lemma 2.1, get that Tu = fu.

Using (2.2), we get

q(Tu, Tu) ≥E(a + b + c)q(Tu, Tu). (2.13)

Since a+b+c > 1, so q(Tu, Tu) = 0E. Now, we prove that if a > 1, then the point of coincidence
x = Tu = fu is unique.

Let x and y be two points of coincidence of T and f , that is, there exist u, v ∈ X such
that x = Tu = fu and y = Tv = fv. By the above, we have q(Tu, Tu) = q(Tv, Tv) = 0E. By
(2.2), the following holds:

q(Tu, Tv) ≥E aq
(
fu, fv

)
+ bq

(
Tu, fu

)
+ cq

(
Tv, fv

)

= aq(Tu, Tv) + bq(Tu, Tu) + cq(Tv, Tv) = aq(Tu, Tv).
(2.14)

If a > 1, we conclude that q(Tu, Tv) = 0.
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Let c 
 0E be arbitrary. Take e = c 
 0E. Since q(Tu, Tu) = q(Tu, Tv) = 0E � e, then
by the condition (q4), we get that d(Tu, Tv) � c. Thus, x = Tu = Tv = y. This completes the
proof.

Now, we state the following corollaries.

Corollary 2.3. Let (X, d) be a cone metric space and let q be a c-distance on X. Let f, T : X → X be
two functions. Assume there exists a > 1 such that

q
(
Tx, Ty

) ≥E aq
(
fx, fy

)
. (2.15)

Assume the following hypotheses:

(1) f(X) ⊆ T(X),

(2) (T(X), d) is a complete subset of X.

Then, T and f have a coincidence point, say u ∈ X. One has q(Tu, fu) = 0E and x = Tu = fu is the
unique point of coincidence of T and f .

Proof. It follows by taking b = c = 0 in Theorem 2.2.

Corollary 2.4. Let (X, d) be a cone metric space and let q be a c-distance on X. Let f, T : X → X be
two functions. Assume there exist two nonnegative real numbers a and b, with a + b > 1 such that

q
(
Tx, Ty

) ≥E aq
(
fx, fy

)
+ bq

(
Tx, fx

)
. (2.16)

Assume the following hypotheses:

(1) b < 1,

(2) f(X) ⊆ T(X),

(3) (T(X), d) is a complete subset of X.

Then, T and f have a coincidence point, say u ∈ X. One has q(Tu, Tu) = 0E and x = Tu = fu is the
unique point of coincidence of T and f .

Proof. It follows by taking c = 0 in Theorem 2.2.

Corollary 2.5. Let (X, d) be a complete cone metric space and let q be a c-distance on X. Let T :
X → X be a surjective function. Assume there are three nonnegative real numbers a, b and c with
a + b + c > 1 such that

q
(
Tx, Ty

) ≥E aq
(
x, y

)
+ bq(Tx, x) + cq

(
Ty, y

)
. (2.17)

If b < 1 and a/= 0, then T has a fixed point, say u ∈ X. One has q(Tu, Tu) = 0E. Also if a > 1, then
the fixed point u is unique.

Proof. It follows by taking f = IdX , the identity on X, in Theorem 2.2. Note that when T is
surjective, so T(X) = X, that is, the hypothesis (2) in Theorem 2.2 holds.
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The next result is similar to Theorem 2.2, except that the contractive condition (2.2) is
replaced by

q
(
Ty, Tx

) ≥E aq
(
fy, fx

)
+ bq

(
Tx, fx

)
+ cq

(
Ty, fy

)
. (2.18)

Note that this contractive condition is studied since it is different to (2.2) because of
Remark 1.10.(2). Its proof is essentially the same as for Theorem 2.2 and so is omitted.

Theorem 2.6. Let (X, d) be a cone metric space and let q be a c-distance on X. Let f, g : X → X be
two functions such that there are three nonnegative real numbers a, b, and c with a + b + c > 1 such
that

q
(
Ty, Tx

) ≥E aq
(
fy, fx

)
+ bq

(
Tx, fx

)
+ cq

(
Ty, fy

)
. (2.19)

Assume the following hypotheses:

(1) c < 1 and a/= 0,

(2) f(X) ⊆ T(X),

(3) (T(X), d) is a complete subset of X.

Then, T and f have a coincidence point say u ∈ X. One has q(Tu, Tu) = 0E. If a > 1, x = Tu = fu
is the unique point of coincidence of T and f .

Remark 2.7. Let (X, d) be a cone metric space and let P be a normal cone. Take in Theorem 2.2
or Theorem 2.6 the c-distance q : X×X → E defined by q(x, y) = d(x, y) for all x, y ∈ X. Then,
the inequalities (2.2) and (2.19) correspond to the contractive condition given in Theorem
2.1 of Shatanawi and Awawdah [28]. Thus, our results (Theorems 2.2 and 2.6) extend and
generalize the results in [28].

Remark 2.8. Some similar results as above corollaries could be derived from Theorem 2.6.

Now, we present the following example.

Example 2.9. Let E = C1
R
[0, 1]with ‖x‖E = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E, x(t) ≥ 0, t ∈ [0, 1]}.

Let X = [0,∞) and let d : X × X → E be defined by d(x, y)(t) = |x − y|2t. Then, (X, d) is a
cone metric space. Let, further, q : X × X → E be defined by q(x, y)(t) = 2ty. It is easy to
check that q is a c-distance. Consider the mappings f, T : X → X defined by

Tx =
3
4
x, fx =

9
20

x. (2.20)

Take a = 4/3 and b = c = 0 (we have a + b + c > 1, b < 1 and a > 1). For all x, y ∈ X, we have

q
(
Tx, Ty

)
= 2t

3
4
y ≥ 2t

3
5
y = aq

(
fx, fy

)
. (2.21)

All hypotheses of Corollary 2.3 are satisfied, and u = 0 is a coincidence point of f and T . Also,
q(Tu, Tu) = q(0, 0) = 0 and x = Tu = T0 = 0 is the unique point of coincidence of T and f .
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Next, we present a common fixed point theorem for two maps involving some expan-
sive type contractions given by the conditions (2.22).

Theorem 2.10. Let (X, d) be a complete cone metric space and let q be a c-distance on X. Let T, S :
X → X be two mappings. Suppose that T and S satisfy the following inequalities:

q(T(Sx), Sx) + kq(T(Sx), x) ≥E aq(Sx, x),

q(S(Tx), Tx) + kq(S(Tx), x) ≥E bq(Tx, x)
(2.22)

for all x ∈ X and some nonnegative real numbers a, b, and k with a > 1 + 2k and b > 1 + 2k. If T
and S are continuous and surjective, then T and S have a common fixed point.

Proof. Let x0 be an arbitrary point in X. Since T is surjective, there exists x1 ∈ X such that
x0 = Tx1. Also, since S is surjective, there exists x2 ∈ X such that x2 = Sx1. Continuing this
process, we construct a sequence (xn) in X such that x2n = Tx2n+1 and x2n+1 = Sx2n+2 for all
n ∈ N. Now, for n ∈ N, we have

q(T(Sx2n+2), Sx2n+2) + kq(T(Sx2n+2), x2n+2) ≥E aq(Sx2n+2, x2n+2). (2.23)

Thus, we have

q(x2n, x2n+1) + kq(x2n, x2n+2) ≥E aq(x2n+1, x2n+2). (2.24)

By (q2), we have q(x2n, x2n+1) + q(x2n+1, x2n+2) ≥E p(x2n, x2n+2). Hence, we get that

q(x2n, x2n+1) + kq(x2n, x2n+1) + kq(x2n+1, x2n+2) ≥E aq(x2n+1, x2n+2). (2.25)

Therefore,

q(x2n+1, x2n+2) ≤E
1 + k

a − k
q(x2n, x2n+1). (2.26)

On other hand, we have

q(S(Tx2n+1), Tx2n+1) + kq(S(Tx2n+1), x2n+1) ≥E bq(Tx2n+1, x2n+1). (2.27)

Thus,

q(x2n−1, x2n) + kq(x2n−1, x2n+1) ≥E bq(x2n, x2n+1). (2.28)

Again, using (q2), we have

q(x2n−1, x2n) + kq(x2n−1, x2n) + kq(x2n, x2n+1) ≥E bq(x2n, x2n+1). (2.29)
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Hence,

q(x2n, x2n+1) ≤E
1 + k

b − k
q(x2n−1, x2n). (2.30)

Let

λ = max
{
1 + k

a − k
,
1 + k

b − k

}
. (2.31)

Then, by combining (2.26) and (2.30), we have

q(xn, xn+1) ≤E λq(xn−1, xn) ∀n ≥ 1. (2.32)

Repeating (2.32) n-times, we get

q(xn, xn+1) ≤E λ
nq(x0, x1). (2.33)

Thus, for m > n, we have

q(xn, xm) ≤E q(xn, xn+1) · · · + q(xm−1, xm)

≤E

(
λn + · · · + λm−1

)
q(x0, x1)

≤E
λn

1 − λ
q(x0, x1).

(2.34)

By assumption, we get that 0 ≤ λ < 1. By Lemma 1.11(3), {xn} is a Cauchy sequence in the
complete cone metric space (X, d). Then, there exists v ∈ X such that xn → v as n → +∞.
Since x2n+1 → v and x2n → v as n → +∞, so clearly, the fact that T and S are continuous
and uniqueness of limit yields that v = Tv = Sv, that is, v is a common fixed point of T and
S.

Corollary 2.11. Let (X, d) be a complete cone metric space and let q be a c-distance on X. Let T :
X → X be a continuous surjective mapping satisfying

q(T(Tx), Tx) + kq(T(Tx), x) ≥E aq(Tx, x) (2.35)

for all x ∈ X and some nonnegative real numbers a and k with a > 1 + 2k. Then, T has a fixed point.

Proof. It follows from Theorem 2.10 by taking S = T and b = a.

Remark 2.12. Corollary 4.1 of [29], Theorem 4 of [30], and Corollary 2.8 of [28] are particular
cases of Corollary 2.11.

We give the following examples illustrating our result obtained by Theorem 2.10.
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Example 2.13. Let E = R with ‖x‖E = |x|, P = [0,∞), and X = [0,∞). Let d, q : X × X → E be
defined by q(x, y) = d(x, y) = |x − y|. Then, obviously, (X, d) is a cone metric space and q is a
c-distance. Consider two mappings S, T : X → X defined by Tx = 2x and Sx = 3x. For every
k > 0, take a = (2+ 5k)/2 and b = 4+ 5k. We have a, b > 1+ 2k and the conditions (2.22) hold.
So T and S have a (unique) common fixed point, which is v = 0.

References

[1] L.-G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings,”
Journal of Mathematical Analysis and Applications, vol. 332, no. 2, pp. 1468–1476, 2007.

[2] M. Abbas and G. Jungck, “Common fixed point results for noncommuting mappings without
continuity in cone metric spaces,” Journal of Mathematical Analysis and Applications, vol. 341, no. 1,
pp. 416–420, 2008.

[3] M. Abbas, B. E. Rhoades, and T. Nazir, “Common fixed points for four maps in cone metric spaces,”
Applied Mathematics and Computation, vol. 216, no. 1, pp. 80–86, 2010.

[4] T. Abdeljawad and E. Karapinar, “Quasicone metric spaces and generalizations of Caristi Kirk’s
theorem,” Fixed Point Theory and Applications, vol. 2009, Article ID 574387, 9 pages, 2009.

[5] I. Altun and G. Durmaz, “Some fixed point theorems on ordered cone metric spaces,” Rendiconti del
Circolo Matematico di Palermo, vol. 58, no. 2, pp. 319–325, 2009.
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[10] D. Ilić and V. Rakočević, “Common fixed points for maps on cone metric space,” Journal of
Mathematical Analysis and Applications, vol. 341, no. 2, pp. 876–882, 2008.

[11] Y. J. Cho, R. Saadati, and S. Wang, “Common fixed point theorems on generalized distance in ordered
cone metric spaces,” Computers & Mathematics with Applications, vol. 61, no. 4, pp. 1254–1260, 2011.

[12] Y. J. Cho, B. E. Rhoades, R. Saadati, B. Samet, and W. Shantawi, “Nonlinear coupled fixed point
theorems in ordered generalizedmetric spaces with integral type,” Fixed Point Theory and Applications,
vol. 2012, article 8, 2012.

[13] E. Graily, S. M. Vaezpour, R. Saadati, and Y. J. Cho, “Generalization of fixed point theorems in ordered
metric spaces concerning generalized distance,” Fixed Point Theory and Applications, vol. 2011, article
30, 2011.
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