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Morphological operators are generalized to lattices as adjunction pairs (Serra, 1984; Ronse, 1990;
Heijmans and Ronse, 1990; Heijmans, 1994). In particular, morphology for set lattices is applied
to analyze logics through Kripke semantics (Bloch, 2002; Fujio and Bloch, 2004; Fujio, 2006).
For example, a pair of morphological operators as an adjunction gives rise to a temporalization
of normal modal logic (Fujio and Bloch, 2004; Fujio, 2006). Also, constructions of models for
intuitionistic logic or linear logics can be described in terms of morphological interior and/or
closure operators (Fujio and Bloch, 2004). This shows that morphological analysis can be applied
to various non-classical logics. On the other hand, quantum logics are algebraically formalized as
orhomodular or modular ortho-complemented lattices (Birkhoff and von Neumann, 1936; Maeda,
1980; Chiara and Giuntini, 2002), and shown to allow Kripke semantics (Chiara and Giuntini,
2002). This suggests the possibility of morphological analysis for quantum logics. In this article,
to show an efficiency of morphological analysis for quantum logic, we consider the implication
problem in quantum logics (Chiara and Giuntini, 2002). We will give a comparison of the 5
polynomial implication connectives available in quantum logics.

1. Mathematical Morphology

Mathematical morphology is a method of non-linear signal processing using simple set-
theoretic operations, which has the feasibility of extracting the characteristic properties of
shapes [1, 2]. In this paper we will adopt the formulation thereof generalized on lattices
[3–7].

We identify a binary relation R ⊆ X ×A and the correspondence from X toA. Namely,
R(x) = {a ∈ A | (x, a) ∈ R} for x ∈ X. We call the relation R with X and A exchanged, the
transpose of R and denote it by tR.
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1.1. Dilation and Erosion

Let X, A be partially ordered sets. If for any family {xλ} ⊆ X of X which has a supremum
∨

λxλ in X, the image {f(xλ)} ⊆ A has the supremum
∨

λf(xλ) in A and f(
∨

λxλ) =
∨

λf(xλ)
holds, then we call the mapping f : X → A a dilation from X to A. Similarly, by
changing supremum by infimum, we may introduce an erosion. We call dilation and erosion
morphological operations. For two elements x ≤ y of X, we have x ∨ y = y, x ∧ y = x, the
morphological operations are monotone.

Example 1.1 (morphology of set lattices [7]). Given sets X and A, consider the lattices of
their power sets X = 2X , A = 2A. Let R be a binary relation in X × A. Then the mappings
DR : A → X and ER : A → X defined by

DR(B) = {x ∈ X | R(x) ∩ B /= ∅},
ER(B) = {x ∈ X | R(x) ⊆ B}

(1.1)

are a dilation and an erosion, respectively.
From the transpose tRwe may similarly define the dilation and erosionDtR : X → A,

EtR : X → A.

The importance of this example lies in the fact that all morphological operations
between set lattices are expressed in this form, whence it follows that giving a framework of
morphological operations and a binary relation R are equivalent. In particular, in the Kripke
semantics, accessibility relationships being binary operations between possible worlds, we
contend that giving the Kripke framework amounts to giving morphological operations.

1.2. Adjunctions

Suppose two mappings f : X → A and g : A → X between partially ordered sets satisfy the
condition

f(x) ≤ a ⇐⇒ x ≤ g(a) (1.2)

for any x ∈ X, a ∈ A. Then the mapping pair (f, g) is called an adjunction and is written as
f � g and f is called the lower adjoint of g, with g is the upper adjoint of f . Notice that every
adjoint is uniquely determined if exists.

Proposition 1.2. For two monotone mappings f : X → A and g : A → X between partially
ordered sets to satisfy f � g, it is necessary and sufficient that for any x ∈ X, a ∈ A, the relation

f
(
g(a)

) ≤ a, x ≤ g
(
f(x)

)
(1.3)

holds.

Relations between morphological operations and adjunctions are given by the
following.
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Proposition 1.3. Let X, A be partially ordered sets and f : X → A, g : A → X.

(1) If f has the upper adjoint, then it is a dilation. Conversely, if A is a complete upper
semilattice, then a dilation has the upper adjoint.

(2) If g has the lower adjoint, then it is an erosion. Conversely, if X is a complete lower
semilattice, then a dilation has the lower adjoint.

Example 1.4 (adjunctions of set lattices [7]). In Example 1.1, we have DR � EtR and DtR � ER.
Note that in each adjunction pair, dilation and erosion, R and tR are to be interchanged.

1.3. Interior and Closure Operators

An idempotent monotone mapping f : X → X on a partially ordered set X is called a filter
mapping. A filter mappingwith extensibility (x ≤ f(x)) is called a closure operator and one with
antiextensibility (f(x) ≤ x) is called an interior operator.

Proposition 1.5. Let X, A be partially ordered sets and f : X → A, g : A → X and f � g. Then
g ◦ f : X → X is a closure operator of X and f ◦ g : A → A is an interior operator of A.

Example 1.6 (closing and opening). The closure operator ER ◦ DtR and the interior operator
DR ◦ EtR on X which are induced by the adjunctions in Example 1.4 are called closing
and opening by R, respectively. Similarly, we may define the closing and opening by tR as
operators on A.

In any complete lattice, closure operators are characterized by the notion of Moore
family [8], where a Moore family is a subset M of a partially ordered set X which satisfies the
following condition. For any subset S ⊆ M, if S has the infimum

∧
S in X, then

∧
S ∈ M

holds true.

Proposition 1.7 (see [7, 8]). Let X be a partially ordered set.

(1) For any closure operator ϕ : X → X, the totality of all ϕ-closed sets Fϕ = {x ∈ X | ϕ(x) =
x} forms a Moore family.

(2) If X is a complete lattice, then for any Moore family M ⊆ X, there exists a unique closure
operator on X such that M = Fϕ holds.

We may establish similar properties of interior operators by appealing to the duality
of a Moore family [7].

2. Quantum Logic

We refer to [9, 10] for quantum logic and lattice theory associated to it and we assemble here
the minimum requisites for the subsequent discussions.

For simplicity’s sake, we assume that the lattice L always has the maximum element 1
and the minimum element 0 throughout in what follows.
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2.1. OL and OQL

An ortho-complemented lattice L is a lattice which has an involutive and complementary
operation ·′ : L → L reversing the order:

(1) a ∧ a′ = 0, a ∨ a′ = 1.

(2) (a′)′ = a.

(3) a ≤ b ⇒ b′ ≤ a′.

If, moreover, for a and its complement a′, the modular relation

b ≤ a′ =⇒ (a ∨ b) ∧ a′ = b (2.1)

holds, then L is called an orthomodular lattice.
An ortho-complemented lattice satisfying the modular relation

c ≤ b =⇒ (c ∨ a) ∧ b = c ∨ (a ∧ b) (2.2)

for any a, b is an orthomodular, but not conversely. A Boolean lattice is an ortho-
complemented lattice satisfying the modular relation. The inclusion order among these
classes of lattices is

Boolean ⊂ modular ortho-complemented ⊂ orthomodular ⊂ ortho-complemented. (2.3)

In general, we call collectively quantum logic (QL) both orthologic (OL) modelled on
an ortho-complemented lattice and orthomodular logic (OQL) modelled on an orthomodular
lattice. An orthomodular lattice being an ortho-complemented lattice, we mostly work with
OL, with additional mentioning of some special features intrinsic of OQL.

The language of QL consists of a countable number of propositional variables
p, q, r, . . ., and logical connectives ¬ (negation), ∧ (conjunction). Denote by α, β, . . . the
formulae with Φ their totality. The disjunction ∨ is defined as an abbreviation of ¬(¬α ∧ ¬β).

2.2. Kripke Semantics

The pair F = (Ω, R) of the set of all possible worlds Ω/= ∅ and the reflexive and accessibility
relations R ⊆ Ω ×Ω is called a Kripke frame or orthogonal frame of OL. Intuitionally, the binary
relation� ∈ R(ω)means that ω and� are “not orthogonal”. Indeed, defining ω ⊥ � by� /∈
R(ω), then we see that the reflexiveness corresponds to ω�⊥ω, while symmetry to ��⊥ω ⇒
ω�⊥� .

For any set of possible worlds X ⊆ Ω, we define its ortho-complement set by

X′ = {ω ∈ Ω | ω ⊥ ξ (∀ξ ∈ X)}. (2.4)

Then in view of this, the power set lattice 2Ω of Ω becomes ortho-complemented. The
orthogonality of a set X and the possible worlds ω is defined by

ω ⊥ X ⇐⇒ ω ∈ X′. (2.5)
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Expressing the orthogonality in terms of morphological operations

ω ⊥ X ⇐⇒ ω ∈ DR(X)� = ER

(
X�

)
. (2.6)

In an orthogonal frame F = (Ω, R), we consider a special class of subsets called
propositions in F, that is, X is a proposition in F means that X′′ = X holds. As we shall see
below, it immediately follows from the definition that formulae in OL may be interpreted by
assigning propositions in an orthogonal frame.

Proposition 2.1. In an orthogonal frame F = (Ω, R), for X ⊆ Ω to be a proposition, it is necessary
and sufficient that it is an R-closed set (ER(DR(X)) = X) in the sense of morphology.

(Note that R being symmetric, we have DR = DtR.)

Proof. By (2.6), we have X′ = DR(X)�, whence

X′′ = DR

(
DR(X)�

)�
= ER(DR(X)). (2.7)

Corollary 2.2. The totality PF of all propositions of F forms a lower semi-complete ortho-
complemented sublattice of 2Ω.

Proof. Note that DR(∅) = ∅, and that from reflexibility of R, we have DR(X) = X, so that
∅′′ = ∅, X′′ = X. Hence, ∅, X ∈ PF. Since PF is a Moore family, and a fortiori lower
semi-complete. Also, since DR ◦ ER ◦ DR = DR, we have for X ∈ PF, (X′)′′ = (X′′)′ =
(DR(ER(DR(X))))� = DR(X)� = X′, whence we obtain X′ ∈ PF. Hence, PF is closed with
respect to the complementation ’.

LetΠ be a lower semi-complete ortho-complemented sub-lattice of PF and let ρ : Φ →
Π be a mapping such that

(1) ρ(¬α) = ρ(α)′

(2) ρ(α ∧ β) = ρ(α) ∧ ρ(β).

We call the set M = (Ω, R,Π, ρ) a Kripke model of OL, consisting of both this and the Kriplke
frame F = (Ω, R).

If ω ∈ ρ(α) holds true, we write ω�M α and say that the formula α is true in the
possible world α. We call the formula α such that ρ(α) = Ω is true in the model M and write
�M α. More generally, if for any β belonging to a set T of formulae, we have ρ(β) ⊆ ρ(α), then
we say that α is a consequence of T in the model M and write T �M α. If further, these hold
true in any models, then we say that they are logically true in or logical consequences of, OL
respectively.

The Kripke semantics of the orthomodular logic OQL may be defined by considering
as Π only those satisfying the orthomodular condition

X /⊆Y =⇒ X ∩ (X ∩ Y )′ /= ∅. (2.8)
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3. Morphological Analysis of Implication Connectives

3.1. Implication Problem in QL

In quantum logic QL, the implication problem is important [10]. Not only those in quantum
logic, but in general, an implication connective → is required to satisfy, for any model M, at
least the conditions

(1) �M α → α,

(2) If �M α and �M α → β, then �M β.

In QL, this condition may be stated as follows. For any Kripke model M, we have

�Mα −→ β ⇐⇒ ρ(α) ⊆ ρ
(
β
)
. (3.1)

Thus, we take (3.1) as a requirement for an implication connective → in QL [10]. Then we
note that the forumula α → β := ¬α ∨ β in classical logic is not an implication connective in
the sense of QL.

On the other hand, there are several candidates for implication connectives. However,
there are only 5 polynomial ones in the sense that they are expressed in finitely many ¬, ∨, ∧
[10]:

(i) α →
1

β := ¬α ∨ (α ∧ β),

(ii) α →
2

β := β ∨ (¬α ∧ ¬β),
(iii) α →

3
β := (¬α ∧ β) ∨ (α ∧ β) ∨ (¬α ∧ ¬β),

(iv) α →
4

β := (¬α ∧ β) ∨ (α ∧ β) ∨ ((¬α ∨ β) ∧ ¬β),
(v) α →

5
β := (¬α ∧ β) ∨ (¬α ∧ ¬β) ∨ (α ∧ (¬α ∨ β)).

These are the all candidates for polynomial implications in the free orthomodular
lattice generated by two elements satisfying

a ≤ b ⇐⇒ a −→
∗

b = 1. (3.2)

There is a distinction between OL and OQL in that they are really implications in the
respective logic.

Theorem 3.1 (see [10]). The polynomial implications →
i

(1 ≤ i ≤ 5) are all implications in OQL

but none of them are so in OL.

Proof. Proof depends on the fact that for (3.1) to hold for each i, it is necessary and sufficient
that � satisfies the orthomodular condition (2.8). For details we refer to [10].

Theorem 3.2. In OQL, α →
i

β (i = 1, 2, 4, 5) are logical consequences of α →
3

β, that is, in any

Kripke model M = (Ω, R,Π, ρ), we have

ρ

(

α −→
3

β

)

⊆ ρ

(

α −→
i

β

)

(i = 1, 2, 4, 5). (3.3)
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Proof. We fix a Kripke model M = (Ω, R,Π, ρ). Interpretation of each implication is as follows,
where we denote the interpretations of the formulae α, β by A = ρ(α), B = ρ(β), respectively.

〈1〉 ρ(α →
1

β) = (A ∩ (A ∩ B)′)′,

〈2〉 ρ(α →
2

β) = (B′ ∩ (A′ ∩ B′)′)′,

〈3〉 ρ(α →
3

β) = ((A′ ∩ B)′ ∩ (A ∩ B)′ ∩ (A′ ∩ B′)′)′,

〈4〉 ρ(α →
4

β) = ((A′ ∩ B)′ ∩ (A ∩ B)′ ∩ ((A ∩ B′)′ ∩ B′)′)
′
,

〈5〉 ρ(α →
5

β) = ((A′ ∩ B)′ ∩ (A′ ∩ B′)′ ∩ (A ∩ (A ∩ B′)′)′)
′
.

Proof of ρ(α →
3

β) ⊆ ρ(α →
1

β). It suffices to prove A ⊆ (A′ ∩ B)′ ∩ (A′ ∩ B′)′, which

reads in morphological operations,

A ⊆ DR

(
DR(A)� ∩ B

)� ∩DR

(
DR(A)� ∩DR(B)�

)�
. (3.4)

Taking complements of bothsides, we obtain

A� ⊇ DR

(
DR(A)� ∩ B

)
∪DR

(
DR(A)� ∩DR(B)�

)

= DR

((
DR(A)� ∩ B

)
∪
(
DR(A)� ∩DR(B)�

)) (3.5)

by the definition of dilation. Then by adjunction, this is equivalent to the following:

ER

(
A�

)
⊇
(
DR(A)� ∩ B

)
∪
(
DR(A)� ∩DR(B)�

)

=
(
ER

(
A�

)
∩ B

)
∪
(
ER

(
A�

)
∩DR(B)�

)
.

(3.6)

The last equality follows from the duality between DR and ER. However, this inclusion
relation is always true.

Proof of ρ(α →
3

β) ⊆ ρ(α →
2

β). It suffices to prove B′ ⊆ (A′ ∩ B)′ ∩ (A ∩ B)′, which can

be done as in the proof of ρ(α →
3

β) ⊆ ρ(α →
1

β).

Proof of ρ(α →
3

β) ⊆ ρ(α →
4

β). (A′ ∩ B′)′ ⊇ ((A ∩ B′)′ ∩ B′)′, or what amounts to the

same thing, it is enough to show A′ ∩ B′ ⊆ (A ∩ B′)′ ∩ B′. Further for this to be true, it is
necessary and sufficient that A′ ⊆ (A ∩ B′)′, which is true, being equivalent to A ⊇ A ∩ B′.

Proof of ρ(α →
3

β) ⊆ ρ(α →
5

β). Enough to prove (A ∩ B)′ ⊇ (A ∩ (A ∩ B′)′)′ and the

proof can be done in the same way as the proof of ρ(α →
3

β) ⊆ ρ(α →
4

β).

4. Conclusion

By applying morphological analysis to a Kripke model in quantum logics, we have shown
that →

3
is the strongest among the 5 polynomial implication connectives in OQL. Once one
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sees the result, one may feel that one could do without morphological analysis. However, the
point lies in whether by just looking at the defining equation ((i)∼(v)) or its interpretation,
one could recognize the conclusion. Thus, the merit of morphological analysis seems to be its
intuitive lucidness as “Calculus.”

We would like to return to the analysis of connectives other than →
3
.

References

[1] G. Matheron, Random Sets and Integral Geometry, John Wiley & Sons, 1975.
[2] J. Serra, Image Analysis and Mathematical Morphology, vol. 1, Academic Press, London, UK, 1984.
[3] J. Serra, Image Analysis and Mathematical Morphology, vol. 2, Academic Press, London, UK, 1988.
[4] C. Ronse, “Why mathematical morphology needs complete lattices,” Signal Processing, vol. 21, no. 2,

pp. 129–154, 1990.
[5] H. J. A. M. Heijmans and C. Ronse, “The algebraic basis of mathematical morphology. I. dilations and

erosions,” Computer Vision Graphics Image Processing, vol. 50, pp. 245–295, 1990.
[6] H. J. A. M. Heijmans,Morphological Image Operators, Academic Press, Boston, Mass, USA, 1994.
[7] M. Fujio and I. Bloch, “Non-classical logic viamathematical morphology,” École Nationale Supérieure
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