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Using Buşneag’s model, the notion of pseudovaluations (valuations) on a WFI algebra is
introduced, and a pseudometric is induced by a pseudovaluation on WFI algebras. Given a
valuation with additional condition, we show that the binary operation in WFI algebras is
uniformly continuous.

1. Introduction

In 1990, Wu [1] introduced the notion of fuzzy implication algebras (FI algebra, for short)
and investigated several properties. In [2], Li and Zheng introduced the notion of distributive
(regular, and commutative, resp.) FI algebras and investigated the relations between such FI
algebras and MV algebras. In [3], Jun discussed several aspects of WFI algebras. He intro-
duced the notion of associative (normal and medial, resp.) WFI algebras and investigated
several properties. He gave conditions for a WFI algebra to be associative/medial, provided
characterizations of associative/medial WFI algebras, and showed that every associativeWFI
algebra is a group in which every element is an involution. He also verified that the class
of all medial WFI algebras is a variety. Jun et al. [4] introduced the concept of ideals of
WFI algebras, and gave relations between a filter and an ideal. Moreover, they provided
characterizations of an ideal, and established an extension property for an ideal. Buşneag
[5] defined pseudovaluation on a Hilbert algebra and proved that every pseudovaluation
induces a pseudometric on a Hilbert algebra. Also, Buşneag [6] provided several theorems
on extensions of pseudovaluations. Buşneag [7] introduced the notions of pseudovaluations
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(valuations) on residuated lattices, and proved some theorems of extension for these (using
the model of Hilbert algebras ([6])).

In this paper, using Buşneag’s model, we introduce the notion of pseudovaluations
(valuations) on WFI algebras, and we induce a pseudometric by using a pseudovaluation on
WFI algebras. Given a valuationwith additional condition, we show that the binary operation
in WFI algebras is uniformly continuous.

2. Preliminaries

Let K(τ) be the class of all algebras of type τ = (2, 0). By a WFI algebra, we mean an algebra
(X;�, θ) ∈ K(τ) in which the following axioms hold:

(a1) (∀x ∈ X) (x � x = θ),

(a2) (∀x, y ∈ X) (x � y = y � x = θ ⇒ x = y),

(a3) (∀x, y, z ∈ X) (x � (y � z) = y � (x � z)),

(a4) (∀x, y, z ∈ X) ((x � y) � ((y � z) � (x � z)) = θ).

For the convenience of notation, we will write [x, y1, y2, . . . , yn] for

(· · · ((x � y1
) � y2

) � · · · ) � yn. (2.1)

We define [x, y]0 = x, and for n > 0, [x, y]n = [x, y, y, . . . , y], where y occurs n-times.

Proposition 2.1 (see [3]). In a WFI algebra X, the following are true:

(b1) x � [x, y]2 = θ,

(b2) θ � x = θ ⇒ x = θ,

(b3) θ � x = x,

(b4) x � y = θ ⇒ (y � z) � (x � z) = θ, (z � x) � (z � y) = θ,

(b5) (x � y) � θ = (x � θ) � (y � θ),

(b6) [x, y]3 = x � y.

We define a relation “�” on X by x � y if and only if x � y = θ. It is easy to verify
that a WFI algebra is a partially ordered set with respect to �. A nonempty subset S of a WFI
algebra X is called a subalgebra of X if x � y ∈ S whenever x, y ∈ S. A nonempty subset F of
a WFI algebra X is called a filter of X if it satisfies:

(c1) θ ∈ F,

(c2) (∀x ∈ F) (∀y ∈ X) (x � y ∈ F ⇒ y ∈ F).

A filter F of a WFI algebra X is said to be closed (see [3]) if F is also a subalgebra of
X. A nonempty subset I of a WFI algebra X is called an ideal of X (see [4]) if it satisfies the
condition (c1) and

(c3) (∀x, y ∈ X) (∀z ∈ I) ((x � z) � y ∈ I ⇒ x � y ∈ I).

Proposition 2.2 (see [3]). Let F be a filter of a WFI algebra X. Then F is closed if and only if
x � θ ∈ F for all x ∈ F.



International Journal of Mathematics and Mathematical Sciences 3

Proposition 2.3 (see [3]). In a finite WFI algebra, every filter is closed.

Note that every ideal of a WFI algebra is a closed filter (see [4, Theorem 4.3]). For a
WFI algebra X, the set

S(X) := {x ∈ X | x � θ} (2.2)

is called the simulative part of X.

3. WFI Algebras with Pseudovaluations

In what follows, let X denote a WFI algebra unless otherwise specified.

Definition 3.1. A mapping f : X → R is called a pesudovaluation on X if it satisfies the
following two conditions:

(i) f(θ) = 0,

(ii) (∀x, y ∈ X) (f(x � y) + f(x) ≥ f(y)).

A pseudovaluation f on X satisfying the following condition:

(∀x ∈ X)
(
x /= θ =⇒ f(x)/= 0

)
(3.1)

is called a valuation on X.
Obviously, a mapping

f : X −→ R, x 	−→ 0 (3.2)

is a pseudovaluation on X, which is called the trivial pseudovaluation.

Example 3.2. Let f : X → R be a mapping defined by

f(x) =

⎧
⎨

⎩

0 if x = θ,

k if x ∈ X \ {θ},
(3.3)

where k is a positive real number. Then, f is a pseudovaluation on X. Moreover, it is a
valuation on X.

Example 3.3. Let Z be the set of integers. Then, (Z;�, θ) is a WFI algebra, where θ = 0 and
x � y = y − x for all x, y ∈ Z (see [8]). Let f : Z → R be a mapping defined by

f(x) =

⎧
⎨

⎩

0 if x = θ,

ax + b otherwise,
(3.4)
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for all x ∈ Z, where a and b are real numbers with a/= 0 and b ≥ 0. Then, f is a
pseudovaluation on Z.

Example 3.4. Let X = {θ, a, b} be a set with the following Cayley table:

θ

θ

θ

θ
θ

θ

� a

a

a

b

b b b

b

b
. (3.5)

Then, (X;�, θ) is a WFI algebra (see [3]). Define a mapping f : X → R by f(θ) = 0, f(a) = 2
and f(b) = 9. Then, f is a pseudovaluation on X. Also, it is a valuation on X.

Proposition 3.5. Every pseudovaluation f on X satisfies the following conditions:

(1) (∀x, y ∈ X) (x � y ⇒ f(x) ≥ f(y)),

(2) (∀x, y, z ∈ X) (f(x � z) ≤ f(x � y) + f(y � z)),

(3) (∀x, y ∈ X) (f(x � y) + f(y � x) ≥ 0).

Proof. (1) Let x, y ∈ X be such that x � y. Then, x � y = θ, and so

f
(
y
) ≤ f

(
x � y

)
+ f(x) = f(θ) + f(x) = 0 + f(x) = f(x). (3.6)

(2) Using (a4), we have x � y � (y � z) � (x � z) for all x, y, z ∈ X. It follows from (1)
and Definition 3.1(ii) that

f
(
x � y

) ≥ f
((
y � z

) � (x � z)
) ≥ f(x � z) − f

(
y � z

)
, (3.7)

so that f(x � z) ≤ f(x � y) + f(y � z) for all x, y, z ∈ X.
(3) Let x, y ∈ X. Using Definition 3.1(ii), we have f(x � y) + f(x) ≥ f(y) and f(y �

x) + f(y) ≥ f(x); that is, f(x � y) ≥ f(y) − f(x) and f(y � x) ≥ f(x) − f(y). It follows that
f(x � y) + f(y � x) ≥ 0.

Corollary 3.6. Let f : X → R be a pseudovaluation on X. Then, f(x) ≥ 0 for all x ∈ S(X).

Proof. Since x � θ for all x ∈ S(X), we have f(x) ≥ f(θ) = 0 by Proposition 3.5(1) and
Definition 3.1(i).

The following example shows that the converse of Corollary 3.6 may not be true.

Example 3.7. Let X be a WFI algebra which is considered in Example 3.4. Let g : X → R be a
mapping defined by

g =

(
θ a b

0 −3 2

)

. (3.8)
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Then, S(X) = {θ, b}, g(θ) = 0 and g(b) = 2 ≥ 0. But g is not a pseudovaluation on X, since

g(a � θ) + g(a) = g(θ) + g(a) = −3/≥ 0 = g(θ). (3.9)

Let f : X → R be a pseudovaluation onX. If x1�x = θ, that is, x1 � x, for all x, x1 ∈ X,
then f(x) ≤ f(x1) by Proposition 3.5(1). If x2�(x1�x) = θ for all x, x1, x2 ∈ X, then x2 � x1�x,
and so, f(x2) ≥ f(x1 � x) ≥ f(x) − f(x1) by Proposition 3.5(1) and Definition 3.1(ii). Hence,
f(x) ≤ f(x1)+f(x2). Now, if x3�(x2�(x1�x)) = θ for all x, x1, x2, x3 ∈ X, then x3 � x2�(x1�x).
It follows from Proposition 3.5(1) and Definition 3.1(ii) that

f(x3) ≥ f(x2 � (x1 � x)) ≥ f(x1 � x) − f(x2) ≥ f(x) − f(x1) − f(x2), (3.10)

so that f(x) ≤ f(x1) + f(x2) + f(x3). Continuing this process, we have the following
proposition.

Proposition 3.8. Let f : X → R be a pseudovaluation on X. For any elements x, x1, x2, . . . , xn of
X, if xn � (· · · � (x2 � (x1 � x)) · · · ) = θ, then f(x) ≤∑n

k=1 f(xk).

Theorem 3.9. Let F be a filter of X, and let fF : X → R be a mapping defined by

fF(x) =

⎧
⎨

⎩

0 if x ∈ F,

k if x /∈ F,
(3.11)

where k is a positive real number. Then, fF is a pseudovaluation on X. In particular, fF is a valuation
on X if and only if F = {θ}.

Proof. Straightforward.

We say fF is a pseudovaluation induced by a filter F.

Theorem 3.10. If a mapping f : X → R is a pseudovaluation on X, then the set

Ff :=
{
x ∈ X | f(x) ≤ 0

}
(3.12)

is a filter of X.

Proof. Obviously, θ ∈ Ff . Let x, y ∈ X be such that x ∈ Ff and x � y ∈ Ff . Then, f(x) ≤ 0 and
f(x � y) ≤ 0. It follows from Definition 3.1(ii) that f(y) ≤ f(x � y) + f(x) ≤ 0 so that y ∈ Ff .
Hence, Ff is a filter of X.

We say Ff is a filter induced by a pseudovaluation f on X.

Corollary 3.11. If a mapping f : X → R is a pseudovaluation on a finite WFI algebra X, then the
set

Ff :=
{
x ∈ X | f(x) ≤ 0

}
(3.13)

is a closed filter of X.



6 International Journal of Mathematics and Mathematical Sciences

Proof. It follows from Proposition 2.3 and Theorem 3.10.

Remark 3.12. A filter induced by a pseudovaluation on X may not be closed. Indeed, in
Example 3.3, if we take a = 1 and b = 0, then f : Z → R, x 	→ x, is a pseudovaluation
on Z. Then, Ff = {θ} ∪ {k ∈ Z | k < θ} which is a filter but not a subalgebra of Z, since
(−3) � (−1) = −1 − (−3) = 2 /∈ Ff . Hence, Ff is not a closed filter of Z.

Theorem 3.13. For any pseudovaluation f : X → R, if F is a filter of X, then FfF = F.

Proof. We have FfF = {x ∈ X | fF(x) ≤ 0} = {x ∈ X | x ∈ F} = F.

The following example shows that the converse of Theorem 3.10 may not be true; that
is, there exist a WFI algebra X and a mapping f : X → R such that

(1) f is not a pseudovaluation on X,

(2) Ff := {x ∈ X | f(x) ≤ 0} is a filter of X.

Example 3.14. Let X = {θ, 1, 2, a, b} be a set with the following Cayley table:

θ

θ

θ

θ
θ

θ

θ

θ

θ
θ

θ

�
a

a

a

a

a a

a a

a

a

a

b

b

b

b

b

2

2
2

2
2

1

1
1

. (3.14)

Then (X;�, θ) is a WFI algebra. Let f : X → R be a mapping defined by

f =

(
θ 1 2 a b

0 −4 3 −2 5

)

. (3.15)

Then, Ff = {θ, 1, a} is a filter of X. But f is not a pseudovaluation on X, since

f(a � b) + f(a) = 1/≥ 5 = f(b). (3.16)

Definition 3.15. A pseudovaluation (or, valuation) f on X is said to be positive if f(x) ≥ 0 for
all x ∈ X.

The pseudovaluation f on X which is given in Example 3.4 is positive.

Theorem 3.16. If a pseudovaluation f on X is positive, then the set

F=
f :=

{
x ∈ X | f(x) = 0

}
(3.17)

is a filter of X.
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Proof. Clearly, θ ∈ F=
f . Let x, y ∈ X be such that x ∈ F=

f and x � y ∈ F=
f . Then, f(x) = 0 and

f(x � y) = 0. Since f is positive, it follows from Definition 3.1(ii) that

0 ≤ f
(
y
) ≤ f

(
x � y

)
+ f(x) = 0, (3.18)

so that f(y) = 0, that is, y ∈ F=
f
. Hence, F=

f
is a filter of X.

The following example shows that two distinct pseudovaluations induce the same
filter.

Example 3.17. Consider a WFI algebra X = {θ, 1, 2, a, b} which is given in Example 3.14. Let g
and h be mappings from X to R defined by

g =

(
θ 1 2 a b

0 0 4 3 5

)

,

h =

(
θ 1 2 a b

0 0 4 2 3

)

.

(3.19)

Then, g and h are pseudovaluations on X, and Fg = {θ, 1} = Fh.

For a mapping f : X → R, define a mapping df : X ×X → R by df(x, y) = f(x � y) +
f(y � x) for all (x, y) ∈ X ×X. Note that df(x, y) ≥ 0 for all (x, y) ∈ X ×X.

Theorem 3.18. If f : X → R is a pseudovaluation on X, then df is a pseudometric on X, and so
(X, df) is a pseudometric space.

We say df is called the pseudometric induced by pseudovaluation f .

Proof. Let x, y, z ∈ X. Then, df(x, y) = f(x � y) + f(y � x) ≥ 0 by Proposition 3.5(3), and
obviously, df(x, y) = df(y, x) and df(x, x) = 0. Now,

df

(
x, y
)
+ df

(
y, z
)
=
[
f
(
x � y

)
+ f
(
y � x

)]
+
[
f
(
y � z

)
+ f
(
z � y

)]

=
[
f
(
x � y

)
+ f
(
y � z

)]
+
[
f
(
z � y

)
+ f
(
y � x

)]

≥ f(x � z) + f(z � x) = df(x, z).

(3.20)

Therefore, (X, df) is a pseudometric space.

Proposition 3.19. Every pseudometric df induced by pseudovaluation f satisfies the following
inequalities:

(1) df(x, y) ≥ df(x � a, y � a),

(2) df(x, y) ≥ df(a � x, a � y),

(3) df(x � y, a � b) ≤ df(x � y, a � y) + df(a � y, a � b),

for all x, y, a, b ∈ X.
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Proof. (1) Let x, y, a ∈ X. Since (x�y)�((y�a)�(x�a)) = θ and (y�x)�((x�a)�(y�a)) = θ,
it follows from Proposition 3.5(1) that f(x � y) ≥ f((y � a) � (x � a)) and f(y � x) ≥ f((x �
a) � (y � a)) so that

df

(
x, y
)
= f
(
x � y

)
+ f
(
y � x

)

≥ f
((
y � a

) � (x � a)
)
+ f
(
(x � a) � (y � a

))

= df

(
x � a, y � a

)
.

(3.21)

(2) It is similar to the proof of (1).
(3) Using Proposition 3.5(2), we have

f
((
x � y

) � (a � b)
) ≤ f

((
x � y

) � (a � y
))

+ f
((
a � y

) � (a � b)
)
,

f
(
(a � b) � (x � y

)) ≤ f
(
(a � b) � (a � y

))
+ f
((
a � y

) � (x � y
))
,

(3.22)

for all x, y, a, b ∈ X. Hence,

df

(
x � y, a � b

)
= f
((
x � y

) � (a � b)
)
+ f
(
(a � b) � (x � y

))

≤ [f((x � y
) � (a � y

))
+ f
((
a � y

) � (a � b)
)]

+
[
f
(
(a � b) � (a � y

))
+ f
((
a � y

) � (x � y
))]

=
[
f
((
x � y

) � (a � y
))

+ f
((
a � y

) � (x � y
))]

+
[
f
(
(a � b) � (a � y

))
+ f
((
a � y

) � (a � b)
)]

= df

(
x � y, a � y

)
+ df

(
a � y, a � b

)

(3.23)

for all x, y, a, b ∈ X.

Theorem 3.20. Let f : X → R be a pseudovaluation on X such that Ff = {x ∈ X | f(x) ≤ 0} is a
closed filter of X. If df is a metric on X, then f is a valuation on X.

Proof. Suppose that f is not a valuation on X. Then, there exists x ∈ X such that x /= θ and
f(x) = 0. Thus θ, x ∈ Ff and so x � θ ∈ Ff , since Ff is a closed filter of X. It follows that
f(x � θ) ≤ 0 so that

0 = f(θ) ≤ f(x � θ) + f(x) = f(x � θ) ≤ 0. (3.24)

Hence, f(x � θ) = 0, and thus df(x, θ) = f(x � θ) + f(θ � x) = f(x � θ) + f(x) = 0. Thus, x = θ
since df is a metric on X. This is a contradiction. Therefore, f is a valuation on X.
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Consider the pseudovaluation f on Z which is described in Example 3.3. If a = −1,
then

f(x) =

⎧
⎨

⎩

0 if x = θ,

−x + b otherwise,
(3.25)

for all x ∈ Z, and Ff = {x ∈ Z | b ≤ x} ∪ {θ} which is not a closed filter of Z. Since f is
a pseudovaluation on Z, we know that (Z, df) is a pseudometric space by Theorem 3.18. If
x /=y in Z, then

df

(
x, y
)
= f
(
x � y

)
+ f
(
y � x

)
= f
(
y − x

)
+ f
(
x − y

)

= −y + x + b − x + y + b = 2b /= 0.
(3.26)

Hence, (Z, df) is a metric space. But f(b) = 0, and so, f is not a valuation on Z. This shows
that Theorem 3.20 may not be true when Ff is not a closed filter of X.

Theorem 3.21. For a mapping f : X → R, if df is a pseudometric on X, then (X × X, d∗
f
) is a

pseudometric space, where

d∗
f

((
x, y
)
, (a, b)

)
= max

{
df(x, a), df

(
y, b
)}

(3.27)

for all (x, y), (a, b) ∈ X ×X.

Proof. Suppose df is a pseudometric on X. For any (x, y), (a, b) ∈ X ×X, we have

d∗
f

((
x, y
)
,
(
x, y
))

= max
{
df(x, x), df

(
y, y
)}

= 0,

d∗
f

((
x, y
)
, (a, b)

)
= max

{
df(x, a), df

(
y, b
)}

= max
{
df(a, x), df

(
b, y
)}

= d∗
f

(
(a, b),

(
x, y
))
.

(3.28)

Now, let (x, y), (a, b), (u, v) ∈ X ×X. Then,

d∗
f

((
x, y
)
, (u, v)

)
+ d∗

f((u, v), (a, b)) = max
{
df(x, u), df

(
y, v
)}

+max
{
df(u, a), df(v, b)

}

≥ max
{
df(x, u) + df(u, a), df

(
y, v
)
+ df(v, b)

}

≥ max
{
df(x, a), df

(
y, b
)}

= d∗
f

((
x, y
)
, (a, b)

)
.

(3.29)

Therefore, (X ×X, d∗
f
) is a pseudometric space.
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Corollary 3.22. If f : X → R is a pseudovaluation on X, then (X ×X, d∗
f) is a pseudometric space.

It is natural to ask that if f : X → R is a valuation on X, then is (X, df) a metric space.
But, we see that it is incorrect in the following example.

Example 3.23. For a WFI algebra (Z;�, θ), a mapping f : Z → R defined by f(x) = (1/2)x
for all x ∈ Z is a valuation on Z. Then, df is a pseudometric on Z. Note that df(−2, 3) =
f(−2 � 3) + f(3 � (−2)) = 0, but −2/= 3. Hence, (X, df) is not a metric space.

Theorem 3.24. If f : X → R is a positive valuation on X, then (X, df) is a metric space.

Proof. Suppose that f is a positive valuation on X. Then, (X, df) is a pseudometric space by
Theorem 3.18. Let x, y ∈ X be such that df(x, y) = 0. Then, 0 = df(x, y) = f(x � y) + f(y � x),
and so f(x � y) = 0 and f(y � x) = 0, since f is positive. Also, since f is a valuation on X,
it follows that x � y = θ and y � x = θ so from (a2) that x = y. Therefore, (X, df) is a metric
space.

Corollary 3.25. If f : X → R is a valuation onX such that Ff = {θ}, then (X, df) is a metric space.

Theorem 3.26. If f : X → R is a positive valuation on X, then (X ×X, d∗
f
) is a metric space.

Proof. Note from Corollary 3.22 that (X × X, d∗
f) is a pseudometric space. Let (x, y), (a, b) ∈

X ×X be such that d∗
f
((x, y), (a, b)) = 0. Then,

0 = d∗
f

((
x, y
)
, (a, b)

)
= max

{
df(x, a), df

(
y, b
)}

, (3.30)

and so df(x, a) = 0 = df(y, b), since df(x, y) ≥ 0 for all (x, y) ∈ X ×X. Hence,

0 = df(x, a) = f(x � a) + f(a � x),

0 = df

(
y, b
)
= f
(
y � b

)
+ f
(
b � y

)
.

(3.31)

Since f is positive, it follows that f(x � a) = 0 = f(a � x) and f(y � b) = 0 = f(b � y) so
that x � a = θ = a � x and y � b = θ = b � y. Using (a2), we have a = x and b = y, and so
(x, y) = (a, b). Therefore, (X ×X, d∗

f
) is a metric space.

Theorem 3.27. If f is a positive valuation on X, then the operation � : X × X → X is uniformly
continuous. (Suppose that (X, d) and (Y, ρ) are metric spaces and f : X → Y . We say that f is
uniformly continuous provided that for every ε > 0, there exists δ > 0 such that for any points x1 and
x2 in X, if d(x1, x2) < δ, then ρ(f(x1), f(x2)) < ε.)

Proof. For any ε > 0, if d∗
f
((x, y), (a, b)) < ε/2, then df(x, a) < ε/2, and df(y, b) < ε/2. Using

Proposition 3.19, we have

df

(
x � y, a � b

) ≤ df

(
x � y, a � y

)
+ df

(
a � y, a � b

)

≤ df(x, a) + df

(
y, b
)
<

ε

2
+
ε

2
= ε.

(3.32)

Therefore, the operation � : X ×X → X is uniformly continuous.
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Corollary 3.28. If f is a valuation on X such that Ff = {θ}, then the operation � : X × X → X is
uniformly continuous.
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