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We show conditions for the existence, continuity, and differentiability of functions defined by
Γ(s) =

∫∞
−∞ f(t)g(t, s)dt, where f is a function of bounded variation on R with lim|t|→∞f(t) = 0.

1. Introduction

Let g be a complex function defined on a certain subset of R
2. Many functions on functional

analysis are integrals of the following form:

Γ(s) =
∫∞

−∞
f(t)g(t, s)dt. (1.1)

We discuss the above function Γ, where the integral that we use is that of Henstock-
Kurzweil. This integral introduced independently by Kurzweil and Henstock in 1957-58
encompasses the Riemann and Lebesgue integrals, as well as the Riemann and Lebesgue
improper integrals.

In Lebesgue theory, there are well-known results about the existence, continuity, and
differentiability of Γ. For Henstock-Kurzweil integrals also there are results about this, for
example, Theorems 12.12 and 12.13 of [1]. However, they all need the stronger condition:
f(t)g(t, s) is bounded by a Henstock-Kurzweil integrable function r(t). We provide other
conditions for the existence, continuity, and differentiability of Γ.
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2. Preliminaries

Let us begin by recalling the definition of Henstock-Kurzweil integral. For finite intervals in
R it is defined in the following way.

Definition 2.1. Let f : [a, b] → R be a function. One can say that f is Henstock-Kurzweil
(shortly, HK-) integrable, if there exists A ∈ R such that, for each ε > 0, there is a function
γε : [a, b] → (0,∞) (named a gauge) with the property that for any δε-fine partition P =
{([xi−1, xi], ti)}ni=1 of [a, b] (i.e., for each i, [xi−1, xi] ⊂ [ti − γε(ti), ti + γε(ti)]), one has

∣
∣
∣
∣
∣

n∑

i=1

f(ti)(xi − xi−1) −A

∣
∣
∣
∣
∣
< ε. (2.1)

The number A is the integral of f over [a, b] and it is denoted as A =
∫b
a f .

In the unbounded case, the Henstock-Kurzweil integral is defined as follows.

Definition 2.2. Given a gauge function γ : [a,∞] → (0,∞), one can say that a tagged partition
P = {([xi−1, xi], ti)}n+1i=1 of [a,∞] is γ-fine, if

(a) a = x0, xn+1 = tn+1 = ∞,

(b) [xi−1, xi] ⊂ [ti − γ(ti), ti + γ(ti)] for all i = 1, 2,. . . , n,

(c) [xn,∞] ⊆ [1/γ(tn+1),∞].

Definition 2.3. A function f : [a,∞] → R is Henstock-Kurzweil integrable on [a,∞], if there
exists A ∈ R such that, for each ε > 0, there is a gauge γε : [a,∞] → (0,∞) for which (2.1) is
satisfied for all tagged partition P which is δε-fine according to Definition 2.2.

Let f be a function defined on an infinite interval [a,∞), One can suppose that f
is defined on [a,∞] assuming that f(∞) = 0. Thus, f is Henstock-Kurzweil integrable on
[a,∞) if f extended on [a,∞] is HK-integrable. For functions defined over intervals (−∞, a]
and (−∞,∞) One can makes similar considerations.

Let I be a finite or infinite interval. The space of all Henstock-Kurzweil integrable
functions over I is denoted by HK(I). This space will be considered with the Alexiewicz
seminorm, which it is defined as follows:

∥∥f
∥∥
I = sup

J⊆I

∣∣∣∣∣

∫

J

f

∣∣∣∣∣
, (2.2)

where the supremum is being taken over all intervals J contained in I.

Definition 2.4. Let ϕ : I → R be a function, where I ⊆ R is a finite interval. The variation of ϕ
over the interval I is defined as follows:

VIϕ = sup

{
n∑

i=1

∣∣ϕ(xi) − ϕ(xi−1)
∣∣ : P is partition of I

}

. (2.3)

We say that the function ϕ is of bounded variation on I if VIϕ < ∞. Now if ϕ is
a function defined on an infinite interval I, then ϕ is of bounded variation on I, if ϕ is of
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bounded variation on each finite subinterval of I and there isM > 0 such that V[a,b]ϕ ≤ M for
all [a, b] ⊆ I. The variation of ϕ on I is VIϕ = sup{V[a,b]ϕ| [a, b] ⊆ I}.

Given an interval I, the space of all bounded variation functions on I is denoted by
BV(I). We set BV0(R) = {f ∈ BV(R) | lim|t|→∞f(t) = 0}. The following are some classical
theorems that are used throughout this paper. The first is given in [2, Lemma 24] and is an
immediate consequence of [1, Theorem 10.12, and Corollary H.4].

Theorem 2.5. If g is a HK-integrable function on [a, b] ⊆ R and f is a function of bounded variation
on [a, b], then fg is HK-integrable on [a, b] and

∣
∣
∣
∣
∣

∫b

a

fg

∣
∣
∣
∣
∣
≤ inf

t∈[a,b]

∣
∣f(t)

∣
∣
∣
∣
∣
∣
∣

∫b

a

g(t)dt

∣
∣
∣
∣
∣
+
∥
∥g

∥
∥
[a,b]V[a,b]f. (2.4)

Theorem 2.6 ([1] Chartier-Dirichlet’s test). Let f and g be functions defined on [a,∞). Suppose
that

(i) g ∈ HK([a, c]) for every c ≥ a, and G defined by G(x) =
∫x
a g is bounded on [a,∞);

(ii) f is of bounded variation on [a,∞) and limx→∞f(x) = 0.

Then fg ∈ HK([a,∞)).

Definition 2.7 (see [3]). Let E ⊆ [a, b]. A function f : [a, b] → R is ACδ on E, if for every
ε > 0, there exist ηε > 0 and a gauge δε on E such that

s∑

i=1

∣∣f(vi) − f(ui)
∣∣ < ε, (2.5)

whenever P = {([ui, vi], ti)}si=1 is a (δε, E)-fine subpartition of [a, b] (i.e., P is δε-fine and the
tags ti belong to E) and

∑s
i=1 |vi − ui| < ηε.

We say that f is ACGδ on [a, b], if [a, b] can be written as a countable union of sets on
each of which the function f is ACδ.

If h(t, s) is a function on R × R, then we use the notation D2h for the partial derivative
of h with respect to the second component s.

Theorem 2.8 ([4, Theorem 4]). Let a, b ∈ R. If h : R × [a, b] → C is such that

(i) h(t, ·) is ACGδ on [a, b] for almost all t ∈ R;

(ii) h(·, s) is HK-integrable on R for all s ∈ [a, b].

Then H :=
∫∞
−∞ h(t, ·)dt is ACGδ on [a, b] and H ′(s) =

∫∞
−∞ D2h(t, s)dt for almost all s ∈ (a, b), if

and only if,

∫ t

s

∫∞

−∞
D2h(t, s)dt ds =

∫∞

−∞

∫ t

s

D2h(t, s)dsdt, (2.6)

for all [s, t] ⊆ [a, b]. In particular,

H ′(s0) =
∫∞

−∞
D2h(t, s0)dt, (2.7)

whenH2 :=
∫∞
−∞ D2h(t, ·)dt is continuous at s0.
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3. Main Results

All results in this paper are based on functions in the vector space BV0(R). Note that
BV0(R) /⊆L(R), where L(R) is the space of Lebesgue integrable functions. Indeed, the func-
tion f : R → R defined by

f(x) =

⎧
⎨

⎩

0 if x ∈ (−∞, 1),
1
x

if x ∈ [1,∞),
(3.1)

is in BV0(R) \ L(R). However, for bounded intervals I, functions in BV(I) are Lebesgue
integrables on I.

To facilitate the statement of these results, it seems appropriate to introduce some
additional terminology. If g : R × R → C is a function and s0 ∈ R, we say that s0 satisfies
Hypothesis (H) relative to g if

(H) there exist δ = δ(s0) > 0 and M = M(s0) > 0, such that, if |s − s0| < δ then

∣∣∣∣

∫v

u

g(t, s)dt
∣∣∣∣ ≤ M, (3.2)

for all [u, v] ⊆ R.
This type of condition plays a major role in the results of the present work.

Theorem 3.1. Let f : R → R and g : R×R → C be functions. If f ∈ BV0(R), and s0 ∈ R satisfies
Hypothesis (H) relative to g, then

Γ(s) =
∫∞

−∞
f(t)g(t, s)dt (3.3)

exists for all s in a neighborhood of s0.

Proof. It follows by Theorem 2.6.

Theorem 3.2. Let f : R → R and g : R × R → C be functions such that

(i) f ∈ BV0(R), g is bounded, and

(ii) g(t, ·) is continuous for all t ∈ R.

If s0 ∈ R satisfies Hypothesis (H) relative to g, then the function Γ defined in Theorem 3.1 is
continuous at s0.

Proof. There exist δ1 > 0 andM > 0, such that, if |s − s0| < δ1 then

∣∣∣∣

∫v

u

g(t, s)dt
∣∣∣∣ ≤ M, (3.4)

for all [u, v] ⊆ R. From Theorem 3.1, Γ(s) exists for all s ∈ Bδ1(s0).
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Let ε > 0 be given. By Hake’s Theorem, there exists K1 > 0 such that

∣
∣
∣
∣
∣

∫

|t|≥u
f(t)g(t, s0)dt

∣
∣
∣
∣
∣
<

ε

3
, (3.5)

for all u ≥ K1. On the other hand, as

lim
t→−∞

V (−∞,t]f = 0, lim
t→∞

V[t,∞)f = 0, (3.6)

there is K2 > 0 such that for each t > K2,

V(−∞,−t]f + V[t,∞)f <
ε

3M
. (3.7)

Let K = max{K1, K2}. From Theorem 2.5, it follows that for every v ≥ K and every
s ∈ Bδ1(s0),

∣∣∣∣

∫v

K

f(t)g(t, s)dt
∣∣∣∣ ≤

∥∥g(·, s)∥∥[K,v]

[
inf

t∈[K,v]

∣∣f(t)
∣∣ + V[K,v]f

]

≤ M
[∣∣f(v)

∣∣ + V[K,∞)f
]
,

(3.8)

where the second inequality is true due to (3.4). This implies, since limt→∞|f(t)| = 0, that

∣∣∣∣

∫∞

K

f(t)g(t, s)dt
∣∣∣∣ ≤ M · V[K,∞)f. (3.9)

Analogously we have that

∣∣∣∣∣

∫−K

−∞
f(t)g(t, s)dt

∣∣∣
∣∣
≤ M · V(−∞,−K]f. (3.10)

Therefore, for each s ∈ Bδ1(s0),

∣∣∣∣∣

∫

|t|≥K
f(t)g(t, s)dt

∣∣∣∣∣
≤ M

[
V(−∞,−K]f + V[K,∞)f

]
< M

ε

3M
=

ε

3
. (3.11)

By hypothesis, f is Lebesgue integrable on [−K,K], g is bounded, and g(t, ·) is
continuous for all t ∈ R. From this it is easy to see, for example using [1, Theorem 12.12],
that ΓK : R → R defined as

ΓK(s) =
∫K

−K
f(t)g(t, s)dt, s ∈ R, (3.12)
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is continuous at s0. This implies that there is δ2 > 0 such that for every s ∈ Bδ2(s0),

∣
∣
∣
∣
∣

∫K

−K
f(t)

[
g(t, s) − g(t, s0)

]
dt

∣
∣
∣
∣
∣
<

ε

3
. (3.13)

Let δ = min{δ1, δ2}. Then for all s ∈ Bδ(s0),

|Γ(s) − Γ(s0)| ≤
∣
∣
∣
∣
∣

∫K

−K
f(t)

[
g(t, s) − g(t, s0)

]
dt

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

|t|≥K
f(t)g(t, s)dt

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

|t|≥K
f(t)g(t, s0)dt

∣
∣
∣
∣
∣
.

(3.14)

Thus, from (3.5), (3.11), and (3.13), |Γ(s) − Γ(s0)| < ε/3 + ε/3 + ε/3 = ε, for all s ∈
Bδ(s0).

Theorem 3.3. Let a, b ∈ R. If f : R → R and g : R × [a, b] → C are functions such that

(i) f ∈ BV0(R), g is measurable, bounded, and

(ii) for all s ∈ [a, b], s satisfies hypothesis (H) relative to g,

then

∫b

a

∫∞

−∞
f(t)g(t, s)dt ds =

∫∞

−∞

∫b

a

f(t)g(t, s)dsdt. (3.15)

Proof. From condition (ii) and by the compactness of [a, b], we claim that there exists M > 0
such that, for each s ∈ [a, b], | ∫vu g(t, s)dt| ≤ M, for all [u, v] ⊆ R.

For each r > 0 and s ∈ [a, b], let Γr(s) =
∫ r
−r f(t)g(t, s)dt. Observe, by Theorem 2.5,

|Γr(s)| =
∣∣
∣∣

∫ r

−r
f(t)g(t, s)dt

∣∣∣∣

≤ ∥∥g(·, s)∥∥[−r,r]

[
inf

t∈[−r,r]

∣∣f(t)
∣∣ + V[−r,r]f

]

≤ M
[∣∣f(0)

∣∣ + Vf
]
,

(3.16)

for all s ∈ [a, b].
So, for each r > 0, Γr is HK-integrable on [a, b] and is bounded for a fixed constant.

Moreover, by Theorem 3.1 and Hake’s Theorem,

lim
r→∞

Γr(s) = Γ(s), (3.17)

for all s ∈ [a, b].
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Therefore, by dominated convergence theorem, Γ is HK-integrable on [a, b] and

∫b

a

Γ(s)ds = lim
r→∞

∫b

a

Γr(s)ds. (3.18)

Now, since f is Lebesgue integrable on [−r, r], g is measurable and bounded; it follows
by Fubini’s Theorem that

∫b

a

∫ r

−r
f(t)g(t, s)dt ds =

∫ r

−r

∫b

a

f(t)g(t, s)dsdt. (3.19)

Consequently,

lim
r→∞

∫ r

−r

∫b

a

f(t)g(t, s)dsdt = lim
r→∞

∫b

a

Γr(s)ds =
∫b

a

Γ(s)ds. (3.20)

So by Hake’s Theorem,

∫∞

−∞

∫b

a

f(t)g(t, s)dsdt =
∫b

a

Γ(s)ds =
∫b

a

∫∞

−∞
f(t)g(t, s)dt ds. (3.21)

Theorem 3.4. Consider f : R → R and g : R × R → C functions, where f ∈ BV0(R) and the
partial derivative D2g exists on R × R and is bounded and continuous. If s0 ∈ R such that

(i) there is K > 0 for which ‖g(·, s0)‖[u,v] ≤ K for all [u, v] ⊆ R, and

(ii) s0 satisfies Hypothesis (H) relative to D2g;

then Γ is differentiable at s0, and

Γ′(s0) =
∫∞

−∞
f(t)D2g(t, s0)dt. (3.22)

Proof. It is not difficult to prove, using conditions (i), (ii), and the Mean Value Theorem, that
there exist δ > 0 and M > 0 such that, for each s ∈ (s0 − δ, s0 + δ),

∣∣∣∣

∫v

u

D2g(t, s)dt
∣∣∣∣ < M,

∣∣∣∣

∫v

u

g(t, s)dt
∣∣∣∣ < M, (3.23)

for all [u, v] ⊆ R.
Consider a, b ∈ R with s0 − δ < a < s0 < b < s0 + δ. In order to show (3.22), we use

Theorem 2.8. The function f(t)g(t, ·) is differentiable on [a, b] for each t ∈ R, so f(t)g(t, ·)
is ACGδ on [a, b] for all t ∈ R. Also, by (3.23) and Theorem 2.6, f(·)g(·, s) is HK-integrable
on R for all s ∈ [a, b]. Then

Γ′(s0) =
∫∞

−∞
f(t)D2g(t, s0)dt, (3.24)
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if

Γ2 :=
∫∞

−∞
f(t)D2g(t, ·)dt (3.25)

is continuous at s0, and

∫ t

s

∫∞

−∞
f(t)D2g(t, s)dt ds =

∫∞

−∞

∫ t

s

f(t)D2g(t, s)dsdt, (3.26)

for all [s, t] ⊆ [a, b]. The first affirmation is true by (3.23) and Theorem 3.2. The second
affirmation is true due to (3.23) and Theorem 3.3.

Remark 3.5. In the previous theorems the kernel g(t, s) satisfies | ∫vu g(t, s)dt| ≤ M, for all
[u, v] ⊆ R. Moreover, if g will satisfy

∣∣∣∣

∫v

u

g(t, s)dt
∣∣∣∣ ≤

M0

|s| , (3.27)

for all [u, v] ⊆ R, then lim|s|→∞Γ(s) = 0, when f ∈ BV0(R) (a version of Riemann-Lebesgue
Lemma).

4. Applications

If f : R → R, then its Fourier transform at s ∈ R is defined as follows:

f̂(s) =
∫∞

−∞
f(t)e−itsdt. (4.1)

Talvila in [2] has done an extensive work about the Fourier transform using
the Henstock-Kurzweil integral: existence, continuity, inversion theorems and so forth.
Nevertheless, there are some omissions in those results that use [2, Lemma 25(a)]. Also
Mendoza Torres et al. in [5] have studied existence, continuity, and Riemann-Lebesgue
Lemma about the Fourier transform of functions belonging toHK(R)∩BV(R). Following the
line of [5], in Theorem 4.2, we include some results from them as consequences of theorems
in the above section.

Let f and g be real-valued functions on R. The convolution of f and g is the function
f ∗ g defined by

f ∗ g(x) =
∫∞

−∞
f
(
x − y

)
g
(
y
)
dy, (4.2)

for all x such that the integral exists. Various conditions can be imposed on f and g to
guarantee that f ∗ g is defined on R, for example, if f is HK-integrable and g is of bounded
variation.

Lemma 4.1. If f ∈ HK(R) ∩ BV(R), then lim|x|→∞f(x) = 0.
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Proof. Since f is of bounded variation on R, then limx→−∞f(x) and limx→∞f(x) exist.
Suppose that limx→∞f(x) = α/= 0. If α > 0, there exists A > 0 such that α/2 < f(x), for
all x > A. If α < 0, there is B > 0 such that −α/2 < −f(x), for all x > B. This shows that
f /∈ HK([A,∞)) or −f /∈ HK([B,∞)), which contradicts f ∈ HK(R), so limx→∞f(x) = 0.
Using a similar argument, we show that limx→−∞f(x) = 0.

As consequence of Lemma 4.1, the vector space HK(R) ∩ BV(R) is contained in
BV0(R). So the next theorem is an immediate consequence of the above section.

Theorem 4.2. If f ∈ HK(R) ∩ BV(R), then

(a) f̂ exists on R.

(b) f̂ is continuous on R \ {0}.
(c) lim|s|→∞f̂(s) = 0.

(d) Define g(t) = tf(t) and suppose that g ∈ HK(R) ∩ BV(R), then f̂ is differentiable on
R \ {0}, and

f̂ ′(s) = −iĝ(s), ∀s ∈ R \ {0}. (4.3)

(e) If h ∈ L(R) ∩ BV(R), then f̂ ∗ h(s) = f̂(s)ĥ(s) for all s ∈ R.

Proof. First observe that

∣∣∣∣

∫v

u

e−itsdt
∣∣∣∣ ≤

2
|s| , (4.4)

for all [u, v] ⊆ R. Then, each s0 /= 0 satisfies Hypothesis (H) relative to e−its.
(a) Theorem 3.1 implies that f̂(s0) exists for all s0 /= 0 and, since f ∈ HK(R), f̂(0)

exists. Thus, f̂ exists on R.
(b) From Theorem 3.2, f̂ is continuous at s0, for all s0 /= 0.
(c) It follows by Remark 3.5 and (4.4).
(d) It follows by Theorem 2.8 in a similar way to the proof of Theorem 3.4.
(e) Take s ∈ R and let k(x, y) = f(y − x)e−iys. Then, for each y ∈ R and all [u, v] ⊆ R,

∣∣∣∣

∫v

u

k
(
x, y

)
dx

∣∣∣∣ =
∣∣∣∣

∫v

u

f
(
y − x

)
dx

∣∣∣∣ =

∣∣∣∣∣

∫y−v

y−u
f(z)dz

∣∣∣∣∣
≤ ∥∥f

∥∥. (4.5)

Thus, for every y ∈ R, y satisfies Hypothesis (H) relative to k. Now, observe that
h ∈ BV0(R) and k is measurable and bounded. So by Theorem 3.3,

∫a

−a

∫∞

−∞
h(x)k

(
x, y

)
dx dy =

∫∞

−∞

∫a

−a
h(x)k

(
x, y

)
dy dx, (4.6)

for all a > 0.
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On the other hand,

∣
∣
∣
∣h(x)

∫a

−a
f
(
y − x

)
e−iysdy

∣
∣
∣
∣ ≤ |h(x)|

∣
∣
∣
∣

∫a−x

−a−x
f(z)e−izsdz

∣
∣
∣
∣

≤ |h(x)|
∥
∥
∥f(·)e−i(·)s

∥
∥
∥.

(4.7)

Thus, since h ∈ L(R), dominated convergence theorem implies that

f̂(s)ĥ(s) =
∫∞

−∞
h(x)

∫∞

−∞
f
(
y − x

)
e−iysdy dx

= lim
a→∞

∫∞

−∞
h(x)

∫a

−a
f
(
y − x

)
e−iysdy dx,

(4.8)

but from (4.6), we have that

f̂(s)ĥ(s) = lim
a→∞

∫a

−a

∫∞

−∞
h(x)f

(
y − x

)
e−iysdx dy

= lim
a→∞

∫a

−a

(
f ∗ h)(y)e−iysdy.

(4.9)

Therefore, by Hake’s Theorem,

f̂ ∗ h(s) = f̂(s)ĥ(s). (4.10)

If f : [0,∞) → R, then its Laplace transform at z ∈ C is defined as follows:

L
(
f
)
(z) =

∫∞

0
f(t)e−ztdt. (4.11)

Here, also the Laplace transform is considered as Henstock-Kurzweil integral.
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Theorem 4.3. If f ∈ HK([0,∞)) ∩ BV([0,∞)), then

(a) L(f)(z) exists for all z ∈ C with Re z ≥ 0.

(b) If F(x, y) = L(f)(x + iy), then F(·, y) is continuous on R
+ ∪ {0} for all y /= 0, and F(x, ·)

is continuous on R for all x > 0.

Proof. It is an easy consequence from Theorems 3.1 and 3.2, since | ∫vu e−(x+iy)tdt| ≤ 2/|x + iy|
for all u, v, x ∈ R

+ ∪ {0}, y ∈ R with x + iy /= 0.

Moreover, the Riemann-Lebesgue Lemma holds the following.

Theorem 4.4. If f ∈ HK([0,∞))∩BV([0,∞)) and z = x+iy, with x ≥ 0, then limy→∞L(f)(z) =
0.

Proof. It results by Remark 3.5 and (4.4), because f(·)e−x(·) is inHK([0,∞))∩BV([0,∞)).
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