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The minimum depth d(B,A) of a subring B ⊆ A introduced in the work of Boltje, Danz and
Külshammer (2011) is studied and compared with the tower depth of a Frobenius extension.
We show that d(B,A) < ∞ if A is a finite-dimensional algebra and Be has finite representation
type. Some conditions in terms of depth and QF property are given that ensure that the modular
function of a Hopf algebra restricts to the modular function of a Hopf subalgebra. If A ⊇ B is
a QF extension, minimum left and right even subring depths are shown to coincide. If A ⊇ B
is a Frobenius extension with surjective Frobenius, homomorphism, its subring depth is shown
to coincide with its tower depth. Formulas for the ring, module, Frobenius and Temperley-Lieb
structures are noted for the tower over a Frobenius extension in its realization as tensor powers. A
depth 3 QF extension is embedded in a depth 2 QF extension; in turn certain depth n extensions
embed in depth 3 extensions if they are Frobenius extensions or other special ring extensions with
ring structures on their relative Hochschild bar resolution groups.

1. Introduction and Preliminaries

A basic lemma in representation theory states that if a subalgebra B of a finite-dimensional
algebra A has μ : A⊗BA → A, a ⊗ a′ �→ aa′ a split epimorphism of A-A-bimodules, then A
has finite representation type if B has. Weakening the condition on μ to a split epimorphism
of A-B-bimodules does not place any restriction on B ⊆ A, but the opposite hypothesis that
a split monomorphism exists from A⊗BA into a multiple nA = A ⊕ · · · ⊕ A captures the
notion of normality of a subalgebra in the context of group algebras [1], Hopf algebras [2],
and semisimple algebras [3]. If A is a Frobenius extension of B, where AB is a progenerator
module (but A and B may be infinite-dimensional algebras), the “depth two” condition as
the opposite hypothesis is known as, implies that A is a Galois extension of B, where the
bimodule endomorphism ring of the extensionmay be given the structure of aHopf algebroid
(which acts naturally on A with invariant subalgebra B) [4, 5]. Such theorems first appeared
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in [6, 7] for certain finite index subfactors of depth two. The left bialgebroid aspect of the
definition of Hopf algebroid was influenced by a study of Lie groupoids in Poisson geometry
[8]. The publication of [9] clarified the role played by Galois theory in depth two theory.

After the focus on depth two, the study of how to generalize depth three and more
from subfactor theory to algebra occurred in three stages after [10]. At first the depth two
condition was generalized from a subalgebra pair B ⊆ A to a tower of three rings C ⊆ B ⊆ A
[11]. This was applied to the tower of iterated right endomorphism rings above a Frobenius
extension B ⊆ A ⊆ A1 ↪→ A2 ↪→ · · · , so that B ⊆ A has (tower) depth n if B ↪→ An−3 ↪→ An−2
has the generalized depth two property (called a depth 3 tower in [11]). This yields a compact
matrix inequality condition

M[n+1] ≤ qM[n−1] (1.1)

(some q ∈ N ) for when a subalgebra pair of semisimple complex algebras has depth n in
terms of the inclusion matrix M, equivalently the incidence matrix of the Bratteli diagram
of the inclusion B ↪→ A [3, 18]. Since M[2] = MMt, M[3] = MMtM, . . ., already in this
matrix condition the odd and even depth become distinguished from one another in terms of
square and rectangular matrices. From [3], Boltje et al. [12] have extended the definition to a
subring B ⊆ A, which has (right) depth 2n if the relative Hochschild n+1 bar resolution group
Cn+1(A,B) maps as a split monomorphism into a multiple of a smaller group, qCm(A,B) as
A-B-bimodules, and depth 2n+1 if this condition only holds as natural B-B-bimodules. Since
subring B ⊆ A having depthm implies that it has depthm+ 1, the minimum depth d(B,A) is
the more interesting positive integer.

The algebraic definition of depth of subring pairs of Artin algebras is closely related
to induced and restricted modules or characters in the case of group algebras. The depths
of several class subgroups are recently computed, both as induced complex representations
[3] and as induced representations of group algebras over an arbitrary ground ring [12]. For
example, the minimum depth of the permutation groups Sn ⊂ Sn+1 is 2n − 1 over any ground
ring k and depends only on a combinatorial depth of a subgroup H < G defined in terms
of G × H-sets and diagonal action in the same way as depth is defined for a subring [12].
The main theorem in [12] is that an extension k[G] ⊇ k[H] of finite group algebras over
any ground ring k has finite depth, in fact bounded by twice the index [G : NG(H)] of the
normalizer subgroup.

The notion of subring depth d(B,A) in [12] is defined in equivalent terms in (1.7).
In case B and A are semisimple complex algebras, it is shown in an appendix of [12] how
subring depth equals the notion of depth based on induction-restriction table, equivalently
inclusion matrix M in [3] and given in (1.1). Such a pair A ⊇ B is a special case of a split,
separable Frobenius extension; in Theorem 5.2 we show that subring depth is equal to the
tower depth of Frobenius extensions [11] satisfying only a generator module condition. The
authors of [12] define left and right even depth and show these are the same on group algebra
extensions; Theorem 3.2 shows this equality holds for any quasi-Frobenius (QF) extension.

It is intriguing that the definition of subring depth makes use of the bar resolution
groups of relative homological algebra, although in a fundamentally different way. The tower
of iterated endomorphism rings above a ring extension becomes in the case of Frobenius
extensions a tower of rings on the bar resolution groups Cn(A,B) (n = 0, 1, 2, . . .) with
Frobenius and Temperley-Lieb structures explicitly calculated from their more usual iterative
definition in Section 4.1. At the same time Frobenius extensions of depth more than 2 are
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known to have depth 2 further out in the tower: we extend this observation in [11] with
different proofs to include other ring extensions satisfying the hypotheses of Proposition 4.3.
In Section 1 it is noted that a subalgebra B of a finite-dimensional algebra A has finite depth
if its enveloping algebra Be has finite representation type.

1.1. H−Equivalent Modules

Let A be a ring. Two left A-modules, AN and AM, are said to be h-equivalent, denoted by

AM
h∼A N, if two conditions are met. First, for some positive integer r,N is isomorphic to a

direct summand in the direct sum of r copies ofM, denoted by AN ⊕ ∗∼=AMr ⇔

N | rM ⇐⇒ ∃fi ∈ Hom(AM,AN), gi ∈ Hom(AN,AM) :
r∑

i=1

fi ◦ gi = idN. (1.2)

Second, symmetrically there is s ∈ Z + such that M | sN. It is easy to extend this definition
of h-equivalence (sometimes referred to as similarity) to h-equivalence of two objects in an
abelian category and to show that it is an equivalence relation.

If two modules are h-equivalent, AN
h∼A M, then they have Morita equivalent

endomorphism rings, EN := EndAN and EM := EndAM, since a Morita context of bimodules
is given by H(M,N) := Hom(AM,AN), which is an EN-EM-bimodule via composition,
and the bimodule EMH(N,M)EN ; these are progenerator modules, by applying to (1.2) or
its reverse, M | sN, any of the four Hom-functors such as Hom (A − ,AM) from the
category of leftA-modules into the category of left EM-modules. Then, the explicit conditions
on mappings for h-equivalence show that H(M,N)⊗EMH(N,M) → EN and the reverse
mapping given by composition are surjections.

The theory of h-equivalent modules applies to bimodules TMB
h∼T NB by letting A =

T⊗ZB
op, which sets up an equivalence of abelian categories between T -B-bimodules and left

A-modules. Two additive functors F,G : C ↪→ D are h-equivalent if there are natural split epis
F(X)n ↪→ G(X) and G(X)m ↪→ F(X) for all X in C. We leave the proof of the lemma below as
an elementary exercise.

Lemma 1.1. Suppose two A-modules are h-equivalent, M h∼ N, and two additive functors from

A-modules to an abelian category are h-equivalent, F h∼ G. Then, F(M) h∼ G(N).

For example, the following substitution in equations involving the h∼-equivalence
relation follows from the lemma:

APT
h∼A QT , TUB

h∼T VB =⇒ AP⊗TUB
h∼ AQ⊗TVB. (1.3)

Example 1.2. Suppose A is a finite-dimensional algebra with indecomposable A-modules
{Pα | α ∈ I} (representatives from each isomorphism class for some index set I). By
Krull-Schmidt finitely generated modules MA and NA have a unique factorization into a
direct sum of multiples of finitely many indecomposable module components. Denote the
indecomposable constituents of MA by Indec (M) = {Pα | [Pα,M]/= 0}, where [Pα,M] is
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the number of factors in M isomorphic to Pα. Note that M | qN for some positive q if and

only if Indec(M) ⊆ Indec(N). It follows thatM h∼N if and only if Indec(M) = Indec(N).
Suppose AA = n1P1 ⊕ · · · ⊕ nrPr is the decomposition of the regular module into its

projective indecomposables. Let PA = P1 ⊕ · · · ⊕ Pr . Then, PA and AA are h-equivalent, so that
A and End PA are Morita equivalent. The algebra End PA is the basic algebra of A.

1.2. Depth Two

A subring pair B ⊆ A is said to have left depth 2 (or be a left depth two extension [4])

if A⊗BA h∼ A as natural B-A-bimodules. Right depth 2 is defined similarly in terms of h-
equivalence of natural A-B-bimodules. In [4] it was noted that the left condition implies
the right and conversely if A is a Frobenius extension of B. Also in [4] a Galois theory of
Hopf algebroids was defined on the endomorphism ring H := End BAB as total ring and
the centralizer R := AB as base ring. The antipode is the natural anti-isomorphism stemming
from following the arrows:

EndAB

∼=−→ A⊗BA
∼=−→ (EndBA)op (1.4)

restricted to the intersection End BAB = End AB ∩ End BA.
The Galois extension properties of a depth two extension A ⊇ B are as follows. If

AB is faithfully flat, balanced or B equals its double centralizer in A, the natural action of
H on A has invariant subalgebra AH satisfying the Galois property of AH = B. Also the
well-known Galois property of the endomorphism ring as a cross-product holds: the right
endomorphism ring End AB

∼= A#H, where the latter has smash product ring structure on
A⊗RH [4]. There is also a duality structure by going a step further along in the tower above
B ⊆ A ↪→ End AB ↪→ End A⊗BAA, where the Hopf algebroid H ′ := (A⊗BA)B is the R-dual
ofH and acts naturally on EndAB in such a way that End(A⊗BA)A has a smash product ring
structure [4].

Conversely, Galois extensions have depth 2. For example, an H-comodule algebra
A with invariant subalgebra B and finite-dimensional Hopf algebra H over a base field k,
which has a Galois isomorphism from A⊗BA

∼=−→ A⊗kH given by a′ ⊗ a �→ a′a(0) ⊗ a(1),
satisfies (strongly) the depth two condition A⊗BA ∼= AdimH as A-B-bimodules. The Hopf
subalgebras within a finite-dimensional Hopf algebra, which have depth 2, are precisely
the normal Hopf subalgebras; if normal, it has depth 2 by applying the observation about
Hopf-Galois extension just made. The converse follows from an argument noted in Boltje-
Külshammer [2], which divides the normality notion into right and left (like the notion of
depth 2), where left normal is invariance under the left adjoint action. In the context of an
augmented algebra A their results extend to the following proposition. Let ε : A → k be an
algebra homomorphism into the ground field k. Let A+ denote ker ε, and, for a subalgebra
B ⊆ A, let B+ denote ker ε ∩ B.

Proposition 1.3. Suppose B ⊆ A is a subalgebra of an augmented algebra. If B ⊆ A has right depth
2, then AB+ ⊆ B+A.
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The proof of this proposition is an exercise in tensoring both sides ofA⊗BA⊕∗ ∼= qA by
the unitA-module k, then passing to the annihilator ideal of a module and a direct summand.
The opposite inclusion is of course satisfied by a left depth 2 extension of augmented algebras.

Example 1.4. Let A = Tn(k) be the algebra of n by n upper triangular matrices where n > 1,
and B = Dn(k) the subalgebra of diagonal matrices. Note that there are n augmentations
εi : A → k given by εi(X) = Xii, and each of the B+

i satisfies the inclusions above if left
or right depth two. This is a clear contradiction, thus d(B,A) > 2. We will see below that
d(B,A) = 3.

Also subalgebra pairs of semisimple complex algebras have depth 2 exactly when they
are normal in a classical sense of Rieffel. The theorem in [3] is given below and onemay prove
the forward direction in the manner indicated for the previous proposition.

Theorem 1.5 ([3] Theorem 4.6). Suppose B ⊆ A is a subalgebra pair of semisimple complex
algebras. Then, B ⊆ A has depth 2 if and only if, for every maximal ideal I in A, one has
A(I ∩ B) = (I ∩ B)A.

For example, subalgebra pairs of semisimple complex algebras that satisfy this
normality condition are then by our sketch above examples of weak Hopf-Galois extensions,
since the centralizer R mentioned above is semisimple (see Kaplansky’s Fields and Rings
for a C∗-theoretic reason), the extension is Frobenius [18], and weak Hopf algebras are
equivalently Hopf algebroids over a separable base algebra [4].

1.3. Subring Depth

Throughout this paper, let A be a unital associative ring and B ⊆ A a subring where 1B = 1A.
Note the natural bimodules BAB obtained by restriction of the naturalA-A-bimodule (briefly
A-bimodule) A, also to the natural bimodules BAA, AAB or BAB, which are referred to with
no further ado.

Let C0(A,B) = B, and, for n ≥ 1,

Cn(A,B) = A⊗B · · · ⊗BA (n times A), (1.5)

For n ≥ 1, Cn(A,B) has a natural A-bimodule structure, which restricts to B-A-, A-B-, and
B-bimodule structures occurring in the next definition.

Definition 1.6. The subring B ⊆ A has depth 2n + 1 ≥ 1 if as B-bimodules Cn(A,B)
h∼

Cn+1(A,B). The subring B ⊆ A has left (resp., right) depth 2n ≥ 2 if Cn(A,B)
h∼ Cn+1(A,B) as

B-A-bimodules (resp., A-B-bimodules).

It is clear that if B ⊆ A has either left or right depth 2n, it has depth 2n+1 by restricting
the h-equivalence condition to B-bimodules. If it has depth 2n + 1, it has depth 2n + 2 by
tensoring the h-equivalence by −⊗BA or A⊗B−. The minimum depth is denoted by d(B,A); if
B ⊆ A has no finite depth, write d(B,A) = ∞.

Note that the minimum left and right minimum even depths may differ by 2 (in which
case d(B,A) is the lesser of the two). In the next sectionwe provide a general condition, which
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includes a Hopf subalgebra pair B ⊆ A of symmetric (Frobenius) algebras, where the left and
right minimum even depths coincide.

Also note that a subalgebra pair of Artin algebras B ⊆ A have depth 2n + 1 if and only
if the indecomposable module constituents of Cn+m(A,B) remain the same for all m ≥ 0 as
those already found in Cn(A,B) (see Example 1.2). This corresponds well with the classical
notion of finite depth in subfactor theory.

Example 1.7. Again let A = Tn(k) and B = Dn(k) ∼= kn, where n > 1. Let eij denote the matrix
units, ki the n simple B-modules, and kij for 1 ≤ i ≤ j ≤ n the n(n + 1)/2 simple components
of BAB. Note that A⊗BA as a B-bimodule has components keis⊗Besj ∼= kij where i ≤ s ≤ j,
so A⊗BA | nA as B-bimodules. Thus, d(B,A) ≤ 3. But d(B,A)/= 2 by the remark following
Proposition 1.3; then d(B,A) = 3.

1.4. H-Depth

A subring B ⊆ A has H-depth 2n − 1 if Cn+1(A,B)
h∼ Cn(A,B) as A-A-bimodules (n =

1, 2, 3, . . .). Note that B has H-depth 2n − 1 in A implies that it has H-depth 2n + 1 (also
that it has depth 2n). Thus, define the minimum H-depth dH(B,A) if it exists. Note that
the definition of H-depth 2n − 1 is equivalent to the condition on a subring B ⊆ A that
Cn+1(A,B) | qCn(A,B) for some q ∈ N. This is clear for n/= 2 since Cn(A,B) | Cn+1(A,B). For
n = 1, theH-separability condition

AA⊗BAA ⊕ ∗ ∼= AAA
q (1.6)

implies the separability condition AAA ⊕ ∗ ∼= AA⊗BAA as argued in the paper [13] by Hirata.
The notion ofH-depth is studied in [14]where it is noted that |dH(B,A) − d(B,A)| ≤ 2 if one
or the other minimum depth is finite. See Section 2 for which Hopf subalgebras satisfy the
dH(B,A) = 1 condition in (1.6).

Remark 1.8. Suppose B is a subring ofA. The minimum depth of the subring B ⊆ A as defined
in Boltje-Danz-Külshammer [12] coincides with d(B,A). In fact, for n > 0, the depth 2n + 1
condition in [12] is that for some q ∈ Z+

Cn+1(A,B) | qCn(A,B) (1.7)

as B-bimodules. The left depth 2n condition in [12] is (1.7) more strongly as natural
B-A-bimodules (and as A-B-bimodules for the right depth 2n condition). But (using
a pair of classical face and degeneracy maps of homological algebra) we always have
Cn(A,B) | Cn+1(A,B) as A-B-, B-A-, or B-bimodules, so that the depth 2n as well as
2n + 1 conditions coincide in the case of subring having depth 2n and 2n + 1 conditions
above.

Note that depth 1 in this paper is equivalent to the subring depth 1 notion in,
for example, [4, 12, 15] since A is h-equivalent to B as B-bimodules if and only if A is
centrally projective over B (i.e., A | qB as B-bimodules). This follows from the lemma
below.
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Lemma 1.9. Suppose B is a subring of ring A such that BAB | mBBB for some integerm ≥ 1. Then,
BBB|BAB.

Proof. From the central projectivity condition on A, one obtains mmaps hi ∈ Hom(BAB,BBB)
and m maps gi ∈ Hom(BBB,BAB)

∼=�→ vi ∈ AB such that
∑m

i=1 vihi(a) = a for every a ∈ A.
It follows that A ∼= B⊗Z(B)AB since hi(AB) ⊆ Z(B). Note that restricting the equation to the
centralizer AB shows that AB is a finitely generated projective Z(B)-module. But Z(B) ⊆ AB

is a commutative subring, whence AB is a generator Z(B)-module. From Z(B) ⊕ ∗ ∼= nAB

for some positive integer n, it follows from the tensor algebra decomposition of A that
BBB | nBAB. Whence there are n maps fi ∈ Hom(BAB,BBB) and n elements ri ∈ AB such that∑n

i=1 fi(ri) = 1A. Define a (condition expectation or) bimodule projection E(a) :=
∑n

i=1 fi(ari)
of A onto B.

Example 1.10. The paper [12] asks in its introduction about the depth d(B,A) of invariant
subrings in classical invariant theory, where K is a field, A = K[X1, . . . , Xn], B =
k[X1, . . . , Xn]

G andG is a finite group inGLn(K) acting by linear substitution of the variables.
In any caseAB is finitely generated andB is a finitely generated affineK-algebra.We note here
that if G is generated by pseudoreflections (such as G = Sn, the symmetric group) and the
characteristic ofK is coprime to |G|, B is itself an n-variable polynomial algebra andA is a free
B-module; consequences of the Shephard-Todd Theorem [16, 17]. Since A is a commutative
algebra, it follows that d(B,A) = 1.

Example 1.11. Let B ⊆ A be a subring pair of semisimple complex algebras. Then, the
minimum depth d(B,A) may be computed from the inclusion matrix M, alternatively
an r-by-s induction-restriction table of rB-simples induced to nonnegative integer linear
combination of sA-simples along rows, and by Frobenius reciprocity, columns show
restriction of A-simples in terms of B-simples. The procedure to obtain d(B,A) given in
the paper [3] is to compute the bracketed powers of M given in Section 1, and check for
which nth power of M satisfies the matrix inequality in (1.1): d(B,A) is the least such n by
results in [12, appendix] (or Theorem 5.2 below combined with [3, 18]). One may note that
d(B,A) ≤ 2d − 1 where MMt has degree d minimal polynomial [3]. A GAP subprogram
exists to compute d(B,A) for a complex group algebra extension by converting character
tables to an induction-restriction table M, then counting the number of zero entries in the
bracketed powers ofM, which decreases nonstrictly with increasing even and odd powers of
M, d(B,A) being the least point of no decrease.

In terms of the bipartite graph of the inclusion B ⊆ A, d(B,A) is the lesser of the
minimum odd depth and the minimum even depth [3]. The matrixM is an incidence matrix
of this bipartite graph if all entries greater than 1 are changed to 1, while zero entries are
retained as 0: let the B-simples be represented by r black dots in a bottom row of the graph
and A-simples by s white dots in a top row, connected by edges joining black and white
dots (or not) according to the 0-1-matrix entries obtained fromM. The minimum odd depth
of the bipartite graph is 1 plus the diameter in edges of the row of black dots (indeed
an odd number), while the minimum even depth is 2 plus the largest of the diameters of
the bottom row where a subset of black dots under one white dot is identified with one
another.

For example, let A = CS4, the complex group algebra of the permutation group
on four letters, and B = CS3. The inclusion diagram pictured in Figure with the degrees
of the irreducible representations is determined from the character tables of S3 and S4 or
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the branching rule (for the Young diagrams labelled by the partitions of n and representing
the irreducibles of Sn).

1 3 2 3 1

1 2 1

This graph has minimum odd depth 5 and minimum even depth 6, whence d(B,A) = 5.

Example 1.12. The induction-restriction table M of the inclusion of permutation groups
Sn × Sm < Sn+m via

(σ, τ) �→
(

1 · · · n n + 1 · · · n +m
σ(1) · · · σ(n) n + τ(1) · · · n + τ(m)

)
(1.8)

may be computed combinatorially from the Littlewood-Richardson coefficients cγμν ∈ N,
where μ is partition of n, ν = (ν1, . . . , νm) a partition of m, and λ a partition of n +m. Briefly,
the coefficient number cγμν is zero if γ does not contain μ or is the number of Littlewood-
Richardson fillings with content ν of γ with μ removed. A Littlewood-Richardson filling
of a skew Young tableau is with integers i = 1, 2, . . . , m occuring νi times in rows that are
weakly increasing from left to right, columns are strictly increasing from top to bottom, and
the entries when listed from right to left in rows, top to bottom row, form a lattice word [19].

For example, computing the matrix M for the subgroup S2 × S3 < S5 with respect to
the ordered bases of irreducible characters of the subgroup λ(12) ×μ(13), λ(12) ×μ(2,1), λ(12) ×μ(3),
λ(2) ×μ(13), λ(2) ×μ(2,1), λ(2) ×μ(3) and of the group γ(15),γ(2,13), γ(22,1), γ(3,2), γ(3,12), γ(4,1), γ(5) yields

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0
0 1 1 1 1 0 0
0 0 0 0 1 1 0
0 1 0 0 1 0 0
0 0 1 1 1 1 0
0 0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1.9)

The bracketed powers ofM satisfy a minimum depth 5 inequality (1.1) so that d(S2×S3, S5) =
5. We mentioned before that d(Sn × S1, Sn+1) = 2n − 1 [3, 12]; however, a formula for d(Sn ×
Sm, Sn+m) is not known.

1.5. Finite Depth and Finite Representation Type

For the next proposition we adopt the notation Be for the (enveloping) algebra B⊗kBop and
recall that a finite-dimensional algebra has finite representation type if it only has finitely
many isomorphism classes of indecomposable modules.

For example, a group algebra over a base field of characteristic p has finite
representation type if and only if its Sylow p-subgroup is cyclic. Thus, B having finite
representation type does not imply that Be has finite representation type.
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Proposition 1.13. Suppose B ⊆ A is a subalgebra pair of finite-dimensional algebras where Be has in
all r indecomposable Be-module isomorphism classes. Then, d(B,A) ≤ 2r + 1.

Proof. This follows from the observation in Example 1.2 that since Cn(A,B) is the image of
Cn+1(A,B) under an obvious split epimorphism of Be-modules (equivalently, B-bimodules),
there is an increasing chain of subset inclusions

Indec(A) ⊆ Indec(A⊗BA) ⊆ Indec(A⊗BA⊗BA) ⊆ · · · , (1.10)

which stops strictly increasing in at most r steps. When Indec(Cn(A,B)) = Indec(Cn+1(A,B)),

then Cn(A,B)
h∼ Cn+1(A,B) as Be-modules, whence A ⊇ B has depth 2n + 1 ≤ 2r + 1.

Remarkably, the result in [12] is that all finite group algebra pairs have finite depth.
The proposition says something about finite depth of interesting classes of finite-dimensional
Hopf algebra pairs B ⊆ A, where research on which Hopf algebras have finite representation
type is a current topic (although the paper [20] studies how tensor algebras seldom have
finite representation type when the component algebras are not semisimple). (Note that Be is
a Hopf algebra and semisimple if B is so.) For example, we have the following corollary.

Corollary 1.14. Suppose B is a semisimple Hopf subalgebra in a finite dimensional Hopf algebra A.
Suppose that B has n nonisomorphic simple modules. Then, d(B,A) ≤ 2n2 + 1.

2. When Frobenius Extensions of the Second Kind Are Ordinary

A (proper) ring extension A ⊇ B is a subring or more generally a monomorphism ι : B ↪→ A,
which is equivalent to a subring ι(B) ⊆ A. Restricted modules such as Aι(B) and pullback
modules AB are identified, and these are the type of modules we refer to below unless
otherwise stated. (Almost all that we have to say holds for a ring homomorphism B → A
and its pullback modules such as AB; however, certain conditions needed below such as AB

is a generator imply that B → A is monic.)
A ring extension A ⊇ B is a left QF extension if the module BA is finitely generated

projective and the naturalA-B-bimodules satisfyA | qHom(BA,BB) for some positive integer
q. A right QF extension is oppositely defined. A QF extension A ⊇ B is both a left and right
QF extension and may be characterized by both AB and BA being finite projective, and two

h-equivalences of bimodules given by AAB
h∼A Hom(BA,BB)B and (BAA

h∼B Hom (AB, BB)A
[21]. For example, a Frobenius extension A ⊇ B is a QF extension since it is left and right
finite projective and satisfies the stronger conditions that A is isomorphic to its right B-dual
A∗ and its left B-dual ∗A as natural B-A-bimodules, respectively A-B-bimodules; the more
precise definition is given in the next section.

2.1. β-Frobenius Extensions

In Hopf algebras and quantum algebras, examples of Frobenius extensions often occur with
a twist foreseen by Nakayama and Tzuzuku, their so-called beta-Frobenius extension or
Frobenius extensions of the second kind. Let β be an automorphism of the ring B and B ⊆ A
a subring pair. Denote the pullback module of a module BM along β : B → B by βM,
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the so-called twisted module. A ring extension A ⊇ B is a β-Frobenius extension if AB is finite
projective and there is a bimodule isomorphism BAA

∼= βHom(AB, BB). One shows thatA ⊇ B
is a Frobenius extension if and only if β is an inner automorphism. A subring pair of Frobenius
algebras B ⊆ A is β-Frobenius extension so long as AB is finite projective and the Nakayama
automorphism ηA of A stabilizes B, in which case β = ηB ◦ η−1A [22]. For instance a finite-
dimensional Hopf algebra A = H and B = K a Hopf subalgebra ofH are a pair of Frobenius
algebras satisfying the conditions just given: the formula for β reduces to the following given
in terms of the modular functions ofH and K and the antipode S [23, 7.8]: for x ∈ K,

β(x) =
∑

(x)

mH

(
x(1)

)
mK

(
S
(
x(2)

))
x(3), (2.1)

Given the bimodule isomorphism above BAA

∼=−→βHom(AB, BB), apply it to 1A and let its
value be E : A → B, which then is a cyclic generator of β Hom(AB, BB)A satisfying E(b1ab2) =
β(b1)E(a)b2 for all b1, b2 ∈ B, a ∈ A. If x1, . . . , xm ∈ A and φ1, . . . , φm ∈ Hom(AB, BB) are
projective bases of AB, and Eyj := E(yj−) = φj the equations

m∑

j=1

xjE
(
yja

)
= a,

m∑

j=1

β−1
(
E
(
axj

))
yj = a

(2.2)

hold for all a ∈ A. Call (E, xj , yj) a β-Frobenius coordinate system of A ⊇ B. Note that also
BA is finite projective, that a β-Frobenius coordinate system is equivalent to the ring extension
A | B being β-Frobenius and that β = idB if B is in the center of A. Additionally, one notes
that there is an automorphism η of the centralizer subring AB such that E(ac) = E(η(c)a)
for all a ∈ A and c ∈ AB. Also an isomorphism Aβ⊗BA ∼= EndAB is easily defined from the
data and equations above, where

∑
j xj ⊗yj �→ idA, so that if (E, zi,wi) is another β-Frobenius

coordinate system (sharing the same E : A → B), then
∑

i zi⊗Bwi =
∑

j xj⊗Byj in (Aβ⊗BA)A.
When a β-Frobenius extension is a QF extension is addressed in the next proposition.

Proposition 2.1. A β-Frobenius extension A ⊇ B is a left QF extension if and only if there are
ui, vi ∈ A(i = 1, . . . , n) such that sui = uiβ(s) and vis = β(s)vi for all i and s ∈ B, and

β−1(s) =
n∑

i=1

uisvi. (2.3)

Proof. Suppose A ⊇ B is β-Frobenius extension with β-Frobenius system satisfying the
equations above. Given the elements ui, vi ∈ A satisfying the equations above, let Ei = E(ui−),
which defines n mappings in (the untwisted) Hom(BAB,BBB). Also define n mappings
ψi ∈ Hom(A(

∗A)B,AAB) by ψi(g) =
∑m

j=1 xjg(viyj) where it is not hard to show using the β-

Frobenius coordinate equations that
∑

j xj⊗Bviyj ∈ (A⊗BA)A for each i (a Casimir element).
It follows that

∑n
i=1 ψi(Ei) = 1A and that A | n(∗A) as natural A-B-bimodules, whence A is a

left QF extension of B.
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Conversely, assume the left QF condition BA
∗
A | An, equivalent to AAB | n(∗A) by

applying the right B-dual functor and noting (∗A)∗ ∼= A as well ∗(A∗) ∼= A. Also assume the
slightly rewritten β-Frobenius condition β−1AA

∼= B(A∗)A, which then implies β−1AA | nA. So
there are nmappings gi ∈ Hom (β−1AA,BAA) and nmappings fi ∈ Hom(BAA,β−1AA) such
that

∑n
i=1 fi ◦ gi = idA. Equivalently, with ui := f(1A) and vi := g(1A),

∑n
i=1 uivi = 1A, and the

equations in the proposition are satisfied.

The following corollary weakens one of the equivalent conditions in [24, 25]. It implies
that a finite dimensional Hopf algebra that is QF over a Hopf subalgebra is necessarily
Frobenius over it. (Nontrivial examples of QF extensions occur for weak Hopf algebras over
their separable base algebra [26].)

Corollary 2.2. LetH be a finite dimensional Hopf algebra and K a Hopf subalgebra. In the notation
of (2.1) the following are equivalent.

(1) The automorphism β = idK andH ⊇ K is a Frobenius extension.

(2) The algebra extensionH ⊇ K is a QF extension.

(3) The modular functionsmH(x) = mK(x) for all x ∈ K.

Proof. (1 ⇒ 2) A Frobenius extension is a QF extension. (2 ⇒ 3) Set s = 1 in (2.3), and apply
the counit ε to see that ε(

∑
i uivi) = 1. Reapply ε to (2.3) to obtain ε ◦ β = ε. Apply ε to (2.1),

and use uniqueness of inverse in convolution algebra Hom (K, k), where mK ◦ S = m−1
K

and 1 = ε, to show thatmH = mK on K. (3 ⇒ 1) This follows from (2.1).

The following observation for a normal Hopf subalgebraK ⊆ H has not been explicitly
noted before in the literature.

Corollary 2.3. The modular function of a finite dimensional Hopf algebraH restricts to the modular
function of a Hopf subalgebra K ⊆ H if K has depth d(K,H) ≤ 2.

Proof. If the Hopf subalgebra K has depth 1 in H, it has depth 2. If it has depth 2, it is
equivalently a normal Hopf subalgebra by the result of [2]. But a normal Hopf subalgebra
K ⊆ H is an H-Galois extension: here H := H/HK+ denotes the quotient Hopf algebra,
H → H, h �→ h denotes the quotient map, and the Galois isomorphism can : H⊗KH →
H ⊗H is given by can (h ⊗ h′) = hh′(1) ⊗ h′(2) [27]. In the same paper [27] it is shown that a
Hopf-Galois extension of a finite dimensional Hopf algebra is a Frobenius extension. Then,
β = id in the corollary above, somK = mH |K.

The corollary extends to some extent to quasi-Hopf algebras [23] and Hopf algebras
over commutative rings [28], since the following identity may be established along the lines
of [29] for the modular functions of subalgebra pairs of augmented Frobenius algebras B ⊆ A.

Lemma 2.4. Let (A, ε) be an augmented Frobenius algebra with Nakayama automorphism ηA, B a
subalgebra and Frobenius algebra where ηA(B) = B, and AB finitely generated projective. It follows
that A ⊇ B is a β-Frobenius extension where β = ηB ◦ η−1A , a relative Nakayama automorphism [22,
Satz 7], [29, Paragraph 5.1]. Then the modular automorphisms of A and B satisfy

mA|B = mB ◦ β. (2.4)
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Proof. Let (φ, xi, yi, ηA) be a Frobenius coordinate system forA, tA ∈ A a right norm satisfying
φtA = ε, then tA is a right integral, satisfying tAx = tAε(x) for all x ∈ A, spanning the one-
dimensional space of integrals in A. Let mA be the augmentation on A defined by xtA =
mA(x)tA for x ∈ A. It follows that ε = mA ◦ ηA by expressing tA in terms of dual bases, ε and
mA = tAφ (and note that (φ, yi, ηA(xi)) are also dual bases) [29, Paragraph 3.2]. Similarly let
(ψ, uj , vj , ηB) be a Frobenius coordinate system for B and tB a right norm satisfying ψtB = ε|B,
then tB is a right integral in B and xtB = mB(x)tB defines the k-valued algebra homomorphism
mB, which satisfies ε|B = mB ◦ηB. It follows thatmB ◦β = mB ◦ηB ◦ηA−1 = ε◦ηA−1|B = mA|B.

Note that (2.4) for Hopf subalgebras also follows from (2.1). Corollary 2.3 does not
extend to depth 3 Hopf subalgebras by the next example.

Example 2.5. The Taft-Hopf algebra H over its cyclic group subalgebra K is a nontrivial β-
Frobenius extension [23]. The algebra H is generated over C by a grouplike g of order
n ≥ 2, a nilpotent x of index n, and (g, 1)-primitive element where xg = ψgx for ψ ∈ C a
primitive nth root of unity. This is a Hopf algebra having right integral tH = xn−1

∑n−1
j=0 g

j

with modular function mH(g) = ψ [23]. The Hopf subalgebra K is generated by g. Then the
twist automorphism of K is given by β(gj) = ψjgj . Of course,mH restricted toK is not equal
tomK = ε|K. The depth d(K,H) = 3 is computed in [30].

Finally we note that unimodular Hopf algebra extensions are trivial if the H-depth
condition dH(B,A) = 1 is imposed.

Proposition 2.6. Suppose H is a finite-dimensional Hopf algebra and K is a Hopf subalgebra of H.
If dH(K,H) = 1, then K satisfies a double centralizer result; in particular, if H is unimodular, then
K = H.

Proof. Since H is a finite-dimensional Hopf algebra, it is a free extension of the Hopf
subalgebra K, therefore faithfully flat. If dH(K,H) = 1, then the ring extension satisfies the
generalized Azumaya conditionH⊗KH ∼= Hom Z(H)(CH(K),H) via x⊗Ky �→ λx ◦ρy, left and
right multiplication [23, 31], where CH(K) denotes the centralizer subalgebra of K in H. If
d ∈ CH(CH(K)), then it is obvious from this that d⊗K1H = 1H⊗Kd, so that d ∈ K: it follows
that

K = CH(CH(K)). (2.5)

Since H is unimodular, it has a two-sided nonzero integral t. Note that t ∈ Z(H) ⊆
CH(CH(K)), whence t ∈ K. Let λ : H → k (where k is the arbitrary ground field) be the left
integral in the dual Hopf algebraH∗ such that λ ↼ t = ε. The bijective antipode S : H → H
satisfies S(a) =

∑
(t) t(1)λ(at(2)) since

∑
(a) a(1)S(a(2)) = 1Hε(a) and λ ⇀ x = λ(x)1H for all

x, a ∈ H. Since Δ(t) =
∑

(t) t(1) ⊗ t(2) ∈ K ⊗ K, it follows that S(a) ∈ K for all a ∈ H. Thus
H = K.

3. Even Depth of QF Extensions

It is well known that for a Frobenius extension A ⊇ B, coinduction of a module, MB �→
Hom (AB,MB) is naturally isomorphic as functors to induction (MB �→ M⊗BA) (from
the category of B-modules into the category of A-modules). Similarly, a QF extension has
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h-equivalent coinduction and induction functors, which is seen from the naturality of the
mappings in the next proof. Let T be an arbitrary third ring.

Proposition 3.1. Suppose TMB is a bimodule and A ⊇ B is a QF extension. Then, there is an h-
equivalence of bimodules,

TM⊗BAA
h∼T Hom(AB,MB)A. (3.1)

Proof. Since AB is f.g. projective, it follows that there is a T -A-bimodule isomorphism

M⊗BHom(AB, BB) ∼= Hom(AB,MB), (3.2)

given bym⊗Bφ �→ mφ(−)with inverse constructed from projective bases forAB. But the right
B-dual of A is h-equivalent to BAA, so (3.1) holds by Lemma 1.1.

The next theorem shows that minimum right and left even depth of a QF extension are
equal (see Definition 1.6 where as before Cn(A,B) = A⊗B · · · ⊗BA, n times A).

Theorem 3.2. If A ⊇ B is QF extension, then A ⊇ B has left depth 2n if and only if A ⊇ B has right
depth 2n.

Proof. The left depth 2n condition onA ⊇ B recall is Cn+1(A,B)
h∼ Cn(A,B) as B-A-bimodules.

To this apply the additive functor Hom(−A,AA) (into the category ofA-B-bimodules), noting
that Hom(Cn(A,B)A,AA) ∼= Hom(Cn−1(A,B)B,AB) via f �→ f(−⊗B · · ·−⊗B1A) for each integer
n ≥ 1. It follows (from Lemma 1.1) that there is an A-B-bimodule h-equivalence,

Hom(Cn(A,B)B,AB)
h∼ Hom(Cn−1(A,B)B,AB). (3.3)

(Then in the depth two case, the left depth two condition is equivalent to End AB
h∼ A as

natural A-B-bimodules.)
Given bimodule AMB, we have AM⊗BAA

h∼A Hom(AB,MB)A by the previous lemma:
apply this to Cn+1(A,B) = Cn(A,B)⊗BA using the hom-tensor adjoint relation: there are h-
equivalences and isomorphisms of A-bimodules,

Cn+1(A,B)
h∼ Hom(AB,Cn(A,B)B)

h∼ Hom
(
AB,Hom (AB,Cn−1(A,B)B)B

)

∼= Hom(A⊗BAB, Cn−1(A,B)B)

· · · h∼ Hom
(
Cp(A,B)B, Cn−p+1(A,B)B

)
,

(3.4)

for each p = 1, 2, . . . , n and n = 1, 2, . . .. Compare (3.3) and (3.4) with p = n to get

ACn+1(A,B)B
h∼A Cn(A,B)B, which is the right depth 2n condition.

The converse is proven similarly from the symmetric conditions of the QF hypothesis.
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The extent to which the theorem (and most of the results in the next section) extends
to β-Frobenius or even twisted QF extensions presents technical problems and is unknown to
the author.

4. Frobenius Extensions

As noted above a Frobenius extension A ⊇ B is characterized by any of the following four
conditions [23]. First, AB is finite projective and BAA

∼= Hom(AB, BB). Second, BA is finite
projective and AAB

∼= Hom(BA,BB). Third, coinduction and induction of right (or left) B-
modules is naturally equivalent. Fourth, there is a Frobenius coordinate system (E : A →
B;x1, . . . , xm,y1, . . . , ym ∈ A), which satisfies

E ∈ Hom(BAB,BBB),
m∑

i=1

E(axi)yi = a =
m∑

i=1

xiE
(
yia

)
(∀a ∈ A). (4.1)

These (dual bases) equations may be used to show the useful fact that
∑

i xi ⊗ yi ∈ (A⊗BA)A.
We continue this notation in the next lemma. Although most Frobenius extensions

in the literature are generator extensions, by the lemma equivalent to having a surjective
Frobenius homomorphism, Example 2.7 in [23] provides a somewhat pathological example
of a matrix algebra Frobenius extension with a nonsurjective Frobenius homomorphism.

Lemma 4.1. The natural moduleAB is a generator⇔B A is a generator⇔ there are elements {aj}nj=1
and {cj}nj=1 such that

∑n
j=1 E(ajcj) = 1B ⇔ E is surjective.

Proof. The bimodule isomorphism BAA

∼=−→BHom(AB, BB)A is realized by a �→ E(a−) (with
inverse φ �→ ∑m

i=1 φ(xi)yi). If AB is a generator, then there are elements {cj}nj=1 of A and
mappings {φj}nj=1 of A∗ such that

∑n
j=1 φj(cj) = 1B. Let Eaj = φj . Then,

∑n
j=1 E(ajcj) = 1B.

Another bimodule isomorphism AAB

∼=−→AHom(BA,BB)B is realized by a �→ E(−a) :=
aE. Then writing the last equation as

∑
j cjE(aj) = 1B exhibits BA as a generator.

The last of the equivalent conditions is implied by the previous condition and implies
the first condition. Also note that any other Frobenius homomorphism is given by Ed for
some invertible d ∈ AB.

A Frobenius (or QF) extension A ⊇ B enjoys an endomorphism ring theorem [21, 32],
which shows that E := End AB ⊇ A is a Frobenius (resp., QF) extension, where the default
ring homomorphism A → E is understood to be the left multiplication mapping λ : a �→ λa
where λa(x) = ax. It is worth noting that λ is a left split A-monomorphism (by evaluation at
1A) so AE is a generator.

The tower of a Frobenius (resp., QF) extension is obtained by iteration of the
endomorphism ring and λ, obtaining a tower of Frobenius (resp. QF) extensions where
occasionally we need the notation B := E−1, A = E0 and E = E1

B −→ A ↪→ E1 ↪→ E2 ↪→ · · · ↪→ En ↪→ · · · (4.2)

so E2 = End EA, and so forth. By transitivity of Frobenius extension or QF extension [21, 22],
all subextensions Em ↪→ Em+n in the tower are also Frobenius (resp. QF) extensions.
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The rings En are h-equivalent to Cn+1(A,B) = A⊗B · · · ⊗BA as A-bimodules in case
A ⊇ B is a QF extension. This follows from noting the

End AB
∼= A⊗BHom(AB, BB)

h∼ A⊗BA (4.3)

also holding as natural E-A-bimodules, obtained by substitution of A∗ h∼ A. This observation
is then iterated followed by cancellations of the type A⊗AM ∼=M.

4.1. Tower above Frobenius Extension

Specialize now to A ⊇ B a Frobenius extension with Frobenius coordinate system E and
{xi}mi=1, {yi}mi=1. Then the h-equivalences above are replaced by isomorphisms, and En ∼=
Cn+1(A,B) for each n ≥ −1 as ring isomorphisms with respect to a certain induced “E-
multiplication.” The E-multiplication on A⊗BA is induced from the endomorphism ring
EndAB

∼=−→ A⊗BA given by f �→ ∑
i f(xi)⊗Byi with inverse a ⊗ a′ �→ λa ◦ E ◦ λa′ . The outcome

of E-multiplication on C2(A,B) is given by

(a1⊗Ba2)(a3⊗Ba4) = a1E(a2a3)⊗Ba4 (4.4)

with unity element 11 =
∑m

i=1 xi⊗Byi. Note that the A-bimodule structure on E1 induced by
λ : A ↪→ E corresponds to the natural A-bimodule A⊗BA.

The E-multiplication is defined inductively on

En ∼= En−1⊗En−2En−1 (4.5)

using the Frobenius homomorphism En−1 : En−1 → En−2 obtained by iterating the following
natural Frobenius coordinate system on E1

∼= A⊗BA, given by E1(a⊗Ba′) = aa′ and
{xi⊗B1A}mi=1, {1A⊗Byi}mi=1 [23] as one checks.

The iterative E-multiplication on Cn(A,B) clearly exists as an associative algebra,
but it seems worthwhile (and not available in the literature) to compute it explicitly. The
multiplication on C2n(A,B) is given by (⊗ = ⊗B, n ≥ 1)

(a1 ⊗ · · · ⊗ a2n)(c1 ⊗ · · · ⊗ c2n)
= a1 ⊗ · · · ⊗ anE(an+1E(· · ·E(a2n−1E(a2nc1)c2) · · · )cn−1)cn) ⊗ cn+1 ⊗ · · · ⊗ c2n.

(4.6)

The identity on C2n(A,B) is in terms of the dual bases,

12n−1 =
m∑

i1,...,in=1

xi1 ⊗ · · · ⊗ xin ⊗ yin ⊗ · · · ⊗ yi1 . (4.7)
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The multiplication on C2n+1(A,B) is given by

(a1 ⊗ · · · ⊗ a2n+1)(c1 ⊗ · · · ⊗ c2n+1)
= a1 ⊗ · · · ⊗ an+1E(an+2E(· · ·E(a2nE(a2n+1c1)c2) · · · )cn)cn+1 ⊗ · · · ⊗ c2n+1

(4.8)

with identity

12n =
m∑

i1,...,in=1

xi1 ⊗ · · · ⊗ xin ⊗ 1A ⊗ yin ⊗ · · · ⊗ yi1 . (4.9)

Denote in brief notation the rings Cn(A,B) := An and distinguish them from the isomorphic
rings En−1 (n = 0, 1, . . .).

The inclusions An ↪→ An+1 are given by a[n] �→ a[n]1n, which works out in the odd and
even cases to

A2n−1 ↪→ A2n,

a1 ⊗ · · · ⊗ a2n−1 �−→
∑

i

a1 ⊗ · · · ⊗ anxi ⊗ yi ⊗ an+1 ⊗ · · · ⊗ a2n−1,

A2n ↪→ A2n+1,

a1 ⊗ · · · ⊗ a2n �−→ a1 ⊗ · · · ⊗ an ⊗ 1A ⊗ an+1 ⊗ · · · ⊗ a2n.

(4.10)

The bimodule structure on An over a subalgebra Am (with m < n via composition of
left multiplication mappings λ) is just given in terms of the multiplication in Am as follows:

(r1 ⊗ · · · ⊗ rm)(a1 ⊗ · · · ⊗ an)
= [(r1 ⊗ · · · ⊗ rm)(a1 ⊗ · · · ⊗ am)] ⊗ am+1 ⊗ · · · ⊗ an

(4.11)

with a similar formula for the right module structure.
The formulas for the successive Frobenius homomorphisms Em : Am+1 → Am are

given in even degrees by

E2n(a1 ⊗ · · · ⊗ a2n+1) = a1 ⊗ · · · ⊗ anE(an+1) ⊗ an+2 ⊗ · · · ⊗ a2n+1 (4.12)

for n ≥ 0. The formula in the odd case is

E2n+1(a1 ⊗ · · · ⊗ a2n+2) = a1 ⊗ · · · ⊗ an ⊗ an+1an+2 ⊗ an+3 ⊗ · · · ⊗ a2n+2 (4.13)

for n ≥ 0.
The dual bases of En denoted by xni and y

n
i are given by all-in-one formulas

xni = xi ⊗ 1n−1,

yni = 1n−1 ⊗ yi
(4.14)

for n ≥ 0 (where 10 = 1A). Note that
∑

i x
n
i ⊗Any

n
i = 1n+1.
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With another choice of Frobenius coordinate system (F, zj ,wj) for A ⊇ B, there is in
fact an invertible element d in the centralizer subring AB of A such that F = E(d−) and∑

i xi⊗Byi =
∑

j zj⊗Bd−1wj [22, 23]; whence an isomorphism of the E-multiplication onto
the F-multiplication, both on A⊗BA, is given by r1 ⊗ r2 �→ r1 ⊗ d−1r2. If the tower with E-
multiplication is denoted by AE

n and the tower with F-multiplication is denoted by AF
n , there

is a sequence of ring isomorphisms

AE
2n

∼=−→ AF
2n,

a1 ⊗ · · · ⊗ a2n �−→ a1 ⊗ · · · ⊗ an ⊗ d−1an+1 ⊗ · · · ⊗ d−1a2n,
(4.15)

AE
2n+1

∼=−→ AF
2n+1

a1 ⊗ · · · ⊗ a2n+1 �−→ a1 ⊗ · · · ⊗ an+1 ⊗ d−1an+2 ⊗ · · · ⊗ d−1a2n+1
(4.16)

which commute with the inclusions AE,F
n ↪→ AE,F

n+1.

Theorem 4.2. The multiplication, module, and Frobenius structures for the towerAn = A⊗B · · · ⊗BA
(n times A) above a Frobenius extension A ⊇ B are given by formulas (4.4) to (4.16).

Proof. First define Temperley-Lieb generators iteratively by en = 1n−1⊗An−21n−1 ∈ An+1 for
n = 1, 2, . . ., which results in the explicit formulas

e2n =
∑

i1,...,in+1

xi1 ⊗ · · · ⊗ xin ⊗ yinxin+1 ⊗ yin+1 ⊗ yin−1 ⊗ · · · ⊗ yi1 ,

e2n+1 =
∑

i1,...,in

xi1 ⊗ · · · ⊗ xin ⊗ 1A ⊗ 1A ⊗ yin ⊗ · · · ⊗ yi1 .
(4.17)

These satisfy braid-like relations [4, page 106], namely,

eiej = ejei,
∣∣i − j∣∣ ≥ 2, ei+1eiei+1 = ei+1, eiei+1ei = ei1i+1. (4.18)

(The generators above fail to be idempotents to the extent that E(1) differs from 1.) The proof
that the formulas above are the correct outcomes of the inductive definitions may be given in
terms of Temperley-Lieb generators, braid-like relations and important relations

enxen = enEn−1(x), ∀x ∈ An,

yen = En
(
yen

)
en, ∀y ∈ An+1, En(en) = 1n−1,

xen = enx, ∀x ∈ An−1.

(4.19)

Reference [4, page 106] (for background see [33]) as well as the symmetric left-right relations.
These relations and the Frobenius equations (4.1) may be checked to hold in terms of the
equations above in a series of exercises left to the reader.

The formulas for the Frobenius bases follow from the iteratively apparent xni =
xie1e2 · · · en and yni = en · · · e2e1yi and uniqueness of bases with respect to the same Frobenius



18 International Journal of Mathematics and Mathematical Sciences

homomorphism. In fact en · · · e2e1a = 1n−1 ⊗ a for any a ∈ A,n = 1, 2, . . . (a symmetrical
formula holds as well) and 1n =

∑
i xie1 · · · en−1enen−1 · · · e1yi.

Since the inductive definitions of the ring and module structures on the An’s also
satisfy the relations listed above and agree on and below A2, the proof is finished with an
induction argument based on expressing tensors as words in Temperley-Lieb generators and
elements of A.

We note that

a1 ⊗ · · · ⊗ an+1 = (a1 ⊗ · · · ⊗ an)(1n−1 ⊗ an+1)
= (a1 ⊗ · · · ⊗ an−1)(1n−2 ⊗ an)(en · · · e1an+1)
= · · · = a1(e1a2)(e2e1a3) · · · (en−1 · · · e1an)(en · · · e1an+1).

(4.20)

The formulas for multiplication (4.8), (4.6), and (4.11) follow from induction and applying
the relations (4.18) through (4.20).

For the next proposition the main point is that given a Frobenius extension there is
a ring structure on the Cn(A,B)’s satisfying the hypotheses below (for one compares with
(4.11)). This is true as well if A is a ring with B in its center, since the ordinary tensor algebra
on A⊗BAmay be extended to an n-fold tensor product algebra A⊗B · · · ⊗BA.

Proposition 4.3. Let A ⊇ B be a ring extension. Suppose that there is a ring structure on each
An := Cn(A,B) for each n ≥ 0, a ring homomorphism An−1 → An for each n ≥ 1, and that the
composite B → An induces the natural bimodule given by b · (a1⊗· · ·⊗an) ·b′ = ba1⊗a2⊗· · ·⊗anb′.
Then, A ⊇ B has depth 2n + 1 if and only if An | B has depth 3.

Proof. If A ⊇ B has depth 2n + 1, then An
h∼ An+1 as B-bimodules. By tensoring repeatedly by

BA⊗B−, also An
h∼ A2n as B-bimodules. But A2n

∼= An⊗BAn. Then, An ⊇ B has depth three.

Conversely, if An | B has depth 3, then A2n
h∼ An as B-bimodules. But An+1 | A2n via

the split B-bimodule epi a1 ⊗ · · · ⊗ a2n �→ a1 · · ·an ⊗ an+1 ⊗ · · · ⊗ a2n. Then, An+1 | qAn for some
q ∈ Z+. It follows that A ⊇ B has depth 2n + 1.

One may in turn embed a depth three extension into a ring extension having depth
two. The proof requires the QF condition. Retain the notation for the endomorphism ring
introduced earlier in this section.

Theorem 4.4. Suppose A ⊇ B is a QF extension. If A ⊇ B has depth 3, then E ⊇ B has depth 2.
Conversely, if E ⊇ B has depth 2 and AB is a generator, then A ⊇ B has depth 3.

Proof. Since A is a QF extension of B, we have E h∼ A⊗BA as E-A-bimodules. Then, E⊗BE h∼
A⊗BA⊗BA⊗BA as E-B-bimodules. Given the depth 3 condition,A⊗BA h∼ A as B-bimodules,

it follows by two substitutions that E⊗BE h∼ A⊗BA as E-B-bimodules. Consequently, E⊗BE h∼
E as E-B-bimodules. Hence, E ⊇ B has right depth 2, and since it is a QF extension by the
endomorphism ring theorem and transitivity, E ⊇ B also has left depth 2.

Conversely, we are given AB a progenerator, so that E and B are Morita equivalent
rings, where BHom(AB, BB)E and EAB are the context bimodules. If E ⊇ B has depth

two, then E⊗BE h∼ E as E-B-bimodules. Then A⊗BA⊗BA⊗BA h∼ A⊗BA as E-B-bimodules.
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Since Hom(AB, BB)⊗EA ∼= B as B-bimodules, a cancellation of the bimodules EAB follows,
so A⊗BA⊗BA h∼ A as B-bimodules. Since A⊗BA | A⊗BA⊗BA, it follows that A⊗BA | qA for
some q ∈ Z +. Then A ⊇ B has depth 3.

Example 4.5. To illustrate that the theorem does not extend to when A ⊇ B is not a QF
extension, consider A = Tn(k), n ≥ 2 (a hereditary algebra) and B = Dn(k) (a semisimple
algebra), and left k be an algebraically closed field of characteristic zero. (Since B,A is, is not
a QF-algebra it follows by transitivity thatA ⊇ B is not a QF extension.) It was computed that
d(B,A) = 3 in Example 1.7. Thinking of the columns of A as Aeii, it is quite easy to see that
End AB

∼=M1(k) ×M2(k) × · · · ×Mn(k) and that the inclusion of A ↪→ EndAB is given by

X �−→
(
X11,

(
X11 X12

X12 X22

)
, . . . , X

)
. (4.21)

Its restriction to B is given by

Diag
(
μ1, . . . , μn

) �−→ (
μ1,Diag

(
μ1, μ2

)
, . . . ,Diag

(
μ1, . . . , μn

))
(4.22)

with inclusion matrixM =
∑

i≤j eij . Then,MMt > 0, and from (1.1)we see that d(B,E) = 3.

5. When Tower Depth Equals Subring Depth

In this section we review tower depth from [11] and find a general case when it is the same as
subring depth defined in (1.7) and in [12]. We first require a generalization of left and right
depth 2 to a tower of three rings. We say that a tower A ⊇ B ⊇ T , where A ⊇ B and B ⊇ T
are ring extensions, has generalized right depth 2 if A⊗BA h

˜A as natural A-T -bimodules. (Note
that if T = B, this is the definition of the ring extension A ⊇ B having right depth 2.)

Throughout the section below we suppose A ⊇ B is a Frobenius extension and Ei ↪→
Ei+1 is its tower above it, as defined in (4.2) and the ensuing discussion in Section 4. Following
[11] (with a small change in vocabulary), we say that A ⊇ B has right tower depth n ≥ 2 if the
subtower of composite ring extensions B → En−3 ↪→ En−2 has generalized right depth 2;
equivalently, as natural En−2-B-bimodules,

En−2⊗En−3En−2 ⊕ ∗ ∼= qEn−2 (5.1)

for some positive integer q, since the reverse condition is always satisfied. Since E−1 = B and
E0 = A, this recovers the right depth two condition on a subring B of A. To this definition
we add that a Frobenius extension A ⊇ B has tower depth 1 if it is a centrally projective ring
extension; that is, BAB | qB for some q ∈ Z+. Left tower depth n is just defined using (5.1) but
as natural B-En−2-bimodules. By [11, Theorem 2.7] the left and right tower depth n conditions
are equivalent on Frobenius extensions.

From the definition of tower depth and a comparison of (4.5) and Definition 1.6 we
note that ifA is a Frobenius extension of B of tower depth n > 1, then B ⊆ A has subring depth
2n − 2; from (5.1) we obtain An | qAn−1 as A-B-bimodules, since An

∼= En−1 ∼= En−2⊗En−3En−2.
From [11, Lemma 8.3], it follows that if A ⊇ B has tower depth n, it has tower depth

n + 1. Define dF(A,B) to be the minimum tower depth if A ⊇ B has tower depth n for some
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integer n, dF(A,B) = ∞ if the condition (5.1) is not satisfied for any n ≥ 2 nor is it depth 1.
Notice that dF(A,B) = d(B,A) if d(B,A) ≤ 2 or dF(A,B) ≤ 2. This is extended to dF(A,B) =
d(B,A) if d(B,A)ordF(A,B) ≤ 3 in the next lemma.

Notice that tower depth n makes sense for a QF extension A ⊇ B: by elementary

considerations, it has right tower depth 3 if B → A ↪→ E satisfies E⊗AE h∼ E as E-B-bimodules.
It has been noted elsewhere that a QF extension has right tower depth 3 if and only if it has left
tower depth 3 by an argument essentially identical to that in [11, Theorem2.8] but replacing
Frobenius isomorphisms with quasi-Frobenius h-equivalences.

Lemma 5.1. A QF extension A ⊇ B such that AB is a generator has tower depth 3 if and only if B
has depth 3 as a subring in A.

Proof. (⇒) By the QF property, E h∼ A⊗BA as E-B-bimodules. By the tower depth 3 condition,

E⊗AE h∼ E as E-B-bimodules. Then, A⊗BA⊗BA h∼ A⊗BA as E-B-bimodules. Since AB is a
progenerator, we cancel bimodules EAB as in the proof of Theorem 4.4 to obtain A⊗BA h∼ A
as B-bimodules. Hence, B ⊆ A has depth 3.

(⇐) Given BAB
h∼B A⊗BAB, by tensoring with EA⊗B− we get A⊗BA h∼ A⊗BA⊗BA as

E-B-bimodules. By the QF property, E⊗AE h∼ E as E-B-bimodules follows, whence A ⊇ B has
tower depth 3.

The theorem below proves that subring depth and tower depth coincide on Frobenius
generator extensions, which are the most common Frobenius extensions, for example,
including all group algebra extensions: the endomorphism ring extension of any Frobenius
extension is a Frobenius generator extension. At a certain point in the proof, we use the
following fundamental fact about the tower An above a Frobenius extension A ⊇ B: since
the compositions of the Frobenius extensions remain Frobenius, the iterative construction
of E-multiplication on tensor-squares isomorphic to endomorphism rings applies but gives
isomorphic ring structures to those on theAn. For example, the composite extension B → An

is Frobenius with End(An)B ∼= An⊗BAn
∼= A2n, isomorphic in its E◦E1◦· · ·◦En−1-multiplication

or its E-multiplication given in (4.6) [10].

Theorem 5.2. SupposeA is a Frobenius extension of B andAB is a generator. Then,A ⊇ B has tower
depth m for m = 1, 2, . . . if and only if the subring B ⊆ A has depth m. Consequently, dF(A,B) =
d(B,A).

Proof. The cases m = 1, 2, 3 have been dealt with above. We divide the rest of the proof into
odd m and even m. The proof for odd m = 2n + 1: (⇒) if A ⊇ B has tower depth 2n + 1, then
A2n⊗A2n−1A2n | qA2n as A2n-B-bimodules. Continuing with A2n

∼= A2n−1⊗A2n−2A2n−1, iterating
and performing standard cancellations, we obtain

A2n+1 | qA2n (5.2)

as End(An)B-B-bimodules. But the module (An)B is a generator for all n by Lemma 4.1,
the endomorphism ring theorem for Frobenius generator extensions and transitivity of
generator property for modules (if MA and AB are generators, then restricted module
MB is clearly a generator). It follows that (An)B is a progenerator and cancellable as
an End(An)B-B-bimodule (applying the Morita theorem as in the proof of Theorem 4.4).
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Then, B(An+1)B|B(An)B after cancellation ofAn from (5.2), which is the depth 2n+ 1 condition
in (1.7).

(⇐) Suppose An+1 ⊕ ∗ ∼= An as B-bimodules. Apply to this the additive functor An⊗B−
from category of B-bimodules into the category of End(An)B-B-bimodules. We obtain (5.2),
which is equivalent to the tower depth 2n + 1 condition of A ⊇ B.

The proof in the even case, m = 2n, does not need the generator condition (since even
nongenerator Frobenius extensions have endomorphism ring extensions that are generators).

(⇒) Given the tower depth 2n condition A2n−1⊗A2n−2A2n−1 ∼= A2n is isomorphic as
A2n−1-B-bimodules to a direct summand in qA2n−1 for some positive integer q, introduce
a cancellable extra term in A2n

∼= An⊗AAn+1 and in A2n−1 ∼= An⊗AAn. Now note that
A2n−1 ∼= End(An)A, which is Morita equivalent to A. After cancellation of the End(An)A-
A-bimodule An, we obtain An+1 | An as A-B-bimodules as required by (1.7).

(⇐) Given A(An+1)B|A(An)B, we apply End(An)AAn⊗A− obtaining A2n | A2n−1 as A2n−1-
B-bimodules, which is equivalent to the tower depth 2n condition.

A depth 2 extension A ⊇ B may have easier equivalent conditions, for example, a
normality condition, to fulfill than the B-A-bimodule condition A⊗BA | qA [2]. Thus, the
next corollary (or one like it stated more generally for Frobenius extensions) presents a
simplification in determining whether a special type of ring extension has finite depth. The
corollary follows from the theorem above as well as [11, 8.6], Corollary 2.2, Proposition 4.3
and Theorem 4.4.

Corollary 5.3. LetK ⊆ H be a Hopf subalgebra pair of finite-dimensional unimodular Hopf algebras.
Then, K has finite depth inH if and only if there is a tower algebraHm such that K ⊆ Hm has depth
2.
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