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We develop a model of dengue transmission with some vaccination programs for immigrants.
We classify the host population into child and adult classes, in regards to age structure, and into
susceptible, infected and recovered compartments, in regards to disease status. Since migration
plays important role in disease transmission, we include immigration and emigration factors
into the model which are distributed in each compartment. Meanwhile, the vector population
is divided into susceptible, exposed, and infectious compartments. In the case when there is no
incoming infected immigrant, we obtain the basic reproduction ratio as a threshold parameter for
existence and stability of disease-free and endemic equilibria. Meanwhile, in the case when there
are some incoming infected immigrants, we obtain only endemic equilibrium. This indicates that
screening for the immigrants is important to ensure the effectiveness of the disease control.

1. Introduction

Dengue fever is an endemic disease in many tropical countries, especially in the urban areas.
This disease is caused by the dengue virus, which is transmitted to a human by the bite of
infected female Aedes aegyptimosquitoes.

There are some epidemiological and demographical factors that contribute to the
transmission of the disease. Age factor is among the important demographical factors affect-
ing the transmission of the disease. From a theoretical point of view, age structure affects
the dynamics of the disease transmission [1], and hence it should be taken into account in
modeling the transmission of the disease to increase the realism of the model and to obtain
a more prudent decision derived from the model. From a practical point of view, many
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vaccination programs are directed to a certain class of age, unexceptionally in the case of
dengue in which the Pediatric Dengue Vaccine Initiative targets children in their vaccination
program (http://www.pdvi.org/). A study in [2] shows that a pediatric vaccination would
be economically viable and highly cost effective, once a perfect dengue vaccine is made.
A similar study shows that an optimal vaccination strategy could be given to only certain
classes of age [3].

In literatures, most of the age-structured population models appear in the form of
integropartial differential equations [4–6]. Some authors included age structure in epidemic
models in the form of discrete compartmental differential equations, such as in [7–9]. The
authors in [7] have generalized the model in [10] by separating the human population
into age cohorts, and then for each cohort they construct a set of SIR equations. Disease-
free and endemic equilibria are found, but there is no stability analysis for these equilibria.
In [8], the authors have simplified their model to a two-age-class model. They allowed
different transmission rates for the adult and the child classes and found disease-free and
endemic equilibria. They also provided the condition for the local stability of the disease-free
equilibrium in the general case. The stability condition for the endemic equilibrium has only
been found for the special case, in which no infection occurs for the adult class.

The authors in [9] showed that a two-age-class model is a special case of a more
general continuous age model for a certain choice of survival function. In their paper they
discussed a two-age-class dengue transmission model by dividing the human population
into child and adult classes and considered vaccination in the child class only. Many
scientists believe that most dengue infections are asymptomatic. For every ten cases we
see in the hospital, there should be at least 50–90 cases in the community who have only
fever and no complications [11]. In this regards, the authors in [9] also showed that, in
some circumstances, if there is an inadvertent vaccination to asymptomatic infectious
children, which worsens their condition as the time span of being infectious increases, then
paradoxically, vaccination can be counterproductive; that is, vaccination makes the basic
reproduction number even bigger. This suggests that, in practice, screening to identify truly
susceptibles is needed before implementing a vaccination program.

Beside age factor, another factor that plays important role in disease transmission
is immigration. It is easy to understand that immigration of infectious individuals could
ignite the spreading of a disease in a virgin populations. Diseases like HIV, SARS, and
avian influenza are believed among the examples of diseases that might be caused by the
immigrants of infectious individuals [12, 13]. Many mathematical models have been devised
as the means to understand and to control those kinds of diseases [6, 14, 15]. The authors in
[14] showed that if there is a constant influx of infective immigrants into a population, there
will be no disease-free equilibrium.

Although the immigrants are not carrying a disease at all, still they have an impact
on the transmission of a disease. The buildup of immigrants (also the locals) can be viewed
as the buildup of susceptibles that are ready to be infected by any disease once available or
enhance the spreading of the existing disease. In this respect, it is reasonable to enforce a
policy to vaccinate incoming immigrant, following a screening, to ensure that they will not
contribute to the buildup of susceptible.

There is no commercially dengue vaccine available yet. However, there are some
potential dengue vaccines available. A survey in four South-Eastern Asian countries in 2002
revealed that there is a high and urgent perceived need for a dengue vaccine (http://www
.pdvi.org/). To simulate vaccination program in gaining some insight on how vaccination
would affect the transmission of the disease, even before the vaccine itself is available in
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the market, is among the interests of vaccine scientists and policy makers. In this paper
we develop a two-age-class model for dengue transmission by considering immigration
vaccination strategy, as an anticipative study before the vaccine exists.

The introduction of immigration into the system is plausible since dengue is regarded
as an urban disease [16], where the rate of immigration cannot be neglected. Different from
[9] in which it is assumed that vaccination targets individuals in the child class, here we
look at a scenario where vaccination is given to a portion of newborns (both immigrant
and local babies) and a portion of newly arrived mature immigrants, to protect them from
being infected by the local dengue disease. In practical point of view, the vaccination strategy
proposed in this paper is easier to be implemented than the one in [9].

2. Model Formulation

Let us assume that the host population is classified into the child class and the adult class.
Each of the classes is divided into the susceptible, infected, and recovered subclasses. We also
assume that the recovered hosts have life-long immunity and there is no wanning effect of the
vaccine, which means that the vaccine has a life-long permanent protection. So, the recovered
hosts and the vaccinated hosts can be grouped into the recovered class.

We use variables ˜SC, ˜IC, and ˜RC to denote the size of the susceptible, infected, and
recovered of child population, respectively. Similarly, we use the subscript A for the adult
population.

We denote the susceptible, exposed, and infected vector populations by SV , EV , and
IV , respectively. We consider the latent class EV , since the incubation period of the disease in
mosquitoes is relatively large compared to the life span of the mosquitoes.

We use the diagram in Figure 1 for the dengue transmission in the population. The
parameters PC and PA are the incoming immigration recruitment rates for child and adult
classes, respectively, some positive fractions f∗, g∗, and h∗ of the incoming immigrants
are susceptible, infected, and recovered or vaccinated, respectively (f∗ + g∗ + h∗ = 1). In
practice, it is necessary to undertake screening to identify the susceptibility status of the
incoming immigrants. There is also a constant birth recruitment rate B that increases the child
population.

The parameters p and q are the fractions of susceptible incoming children (including
natural birth) and susceptible incoming adults that are vaccinated; s is the vaccine efficacy;
μC, μA, and μV are the child, adult, and vector natural death rates; respectively, εC and εA are
the per capita emigration rates for children and adults, respectively; λC, λA, and λV are the
successful infection rates for children, adults, and vectors; respectively, δ is the transition rate
from child class to adult class; γ is the recovery rate, PV and 1/τ are the recruitment rate for
vector and the latent period of vectors, respectively.

Using the transmission diagram in Figure 1, we formulate the following 9-dimensional
model:

d ˜SC

dt
=
(

1 − ps
) (

fCPC + B
) − λC

˜SC

˜NH

˜IV − (

δ + εC + μC

)

˜SC, (2.1)

d˜IC
dt

= gCPC + λC
˜SC

˜NH

˜IV − (

δ + γ + εC + μC

)

˜IC, (2.2)
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d ˜RC

dt
= hCPC + ps

(

fCPC + B
)

+ γ ˜IC − (

δ + εC + μC

)

˜RC, (2.3)

d ˜SA

dt
=
(

1 − q s
)

fAPA + δ ˜SC − λA
˜SA

˜NH

˜IV − (

εA + μA

)

˜SA, (2.4)

d˜IA
dt

= gAPA + λA
˜SA

˜NH

˜IV + δ˜IC − (

γ + εA + μA

)

˜IA, (2.5)

d ˜RA

dt
=
(

hA + q s fA
)

PA + δ ˜RC + γ ˜IA − (

εA + μA

)

˜RA, (2.6)

d ˜SV

dt
= PV − λV ˜SV

˜IC + ˜IA
˜NH

− μV
˜SV , (2.7)

d ˜EV

dt
= λV ˜SV

˜IC + ˜IA
˜NH

− (

τ + μV

)

˜EV , (2.8)

d˜IV
dt

= τ ˜EV − μV
˜IV , (2.9)

where ˜NH is the total population of host. Furthermore, we use ˜NC = ˜SC + ˜IC + ˜RC, ˜NA =
˜SA + ˜IA + ˜RA, and ˜NV = ˜SV + ˜EV + ˜IV as the total populations of child, adult, and vector,
respectively. These populations are governed by the following equations:

d˜NC

dt
= PC + B − (

δ + εC + μC

)

˜NC, (2.10)

d˜NA

dt
= PA + δ˜NC − (

εA + μA

)

˜NA, (2.11)

d˜NV

dt
= PV − μV

˜NV . (2.12)

When t → ∞, we have that ˜NC → (PC + B)/(δ + εC + μC), ˜NA → (δ(PC + B) + (δ + εC +
μC)PA)/(δ + εC + μC)(εA + μA), and ˜NV → PV/μV .

First, we consider that the host and vector populations have reached the limiting states;
these are ˜NC = (PC +B)/(δ + εC +μC), ˜NA = (δ (PC +B) + (δ + εC +μC)PA)/(δ + εC +μC)(εA +
μA), ˜NV = PV/μV , and ˜NH = ˜NC + ˜NA. Then, we scale model (2.1)–(2.9) with following
transformations SC = ˜SC/˜NC, IC = ˜IC/˜NC, RC = ˜RC/˜NC, SA = ˜SA/˜NA, IA = ˜IA/˜NA,
RA = ˜RA/˜NA, SV = ˜SV/˜NV , EV = ˜EV/˜NV , and IV = ˜IV /˜NV . Thus, we obtain the following
reduced model:

dSC

dt
=
(

1 − ps
) (

fCQC + T
) − βCSCIV − (

δ + εC + μC

)

SC, (2.13)

dIC
dt

= gCQC + βCSCIV − (

δ + γ + εC + μC

)

IC, (2.14)
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Figure 1: A two-age-class dengue transmission diagram.

dSA

dt
=
(

1 − qs
)

fAQA + δσSC − βASAIV − (

εA + μA

)

SA, (2.15)

dIA
dt

= g
A
QA + βASAIV + δσIC − (

γ + εA + μA

)

IA, (2.16)

dEV

dt
= SV (θCIC + θAIA) −

(

τ + μV

)

EV , (2.17)

dIV
dt

= τEV − μV IV , (2.18)

where T = B/˜NC, QC = PC/˜NC, βC = λC˜NV/˜NH , θC = λV ˜NC/˜NH , σ = ˜NC/˜NA, QA =
PA/˜NA, βA = λA˜NV/˜NH , θA = λV ˜NA/˜NH , and SV = 1 − EV − IV . The values of RC and RA

in the limiting state can be evaluated using RC = 1 − SC − IC and RA = 1 − SA − IA.
After the scaling, the region of biological interest of model (2.13)–(2.18) is

Ω =
{

(SC, IC, SA, IA, EV , IV ) ∈ [0, 1]6 : SC + IC ≤ 1, SA + IA ≤ 1, EV + IV ≤ 1
}

. (2.19)

This region is positive invariant under the flow generated by the vector field of model (2.13)–
(2.18), because the vector field on the boundary of Ω does not point out the exterior of Ω.
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For the rest of the paper, we will analyze model (2.13)–(2.18) since this reduced model
is the limiting system of model (2.1)–(2.9) and has the same asymptotic behavior as the
original model [17, 18].

3. Model Analysis

Solving the equilibrium conditions of model (2.13)–(2.18), we obtain the following equations:

SC =

(

1 − ps
)(

fCQC + T
)

βCIV + δ + εC + μC

, (3.1)

IC =
gCQC + βCSCIV
δ + γ + εC + μC

, (3.2)

SA =

(

1 − qs
)

fAQA + δσSC

βAIV + εA + μA
, (3.3)

IA =
gAQA + βASAIV + δσIC

γ + εA + μA
, (3.4)

EV =
μV

τ
IV , (3.5)

and the variable IV satisfies M(IV ) +N(IV ) = 0, where

M(IV ) =
(

c2 I2V + c1 IV + c0
)

IV , (3.6)

N(IV ) =
(

IV βA + εA + μA

)(

IV βC + δ + εC + μC

)(

IV
(

μV + τ
) − τ

)

× [

gAQAθA
(

γ + δ + εC + μC

)

+ gCQC

(

θC
(

γ + εA + μA

)

+ θAδσ
)]

,
(3.7)

c2 = βAβC
(

μV + τ
)

[

(

1 − qs
)

fAQAθA
(

γ + δ + εC + μC

)

+ μV

(

γ + εA + μA

) (

γ + δ + εC + μC

)

+Sd
C

(

δ + εC + μC

) (

θC
(

γ + εA + μA

)

+ θA δ σ
)

]

,

(3.8)

c1 = βC
(

εA + μA

)(

γ + δ + εC + μC

)

×
[

μV

(

γ + εA + μA

)(

μV + τ
) − βAθAτS

d
A

]

+βA
(

δ + εC + μC

)[

μV

(

γ + εA + μA

)(

γ + δ + εC + μC

)(

μV + τ
)

−βCτSd
C

(

θC
(

γ + εA + μA

)

+ δσθA
)

]

+
(

εA + μA

)(

δ + εC + μC

)(

μV + τ
)

[

βAθAS
d
A

(

γ + δ + εC + μC

)

+βCS
d
C

(

θC
(

γ + εA + μA

)

+ δσθA
)

]

+ βAβCθAδστS
d
C

(

γ + δ + εC + μC

)

,

(3.9)

c0 =
(

δ + γ + εC + μC

)(

δ + εC + μC

)(

εA + μA

) (

γ + εA + μA

)

μV

(

μV + τ
)

(1 − R0),
(3.10)
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Sd
C =

(

1 − p s
) (

fC QC + T
)

δ + εC + μC
, (3.11)

Sd
A =

(

1 − q s
)

fA QA + δ σ Sd
C

εA + μA
, (3.12)

R0 =
τ
[

βCS
d
C

(

θC
(

γ + εA + μA

)

+ θAδσ
)

+ βAθAS
d
A

(

δ + γ + εC + μC

)

]

μV

(

γ + εA + μA

) (

δ + γ + εC + μC

) (

μV + τ
) . (3.13)

The zeros of the polynomialM +N determine the equilibrium of model (2.13)–(2.18).
We analyze the zeros of the polynomial M + N into two cases. The first case is if there
is no incoming infected immigrant, so the incoming immigrants are susceptible or have
permanent immunity to the dengue infection. In this case, only polynomial M determines
the equilibrium. The second case is if there are some incoming infected immigrants. In the
second case, both polynomials M andN determine the equilibrium.

3.1. No Incoming Infected Immigrants

In this subsection, we consider the case where there is no incoming infected immigrant or
mathematically gC = gA = 0. Furthermore, the condition gC = gA = 0 implies that polynomial
N becomes a zero polynomial.

In this case, model (2.13)–(2.18) has a disease-free equilibrium; that is, Ed = (Sd
C, 0, S

d
A,

0, 0, 0), where Sd
C and Sd

A are exactly as in (3.11)-(3.12). This equilibrium is obtained by
substituting IV = 0 into (3.5).

If the vaccination programme is not implemented (p = q = 0) and all immigrants are
susceptibles (fC = fA = 1), then we obtain Sd

C = Sd
A = 1 and Rd

C = Rd
A = 0. In the limiting case

where all susceptible immigrants and all births are vaccinated (p = q = 1) and the vaccine
efficacy is perfect (s = 1), we have Sd

C = Sd
A = 0 and Rd

C = Rd
A = 1.

Basic reproduction ratio is the expected number of secondary cases per primary case
in a “virgin” population [19]. It is an important threshold because it determines whether an
initial infection in a virgin population will end up in an endemic. This threshold parameter
is given by the spectral radius of the next-generation matrix. The spectral radius of our next-
generation matrix is the square root of R0, where R0 is exactly as in (3.13). This square root of
R0 can be interpreted as the basic reproduction ratio under vaccination programme.

Next, we explore the existence of the endemic equilibrium ofmodel (2.13)–(2.18)when
gC = gA = 0. Here, we consider the equation c2I

2
V + c1IV + c0 = 0, where the coefficients c0, c1,

and c2 are as in (3.8)–(3.10).
It can be seen that c2 is positive. The coefficient c0 is positive for R0 < 1, and it is

negative for R0 > 1. Moreover, for R0 = 1, we have that c0 = 0 and c1, c2 > 0. So, model
(2.13)–(2.18) cannot exhibit backward bifurcation at R0 = 1.

For R0 ≤ 1, we have following inequalities:

βCτS
d
C

(

θC
(

γ + εA + μA

)

+ δσθA
)

< μV

(

γ + εA + μA

)

(

δ + γ + εC + μC

)(

μV + τ
)

βAθAτS
d
A

< μV

(

γ + εA + μA

)(

μV + τ
)

.

(3.14)
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0
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R0 < 1

(a)
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0
IV

R0 = 1

(b)

M

0
IV

R0 > 1

1

(c)

Figure 2: Three typical graphs of the polynomialM in (3.6) with respect to three conditions of R0.

These inequalities imply c1 > 0 for R0 ≤ 1. Thus, there is no positive root IV of the
equation c2 I2V + c1 IV + c0 = 0 for R0 ≤ 1. And there is a unique positive root IeV of the
equation c2 I2V + c1 IV + c0 = 0 which is always less than one for R0 > 1. Figure 2 gives three
qualitative graphs of M with respect to the three conditions of R0.

It can be verified that the equilibrium Ee = (Se
C, I

e
C, S

e
A, I

e
A, E

e
V , I

e
V ) whose coordinates

satisfy equations (3.5) is in int(Ω) if and only if R0 > 1. We summarized these results in the
following proposition.

Proposition 3.1. Let gC = gA = 0. Model (2.13)–(2.18) always has a unique disease-free equilibrium
Ed inΩ. For R0 > 1, model (2.13)–(2.18) also has a unique positive endemic equilibrium Ee in int(Ω)
whose components satisfy (3.5), and IV satisfies c2I2V + c1IV + c0 = 0, where the coefficients c0, c1, c2
are as in (3.8)–(3.10).

The next proposition gives the stability of equilibrium Ed.

Proposition 3.2. Let gC = gA = 0. The disease-free equilibrium Ed is locally asymptotically stable if
R0 < 1 and it is unstable if R0 > 1.

Proof. The linearization of model (2.13)–(2.18) at point Ed gives the Jacobian matrix:

A =

⎛

⎜

⎜

⎝

A1 A3

0 A2

⎞

⎟

⎟

⎠

, (3.15)
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where

A1 =

⎛

⎜

⎜

⎝

−δ − εC − μC 0

δ σ −εA − μA

⎞

⎟

⎟

⎠

,

A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−δ − γ − εC − μC 0 0 βCS
d
C

δ σ −γ − εA − μA 0 βAS
d
A

θC θA −μV − τ 0

0 0 τ −μV

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.16)

Moreover, the eigenvalues of matrices A1 and A2 determine the local stability of Ed.
The eigenvalues of matrixA1 are −(δ+εC+μC) and −(εA+μA). The matrix −A2 is anM-

matrix. The real parts of all eigenvalues of matrix −A2 are positive if and only if det(−A2) > 0
(see [20]). Furthermore, all eigenvalues ofA2 have negative real parts if and only if det(A2) >
0. The determinant of matrix A2 is given by

det(A2) = −μV

(

γ + εA + μA

)(

δ + γ + εC + μC

) (

μV + τ
)

(R0 − 1). (3.17)

Thus, if R0 < 1, then the equilibrium Ed is locally asymptotically stable and it is unstable if
R0 > 1.

Let the endemic equilibrium Ee = (Se
C, I

e
C, S

e
A, I

e
A, E

e
V , I

e
V ) exists. Linearization of model

(2.13)–(2.18) at point Ee gives following Jacobian matrix:

J =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Δ1 0 0 0 0 −βCSe
C

βC IeV Δ2 0 0 0 βCS
e
C

δ σ 0 Δ3 0 0 −βASe
A

0 δ σ βA IeV Δ4 0 βAS
e
A

0 Se
V θC 0 θA Se

V Δ5 −(θAIeA + θCI
e
C

)

0 0 0 0 τ −μV

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.18)

where Δ1 = −(βC IeV + δ + εC + μC), Δ2 = −(γ + δ + εC + μC), Δ3 = −(βAIeV + εA + μA), Δ4 =
−(γ + εA + μA), Δ5 = −(θAIeA + θCI

e
C + μV + τ), and Se

V = 1 − Ee
V − IeV .

It is not easy to prove analytically that all eigenvalues of J have negative real parts
for R0 > 1. However, from our numerical simulations (case R0 > 1) all of the eigenvalues
have negative real parts. Figure 3 gives the projection of three orbits of three different initial
conditions when R0 > 1 on the IC − IA plane. The component (IC, IA) of the equilibrium Ee is
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Figure 3: Projection of three orbits of model (2.13)–(2.18) on IC − IA plane (a) and the projection near
the equilibrium state (b). This projection indicates the local stability of the endemic equilibrium Ee when
R0 > 1.

not (0, 0). This simulation indicates that the endemic equilibrium Ee is locally asymptotically
stable when R0 > 1.

3.2. Some Incoming Immigrants Are Infected

Here, we consider the case that there are some infected incoming immigrants; that is, gC or
gA is larger than zero. In this case, we have following proposition.

Proposition 3.3. Let gC or gA be larger than zero. Model (2.13)–(2.18) always has a unique positive
endemic equilibrium Ef in int(Ω)whose components satisfy (3.5) and IV satisfiesM(IV )+N(IV ) = 0.

We will give the outline of proof of Proposition 3.3.
Outline of proof. When gC or gA or both are larger than zero, the cubic polynomial N

in (3.7) always has two negative zeros and one positive zero which is less than one. Figure 4
gives the graph of the polynomial N.

The cubic polynomialM in (3.6) always has a trivial zero. Depending on R0, the other
two zeros could be negative, zero, or positive. Figure 2 illustrates three typical graphs of the
polynomial M with respects to R0.

Figure 5 gives the graph of polynomial M + N. The graph always has two negative
zeros and one positive zero which is less than one. This positive zero is the component IV of
endemic equilibrium Ef .

From Proposition 3.3, there is no disease-free equilibrium and there is only endemic
equilibrium if there are always some infected incoming child or adult immigrants. So, it is
very important to do screening for the child and adult immigrants. The infected immigrants
should be quarantined as long as they are ill. Otherwise, we will lose the disease-free
condition. Here, we get a similar conclusion as in [14]. In [14], the authors did not separate
the child class and the adult class in their model.

Figures 6 and 7 show the values of the equilibrium infected child population IC and
the equilibrium infected adult population IA as the function of the portion of infected child
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Figure 4: Graph of the polynomialN.

M +N
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IV

Figure 5: Graph of the polynomialM +N.

gC and adult immigrants gA. In Figure 6, we use parameters which produce R0 < 1 around
gC = gA = 0. Note that the lowest point (gC = gA = 0) corresponds to the components IdC and
IdA of the disease-free equilibrium Ed. When gC, gA /= 0, the points in the surface correspond

to the components I
f

C and I
f

A of the endemic equilibrium Ef . However, in Figure 7, we use
parameters which produce R0 > 1 around gC = gA = 0. Here, the lowest point (gC = gA = 0)
corresponds to the components IeC and IeA of the endemic equilibrium Ee. When gC, gA /= 0,

the points in the surface correspond to the components IfC and I
f

A of endemic equilibrium Ef .
Despite the difference in the resulting properties of the basic reproduction number, and since
both IA and IC constitute the endemic equilibrium Ef , the figures in fact indicate the existence
of this endemic equilibrium when gC and gA are not zero.

The stability of the endemic equilibrium Ef is not easy to be obtained analytically.
Numerical simulations indicate the local stability of the equilibrium Ef . Figure 8 gives
three orbits of three different sets of parameter values. This simulation indicates that the
equilibrium Ef is locally asymptotically stable.

4. Numerical Simulation

In the following numerical simulations, we use data in Table 1.
In Figure 9, we simulate four different scenarios, relative to no vaccination scenario

and low screening level, that is, ga = gc = 20%. The situation is described as follow, first if we
raise the level of screening twice, that is, reduction of ga and gc from 20% to 10%, the infection
will decrease from 100% to 85.7% for Ia and 94% for Ic. If we gain the screening process up
to four times, we have the infection decreasing from 100% to 82.1% for Ia and 91.5% for Ic.
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Figure 6: Component IC(a) and component IA(b) of endemic equilibria Ef . Here, R0 < 1 when gC = gA = 0.
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Figure 7: Component IC(a) and component IA(b) of endemic equilibria Ef . Here, R0 > 1 when gC = gA = 0.
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Figure 8: Projection of three orbits of model (2.13)–(2.18) on IC − IA plane (a) and the projection near the
equilibrium state (b). This projection indicates the local stability of the endemic equilibrium Ef .
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Table 1: Data for numerical simulations (y represents years).

Par. Value Par. Value Par. Value

PC 200/y PA 2000/y PV 5000/y
λC 1168/y λA 584/y λV 2190/y
1/μC 14.8 y 1/μA 60 y 1/μV 1/12 y
fC 0.75 fA 0.75 1/τ 1/24 y
gC 0.05 gA 0.05 B 200/y
εC 0.2/y εA 0.1/y γ 36.5/y
s 0.95 1/δ 15 y — —
p 0.9 q 0.9 — —

Table 2: Percentages of endemicity. We use the first scenario as a reference scenario for the other four
scenarios.

Scenarios IA IC Percentage of IA Percentage of IC
No vaccination, 0.0028 0.0083 100.0% 100.0%
ga = gc = 20%
No vaccination, 0.0024 0.0078 85.7% 94%
ga = gc = 10%
No vaccination, 0.0023 0.0076 82.1% 91.5%
ga = gc = 5%

Vac. p = q = 40%, 0.002 0.0055 71.4% 66.3%
ga = gc = 20%
Vac. p = q = 80%, 0.0012 0.0027 42.9% 32.5%
ga = gc = 20%

Hence, increasing the level of screening will decrease the endemicity. But if we vaccine 40%
of children and adult (p = q = 40%), the decreasing level of infection is 71.4% for Ia and 66.3%
for Ic, and if we raise the coverage of vaccination to 80% (p = q = 80%), we can reduce the
infection up to 42.9% for Ia and 32.5% for Ic. So, increasing the coverage of vaccination will
also decrease the endemicity. The summary of the scenarios can be seen in Table 2.

5. Conclusion

In this paper we derive a mathematical model of dengue transmission with vaccination pro-
gram. The model incorporates two-age classes and migration. We also consider a susceptibil-
ity distribution in the incoming migrants.

From the analysis of the model, we obtain a conclusion that the susceptibility
distribution is an important factor for the existence of disease-free equilibrium. If there is no
incoming infected immigrant, then we have a unique disease-free equilibrium and a unique
endemic equilibriumwhich depend on the basic reproduction ratio. Moreover, the stability of
the equilibria also depends on the basic reproduction ratio. However, if some of the incoming
immigrants are infected, then we only have a unique endemic equilibrium. Hence, screening
for the incoming immigrants must be done. The incoming infected immigrants should be
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Figure 9: Dynamics of some scenarios. Here, we take (0.3, 0.1, 0.5, 0.1, 0.1, 0.1) as the initial condition.

quarantined until they are recovered. Otherwise, we will lose the disease-free state from the
population.

From the sensitivity analysis of the level of screening and the coverage of vaccination,
increasing one of these parameters will give the reduction of endemic level. Increasing both
parameters will give larger reduction of endemic level. The resulting simulation could give
prior information for policy maker in setting the scale of vaccination and understanding the
effect of vaccination in the reduction of endemic level.
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