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The aim of this paper is to investigate the open-open game of uncountable length. We introduce
a cardinal number μ(X), which says how long the Player I has to play to ensure a victory. It is
proved that c(X) ≤ μ(X) ≤ c(X)+. We also introduce the class Cκ of topological spaces that can
be represented as the inverse limit of κ-complete system {Xσ, π

σ
ρ ,Σ} with w(Xσ) ≤ κ and skeletal

bonding maps. It is shown that product of spaces which belong to Cκ also belongs to this class and
μ(X) ≤ κ whenever X ∈ Cκ.

1. Introduction

The following game is due to Daniels et al. [1]: two players take turns playing on a topological
space X; a round consists of Player I choosing a nonempty open set U ⊆ X and Player II
choosing a nonempty open set V ⊆ U; a round is played for each natural number. Player I
wins the game if the union of open sets which have been chosen by Player II is dense in X.
This game is called the open-open game.

In this paper, we consider what happens if one drops restrictions on the length of
games. If κ is an infinite cardinal and rounds are played for every ordinal number less than κ,
then this modification is called the open-open game of length κ. The examination of such games
is a continuation of [2–4]. A cardinal number μ(X) is introduced such that c(X) ≤ μ(X) ≤
c(X)+. Topological spaces, which can be represented as an inverse limit of κ-complete system
{Xσ, π

σ
� ,Σ} with w(Xσ) ≤ κ and each Xσ is T0 space and skeletal bonding map πσ

� , are listed
as the class Cκ. If μ(X) = ω, then X ∈ Cω. There exists a space X with X /∈ Cμ(X). The class
Cκ is closed under any Cartesian product. In particular, the cellularity number of XI is equal
κ whenever X ∈ Cκ. This implies Theorem of Kurepa that c(XI) ≤ 2κ, whenever c(X) ≤ κ.
Undefined notions and symbols are used in accordance with books [5–7]. For example, if κ is
a cardinal number, then κ+ denotes the first cardinal greater than κ.
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2. When Games Favor Player I

Let X be a topological space. Denote by T the family of all nonempty open sets of X. For an
ordinal number α, let Tα denote the set of all sequences of the length α consisting of elements
of T. The space X is called κ-favorable whenever there exists a function

s :
⋃{

(T)α : α < κ
}
−→ T, (2.1)

such that for each sequence {Bα+1 : α < κ} ⊆ T with B1 ⊆ s(∅) and Bα+1 ⊆ s({Bγ+1 : γ < α}),
for each α < κ, the union

⋃
{Bα+1 : α < κ} is dense in X. We may also say that the function s

is witness to κ-favorability of X. In fact, s is a winning strategy for Player I. For abbreviation
we say that s is κ-winning strategy. Sometimes we do not precisely define a strategy. Just give
hints how a player should play. Note that, any winning strategy can be arbitrary on steps for
limit ordinals.

A family B of open non-empty subset is called a π-base for X if every non-empty open
subset U ⊆ X contains a member of B. The smallest cardinal number |B|, where B is a π-base
for X, is denoted by π(X).

Proposition 2.1. Any topological space X is π(X)-favorable.

Proof. Let {Uα : α < π(X)} be a π-base. Put s(f) = Uα for any sequence f ∈ Tα. Each family
{Bγ : Bγ ⊆ Uγ and γ < π(X)} of open non-empty sets is again a π-base for X. So, its
union is dense in X.

According to [6, p. 86] the cellularity ofX is denoted by c(X). Let sat(X) be the smallest
cardinal number κ such that every family of pairwise disjoint open sets of X has cardinality
< κ, compare [8]. Clearly, if sat(X) is a limit cardinal, then sat(X) = c(X). In all other cases,
sat(X) = c(X)+. Hence, c(X) ≤ sat(X) ≤ c(X)+. Let

μ(X) = min{κ : X is a κ-favorable and κ is a cardinal number}. (2.2)

Proposition 2.1 implies μ(X) ≤ π(X). The next proposition gives two natural strategies and
gives more accurate estimation than c(X) ≤ μ(X) ≤ c+(X).

Proposition 2.2. c(X) ≤ μ(X) ≤ sat(X).

Proof. Suppose c(X) > μ(X). Fix a family {Uξ : ξ < μ(X)+} of pairwise disjoint open sets. If
Player II always chooses an open set, which meets at most one Uξ, then he will not lose the
open-open game of the length μ(X), a contradiction.

Suppose sets {Bγ+1 : γ < α} are chosen by Player II. If the set

X \ cl
⋃{

Bγ+1 : γ < α
}

(2.3)

is non-empty, then Player I choses it. Player I wins the open-open game of the length sat(X),
when he will use this rule. This gives μ(X) ≤ sat(X).
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Note that, ω0 = c({0, 1}κ) = μ({0, 1}κ) ≤ sat({0, 1}κ) = ω1, where {0, 1}κ is the Cantor
cube of weight κ. There exists a separable space X which is not ω0-favorable, see Szymański
[9] or [1, p.207-208]. Hence we get

ω0 = c(X) < μ(X) = sat(X) = ω1. (2.4)

3. On Inverse Systems with Skeletal Bonding Maps

Recall that, a continuous surjection is skeletal if for any non-empty open setsU ⊆ X the closure
of f[U] has non-empty interior. If X is a compact space and Y is a Hausdorff space, then a
continuous surjection f : X → Y is skeletal if and only if Int f[U]/= ∅, for every non-empty
and openU ⊆ X, see Mioduszewski and Rudolf [10].

Lemma 3.1. A skeletal image of κ-favorable space is a κ-favorable space.

Proof. A proof follows by the same method as in [11, Theorem 4.1]. In fact, repeat and
generalize the proof given in [4, Lemma 1].

According to [5], a directed set Σ is said to be κ-complete if any chain of length ≤ κ
consisting of its elements has the least upper bound in Σ. An inverse system {Xσ, π

σ
� ,Σ} is

said to be a κ-complete, whenever Σ is κ-complete and for every chain A ⊆ Σ, where |A| ≤ κ,
such that σ = supA ∈ Σwe get

Xσ = lim
←

{
Xα, π

β
α ,A
}
. (3.1)

In addition, we assume that bonding maps are surjections.
Forω-favorability, the following lemma is givenwithout proof in [1, Corollary 1.4]. We

give a proof to convince the reader that additional assumptions on topology are unnecessary.

Lemma 3.2. If Y ⊆ X is dense, then X is κ-favorable if and only if Y is κ-favorable.

Proof. Let a function σX be a witness to κ-favorability of X. Put

σY (∅) = σX(∅) ∩ Y. (3.2)

If Player II chooses open set V1 ∩ Y ⊆ σY (∅), then put

V ′1 = V1 ∩ σX(∅) ⊆ σX(∅). (3.3)

We get V ′1 ∩ Y = V1 ∩ Y ⊆ σY (∅), since V1 ∩ Y ⊂ σX(∅) ∩ Y . Then we put

σY (V1 ∩ Y ) = σX

(
V ′1
)
∩ Y. (3.4)

Suppose we have already defined

σY

({
Vα+1 ∩ Y : α < γ

})
= σX

({
V ′α+1 : α < γ

})
∩ Y, (3.5)
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for γ < β < κ. If Player II chooses open set Vβ+1 ∩ Y ⊆ σY ({Vα+1 ∩ Y : α < β}), then put

V ′β+1 = Vβ+1 ∩ σX

({
V ′α+1 : α < β

})
⊆ σX

({
V ′α+1 : α < β

})
. (3.6)

Finally, put

σY

({
Vα+1 ∩ Y : α ≤ β

})
= σX

({
V ′α+1 : α ≤ β

})
∩ Y (3.7)

and check that σY is witness to κ-favorability of Y .
Assume that σY is a witness to κ-favorability of Y . If σY (∅) = U0 ∩ Y and U0 ⊆ X is

open, then put σX(∅) = U0. If Player II chooses open set V1 ⊆ σX(∅), then V1 ∩ Y ⊆ σY (∅). Put
σX(V1) = U1, where σY (V1 ∩ Y ) = U1 ∩ Y and U1 ⊆ X is open. Suppose

σY

({
Vα+1 ∩ Y : α < γ

})
= Uγ ∩ Y, σX

({
Vα+1 : α < γ

})
= Uγ (3.8)

have been already defined for γ < β < κ. If II Player chooses open set Vβ+1 ⊆ σX({Vα+1 : α <
β}), then put σX({Vα+1 : α < β + 1}) = Uβ+1, where open set Uβ+1 ⊆ X X is determined by
σY ({Vα+1 ∩ Y : α < β + 1}) = Uβ+1 ∩ Y .

The next theorem is similar to [12, Theorem 2]. We replace a continuous inverse system
with indexing set being a cardinal, by κ-complete inverse system, and also c(X) is replaced
by μ(X). Let κ be a fixed cardinal number.

Theorem 3.3. Let X be a dense subset of the inverse limit of the κ-complete system {Xσ, π
σ
� ,Σ},

where κ = sup{μ(Xσ) : σ ∈ Σ}. If all bonding maps are skeletal, then μ(X) = κ.

Proof. By Lemma 3.2, one can assume that X = lim←{Xσ, π
σ
� ,Σ}. Fix functions sσ : T<κ

σ → Tσ ,
each one is a witness to μ(Xσ)-favorability ofXσ . This does not reduce the generality, because
μ(Xσ) ≤ κ for every σ ∈ Σ. In order to explain the induction, fix a bijection f : κ → κ×κ such
that

(1) if f(α) = (β, ζ), then β, ζ ≤ α;

(2) f−1(β, γ) < f−1(β, ζ) if and only if γ < ζ;

(3) f−1(γ, β) < f−1(ζ, β) if and only if γ < ζ.

One can take as f an isomorphism between κ and κ × κ, with canonical well-ordering,
see [7]. The function f will indicate the strategy and sets that we have taken in the following
induction.

We construct a function s : T<κ → T which will provide κ-favorability of X. The first
step is defined for f(0) = (0, 0). Take an arbitrary σ1 ∈ Σ and put

s(∅) = π−1σ1
(sσ1(∅)). (3.9)

Assume that Player II chooses non-empty open set B1 = π−1σ2
(V1) ⊆ s(∅), where V1 ⊆ Xσ2 is

open. Let

s({B1}) = π−1σ1
(sσ1({Int clπσ1(B1) ∩ sσ1(∅)})) (3.10)
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and denoteD0
0 = Int clπσ1(B1) ∩ sσ1(∅). So, after the first round and the next respond of Player

I, we know: indexes σ1 and σ2, the open set B1 ⊆ X and the open set D0
0 ⊆ Xσ1 .

Suppose that sequences of open sets {Bα+1 ⊆ X : α < γ}, indexes {σα+1 : α < γ}, and
sets {Dϕ

ζ : f−1(ϕ, ζ) < γ} have been already defined such that.
If α < γ and f(α) = (ϕ, η), then

Bα+1 = π−1σα+2
(Vα+1) ⊆ s

({
Bξ+1 : ξ < α

})
= π−1σϕ+1

(
sσϕ+1

({
D

ϕ
ν : ν < η

}))
, (3.11)

where Dϕ
ν = Int clπσϕ+1(Bf−1((ϕ,ν))+1) ∩ sσϕ+1({D

ϕ

ζ : ζ < ν}) and Vα+1 ⊆ Xσα+2 are open.
If f(γ) = (θ, λ) and β < λ, then take

Dθ
β = Int clπσθ+1

(
Bf−1((θ,β))+1

)
∩ sσθ+1

({
Dθ

ζ : ζ < β
})

(3.12)

and put

s
({

Bα+1 : α < γ
})

= π−1σθ+1

(
sσθ+1

({
Dθ

α : α < λ
}))

. (3.13)

Since Σ is κ-complete, one can assume that the sequence {σα+1 : α < κ} is increasing and
σ = sup{σξ+1 : ξ < κ} ∈ Σ.

We will prove that
⋃

α<κ Bα+1 is dense in X. Since π−1σ (πσ(Bα+1)) = Bα+1 for each α < κ
and πσ is skeletal map, it is sufficient to show that

⋃
α<κ πσ(Bα+1) is dense in Xσ . Fix arbitrary

open set (πσ
σξ+1

)−1(W) where W is an open set of Xξ+1. Since sσξ+1 is winning strategy on Xσξ+1 ,

there exists Dξ
α such that Dξ

α ∩W /= ∅, and D
ξ
α ⊆ Int clπσξ+1(Bf−1((ξ,α))+1). Therefore we get

(
πσ
σξ+1

)−1
(W) ∩ πσ(Bδ+1)/= ∅, (3.14)

where δ = f−1((ξ, α)). Indeed, suppose that (πσ
σξ+1

)−1(W) ∩ πσ(Bδ+1) = ∅. Then

∅ = πσ
σξ+1

[(
πσ
σξ+1

)−1
(W) ∩ πσ(Bδ+1)

]
= W ∩ πσ

σξ+1
[πσ(Bδ+1)] = W ∩ πσξ+1(Bδ+1). (3.15)

Hence we have W ∩ Int clπσξ+1(Bδ+1) = ∅, a contradiction.

Corollary 3.4. If X is dense subset of an inverse limit of μ(X)-complete system {Xσ, π
σ
� ,Σ}, where

all bonding map are skeletal, then

c(X) = sup{c(Xσ) : σ ∈ Σ}. (3.16)

Proof. Let X = lim←{Xσ, π
σ
� ,Σ}. Since c(X) ≥ c(Xσ), for every σ ∈ Σ, we will show that

c(X) ≤ sup{c(Xσ) : σ ∈ Σ}. (3.17)
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Suppose that sup{c(Xσ) : σ ∈ Σ} = τ < c(X). Using Proposition 2.2 and Theorem 3.3,
check that

μ(X) = sup
{
μ(Xσ) : σ ∈ Σ

}
≤ sup

{
c(Xσ)+ : σ ∈ Σ

}
≤ τ+ ≤ c(X). (3.18)

So, we get μ(X) = c(X) = τ+. Therefore, there exists a family R, of size τ+, which consists of
pairwise disjoint open subset of X. We can assume that

R ⊆
{
π−1σ (U) : U is an open subset of Xσ, σ ∈ Σ

}
. (3.19)

Since {Xσ, π
σ
� ,Σ} is μ(X)-complete inverse system and |R| = μ(X), there exists β ∈ Σ such

that

R ⊆
{
π−1β (U) : U is an open subset of Xβ

}
, (3.20)

a contradiction with c(Xβ) < τ+.

The above corollary is similar to [12, Theorem 1], but we replaced a continuous inverse
system, whose indexing set is a cardinal number by κ-complete inverse system.

4. Classes Cκ

Let κ be an infinite cardinal number. Consider inverse limits of κ-complete system {Xσ, π
σ
� ,Σ}

with w(Xσ) ≤ κ. Let Cκ be a class of such inverse limits with skeletal bonding maps and Xσ

being T0-space. Now, we show that the class Cκ is stable under Cartesian products.

Theorem 4.1. The Cartesian product of spaces from Cκ belongs to Cκ.

Proof. LetX =
∏
{Xs : s ∈ S}where eachXs ∈ Cκ. For each s ∈ S, letXs = lim←{Xσ, s

σ
ρ ,Σs} be

a κ-complete inverse system with skeletal bonding map such that each T0-space Xσ has the
weight ≤ κ. Consider the union

Γ =
⋃
{
∏

s∈A
Σs : A ∈ [S]κ

}
. (4.1)

Introduce a partial order on Γ as follows:

f � g ⇐⇒ dom
(
f
)
⊆ dom

(
g
)
, ∀a∈dom(f)f(a)≤a g(a), (4.2)

where ≤a is the partial order on Σa. The set Γ with the relation � is upward directed and
κ-complete.

If f ∈ Γ, then Yf denotes the Cartesian product

∏{
Xf(a) : a ∈ dom

(
f
)}

. (4.3)



International Journal of Mathematics and Mathematical Sciences 7

If f � g, then put

p
g

f =

⎛

⎝
∏

a∈dom(f)

a
g(a)
f(a)

⎞

⎠ ◦ πdom(g)

dom(f), (4.4)

where π
dom(g)
dom(f) is the projection of

∏
{Xg(a) : a ∈ dom(g)} onto

∏
{Xg(a) : a ∈ dom(f)} and

∏
a∈dom(f)a

g(a)
f(a) is the Cartesian product of the bonding maps ag(a)

f(a) : Xg(a) → Xf(a). We get the

inverse system{Yf , p
g

f
,Γ} which is κ-complete, bonding maps are skeletal and w(Yf) ≤ κ. So,

we can take Y = lim←{Yf , p
g

f
,Γ}.

Now, define a map h : X → Y by the following formula:

h({xs}s∈S) =
{
xf

}
f∈Γ, (4.5)

where xf = {xf(a)}a∈dom(f) ∈ Yf and f ∈
∏
{Σa : a ∈ dom(f)} and dom(f) ∈ [S]κ. By the

property

{xs}s∈S = {ts}s∈S ⇐⇒ ∀s∈S∀σ∈Σs , xσ = tσ ⇐⇒ ∀f∈Γ, xf = tf , (4.6)

the map h is well defined and it is injection.
The map h is surjection. Indeed, let {bf}f∈Γ ∈ Y . For each s ∈ S and each σ ∈ Σs we fix

fs
σ ∈ Γ such that s ∈ dom(fs

σ) and fs
σ(s) = σ. Let πf(s) : Yf → Xf(s) be a projection for each

f ∈ Γ.
For each t ∈ S let define bt = {bσ}σ∈Σt

, where bσ = πft
σ(t)(bft

σ
). We will prove that an

element bt is a thread of the spaceXt. Indeed, if σ ≥ ρ and σ, ρ ∈ Σt, then take functions ft
σ and

gt
ρ. For abbreviation, denote f = ft

σ and g = gt
ρ. Define a function h : dom(f) ∪ dom(g) →⋃

{Σt : t ∈ dom(f) ∪ dom(g)} in the following way:

h(s) =

{
g(s), if s ∈ dom

(
g
)
\ dom

(
f
)
,

f(s), if s ∈ dom
(
f
)
.

(4.7)

The function h is element of Γ and f, g � h. Note that h | dom(f) = f and h | dom(g) \ {t} =
g | dom(g) \ {t}. Since

{
bg(s)
}
s∈dom(g) = bg = phg(bh) =

⎛

⎝
∏

s∈dom(g)
s
h(s)
g(s)

⎞

⎠
(
π

dom(h)
dom(g)(bh)

)

=

⎛

⎝
∏

s∈dom(g)
s
h(s)
g(s)

⎞

⎠
({

bh(s)
}
s∈dom(g)

)
=
{
s
h(s)
g(s)

(
bh(s)
)}

s∈dom(g)
,

(4.8)
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we get

bρ = bg(t) = s
h(t)
g(t)

(
bh(t)
)
= s

f(t)
g(t)

(
bf(t)
)
= sσρ(bσ). (4.9)

It is clear that h({at}t∈S) = {bf}f∈Γ.
We shall prove that themap h is continuous. Take an open subsetU =

∏
s∈dom(f)Af(s) ⊆

Yf such that

Af(s) =

{
V, if s = s0,

Xf(s), otherwise,
(4.10)

where V ⊆ Xf(s0) is open subset. A map pf is projection from the inverse limit Y to Yf . It is
sufficient to show that

h−1
((

pf
)−1(U)

)
=
∏

s∈S
Bs, (4.11)

where

Bs =

{
W, if s = s0,

Xs, otherwise,
(4.12)

and W = π−1
f(s0)

(V ) and πf(s0) : Yf → Xσ0 is the projection and f(s0) = σ0. We have

{xs}s∈S ∈ h−1
((

pf
)−1(U)

)
⇐⇒ pf(h({xs}s∈S)) ∈ U

⇐⇒ pf
({

xf

}
f∈Γ

)
= xf ∈ U ⇐⇒ xf(s0) ∈ V

⇐⇒ xs0 ∈W ⇐⇒ x ∈
∏

s∈S
Bs ⊆

∏

s∈S
Xs = X.

(4.13)

Since the map h is bijection and

(
pf
)−1(U) = h

(
h−1
((

pf
)−1(U)

))
= h

(
∏

s∈S
Bs

)
(4.14)

for any subbase subset
∏

s∈SBs ⊆ X, the map h is open.

In the case κ = ω we have well-known results that product of I-favorable space is
I-favorable space (see [1] or [2]).

Corollary 4.2. Every I-favorable space is stable under any product.

If D is a set and κ is cardinal number then we denote
⋃

α<κ D
α by D<κ.
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The following result probably is known but we give a proof for the sake of
completeness.

Theorem 4.3. Let κ be an infinite cardinal and let T be a set such that |T | ≥ κκ. If A ∈ [T]κ and
fδ : T<κ → T for all δ < κ<κ then there exists a set B ⊆ T such that |B| ≤ τ and A ⊆ B and
fδ(C) ∈ B for every C ∈ B<κ and every δ < κ<k, where

τ =

{
κ<κ, for regular κ,

κκ, otherwise.
(4.15)

Proof. Assume that κ is regular cardinal. Let A ∈ [T]κ and let fδ :
⋃

α<κ T
α → T for δ < κ<κ.

Let A0 = A. Assume that we have defined Aα for α < β such that |Aα| ≤ κ|α|. Put

Aβ =

⎛

⎝
⋃

α<β

Aα

⎞

⎠ ∪

⎧
⎪⎨

⎪⎩
fδ(C) : C ∈

⎛

⎝
⋃

α<β

Aα

⎞

⎠
<β

, δ < κ|β|

⎫
⎪⎬

⎪⎭
. (4.16)

Calculate the size of the set Aβ:

∣∣Aβ

∣∣ ≤

∣∣∣∣∣∣

⎛

⎝
⋃

α<β

Aα

⎞

⎠

∣∣∣∣∣∣

∣∣∣κ|β|
∣∣∣

∣∣∣∣∣∣∣

⎛

⎝
⋃

α<β

Aα

⎞

⎠
<β
∣∣∣∣∣∣∣
≤ κ|β|

∣∣∣∣
(
κ|β|
)|β|∣∣∣∣ ≤ κ|β|. (4.17)

Let B =
⋃

β<κ Aβ, so we get |B| ≤ κ<κ. Fix a sequence 〈bα : α < β〉 ⊆ B and fγ . Since
cf(κ) = κ there exists δ < κ such that C = {bα : α < β} ⊆ Aδ and fγ(C) ∈ Aσ+1 for some σ < κ.

In the second case cf(κ) < κ, we proceed the above induction up to β = κ. Let B = Aκ,
so we get |B| ≤ κκ and B =

⋃
β<κ+ Aβ. Similarly to the first case we get that B is closed under

all function fδ, δ < κ<κ.

Theorem 4.4. If X belongs to the class Cκ then c(X) ≤ κ.

Proof. If X ∈ Cκ then by Theorems 3.3 and Proposition 2.2 we get c(X) ≤ μ(X) ≤ κ.

We apply some facts from the paper [3]. LetP be a family of open subset of topological
space X and x, y ∈ X. We say that x ∼P y if and only if x ∈ V ⇔ y ∈ V for every V ∈ P.
The family of all sets [x]P = {y : y ∼P x} we denote by X/P. Define a map q : X → X/P
as follows q[x] = [x]P. The set X/P is equipped with topology TP generated by all images
q[V ]where V ∈ P.

Recall Lemma 1 from paper [3]: if P is a family of open set of X and P is closed under
finite intersection then the mapping q : X → X/P is continuous. Moreover if X =

⋃
P then

the family {q[V ] : V ∈ P} is a base for the topology TP.
Notice that if P has a property

∀(W ∈ P)∃({Vn : n < ω} ⊆ P)∃({Un : n < ω} ⊆ P),

W =
⋃

n<ω

Un, ∀(n < ω)Un ⊆ X \ Vn ⊆ Un+1,

(
seq
)
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then
⋃
P = X and by [3, Lemma 3] the topology TP is Hausdorff. Moreover if P is closed

under finite intersection then by [3, Lemma 4] the topology TP is regular. Theorem 5 and
Lemma 9 [3] yeild.

Theorem 4.5. If P is a set of open subset of topological space X such that

(1) is closed under κ-winning strategy, finite union and intersection,

(2) has property (seq),

then X/P with topology TP is completely regular space and q : X → X/P is skeletal.

If a topological space X has the cardinal number μ(X) = ω then X ∈ Cω, but for μ(X)
equals for instance ω1 we get only X ∈ Cω1

ω .

Theorem 4.6. Each Tichonov space X with μ(X) = κ can be dense embedded into inverse limit of
a system {Xσ, π

σ
� ,Σ}, where all bonding map are skeletal, indexing set Σ is τ-complete each Xσ is

Tichonov space with w(Xσ) ≤ τ and

τ =

{
κ<κ, for regular κ,

κκ, otherwise.
(4.18)

Proof. Let B be a π-base for topological space X consisting of cozero sets and σ :
⋃
{Bα :

α < κ} → B be a κ-winning strategy. We can define a function of finite intersection
property and finite union property as follows: g({B0, B1, . . . , Bn}) = B0 ∩ B1 ∩ · · · ∩ Bn and
h({B0, B1, . . . , Bn}) = B0 ∪B1 ∪ · · · ∪Bn. For each cozero set V ∈ B fix a continuous function fV :
X → [0, 1] such that V = f−1V ((0, 1]). Put σ2n(V ) = f−1V ((1/n, 1]) and σ2n+1(V ) = f−1V ([0, 1/n)).
By Theorem 4.3 for each R ∈ [B]κ and all functions h, g, σn, σ there is subset P ⊆ B such that

(1) |P| ≤ τ , where

τ =

{
κ<κ, for regular κ,
κκ, otherwise,

(4.19)

(2) R ⊆ P,
(3) P is closed under κ-winning strategy σ, function of finite intersection property and

finite union property,

(4) P is closed under σn, n < ω, hence P holds property
(
seq
)
.

Therefore by Theorem 4.5 we get skeletal mapping qP : X → X/P. Let Σ ⊆ [B]≤τ
be a set of families which satisfies above condition (1), (2), (3) and the (4). If Σ is directed
by inclusion. It is easy to check that Σ is τ-complete. Similar to [3, Theorem 11] we define
a function f : X → Y as follows f(x) = {fP(x)}, where f(x)P = qP(x) and Y =
lim←{X/R, qRP,C}. If R,P ∈ C and P ⊆ R, then qRP(f(x)R) = f(x)P. Thus f(x) is a thread,
that is, f(x) ∈ Y . It easy to see that f is homeomorphism onto its image and f[X] is dense in
Y , compare [3, proof of Theorem 11].

Theorem 4.6 suggests question.
Does each space X belong to Cμ(X)?
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Fleissner [13] proved that there exists a space Y such that c(Y ) = ℵ0 and c(Y 3) = ℵ2.
Hence, we get μ(Y ) = ℵ1, by Theorem 3.3 and Corollary 4.2. Suppose that Y ∈ Cμ(X) then
c(Y 3) ≤ ℵ1, by Theorem 4.4, a contradiction.

Corollary 4.7. If X is topological space with μ(X) = κ then c(XI) ≤ τ and

τ =

{
κ<κ, for regular κ,

κκ, otherwise.
(4.20)

Proof. By Theorem 4.3 we getXI ∈ Cτ . Hence by Theorems 4.4 and 4.1 we have c(XI) ≤ τ .

By above Corollary we get the following.

Corollary 4.8 (see [14, Kurepa]). If {Xs : s ∈ S} is a family of topological spaces and c(Xs) ≤ κ
for each s ∈ S, then c(

∏
{Xs : s ∈ S}) ≤ 2κ.
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